Skip to main content

Advertisement

Log in

On periodicity and directionality of somitogenesis

  • Review
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

It is currently thought that the mechanism underlying somitogenesis is linked to a molecular oscillator, the segmentation clock, and to gradients of signaling molecules within the paraxial mesoderm. Here, we review the current picture of this segmentation clock and gradients, and use this knowledge to critically ask: What is the basis for periodicity and directionality of somitogenesis?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aulehla A, Herrmann BG (2004) Segmentation in vertebrates: clock and gradient finally joined. Genes Dev 18:2060–2067

    Article  PubMed  CAS  Google Scholar 

  • Aulehla A, Wehrle C, Brand-Saberi B, Kemler R, Gossler A, Kanzler B, Herrmann BG (2003) Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev Cell 4:395–406

    Article  PubMed  CAS  Google Scholar 

  • del Barco Barrantes I, Elia A, Wunnsch K, Hrabde De Angelis M, Mak T, Rossant J, Conlon R, Gossler A, Luis de la Pompa J (1999) Interaction between Notch signalling and lunatic fringe during somite boundary formation in the mouse. Curr Biol 9:470–480

    Article  Google Scholar 

  • Bessho Y, Kageyama R (2003) Oscillations, clocks and segmentation. Curr Opin Genet Dev 13:379–384

    Article  PubMed  CAS  Google Scholar 

  • Bessho Y, Hirata H, Masamizu Y, Kageyama R (2003) Periodic repression by the bHLH factor Hes7 is an essential mechanism for the somite segmentation clock. Genes Dev 17:1451–1456

    Article  PubMed  CAS  Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1974) Somitogenesis in the chick embryo. Determination of the segmentation direction. Verh Anat Ges 68:573–579

    PubMed  CAS  Google Scholar 

  • Conlon RA, Reaume AG, Rossant J (1995) Notch1 is required for the coordinate segmentation of somites. Development 121:1533–1545

    PubMed  CAS  Google Scholar 

  • Del Corral RD, Storey KG (2004) Opposing FGF and retinoid pathways: a signalling switch that controls differentiation and patterning onset in the extending vertebrate body axis. Bioessays 26:857–869

    Article  Google Scholar 

  • Deuchar E, Burgess AMC (1967) Somite segmentation in amphibian embryos: is there a transmitted control mechanism? J Embryol Exp Morphol 17:349–358

    Google Scholar 

  • Dubrulle J, McGrew MJ, Pourquie O (2001) FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106:219–232

    Article  PubMed  CAS  Google Scholar 

  • Evrard YA, Lun Y, Aulehla A, Gan L, Johnson RL (1998) lunatic fringe is an essential mediator of somite segmentation and patterning. Nature 394:377–381

    Article  PubMed  CAS  Google Scholar 

  • Galceran J, Sustmann C, Hsu SC, Folberth S, Grosschedl R (2004) LEF1-mediated regulation of delta-like1 links Wnt and Notch signaling in somitogenesis. Genes Dev 18:2718–2723

    Article  PubMed  CAS  Google Scholar 

  • Greco TL, Takada S, Newhouse MM, McMahon JA, McMahon AP, Camper SA (1996) Analysis of the vestigial tail mutation demonstrates that Wnt-3a gene dosage regulates mouse axial development. Genes Dev 10:313–324

    Article  PubMed  CAS  Google Scholar 

  • Hirata H, Bessho Y, Kokubu H, Masamizu Y, Yamada S, Lewis J, Kageyama R (2004) Instability of Hes7 protein is crucial for the somite segmentation clock. Nat Genet 36:750–754

    Article  PubMed  CAS  Google Scholar 

  • Hofmann M, Schuster-Gossler K, Watabe-Rudolph M, Aulehla A, Herrmann BG, Gossler A (2004) WNT signaling, in synergy with T/TBX6, controls Notch signaling by regulating Dll1 expression in the presomitic mesoderm of mouse embryos. Genes Dev 18:2712–2717

    Article  PubMed  CAS  Google Scholar 

  • Horikawa K, Ishimatsu K, Yoshimoto E, Kondo S, Takeda H (2006) Noise-resistant and synchronized oscillation of the segmentation clock. Nature 441:719–723

    Article  PubMed  CAS  Google Scholar 

  • Hrabe de Angelis M, McIntyre J, Gossler A (1997) Maintenance of somite borders in mice requires the delta homologue DII1. Nature 386:717–721

    Article  PubMed  CAS  Google Scholar 

  • Huppert SS, Ilagan MX, De Strooper B, Kopan R (2005) Analysis of Notch function in presomitic mesoderm suggests a gamma-secretase-independent role for presenilins in somite differentiation. Dev Cell 8:677–688

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa A, Kitajima S, Takahashi Y, Kokubo H, Kanno J, Inoue T, Saga Y (2004) Mouse Nkd1, a Wnt antagonist, exhibits oscillatory gene expression in the PSM under the control of Notch signaling. Mech Dev 121:1443–1453

    Article  PubMed  CAS  Google Scholar 

  • Jiang YJ, Aerne BL, Smithers L, Haddon C, Ish-Horowicz D, Lewis J (2000) Notch signalling and the synchronization of the somite segmentation clock. Nature 408:475–479

    Article  PubMed  CAS  Google Scholar 

  • Kawakami Y, Raya Y, Marina Raya Y, Rodríguez-Esteban C, Izpisúa Belmonte J (2005) Retinoic acid signalling links left-right asymmetric patterning and bilaterally symmetric somitogenesis in the zebrafish embryo. Nature (in press)

  • Lewis J (2003) Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Curr Biol 13(16):1398–1408

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Wakamiya M, Shea MJ, Albrecht U, Behringer RR, Bradley A (1999) Requirement for Wnt3 in vertebrate axis formation. Nat Genet 22:361–365

    Article  PubMed  CAS  Google Scholar 

  • Maruhashi M, Van De Putte T, Huylebroeck D, Kondoh H, Higashi Y (2005) Involvement of SIP1 in positioning of somite boundaries in the mouse embryo. Dev Dyn 234:332–338

    Article  PubMed  CAS  Google Scholar 

  • Masamizu Y, Ohtsuka T, Takashima Y, Nagahara H, Takenaka Y, Yoshikawa K, Okamura H, Kageyama R (2006) Real-time imaging of the somite segmentation clock: revelation of unstable oscillators in the individual presomitic mesoderm cells. Proc Natl Acad Sci USA 103:1313–1318

    Article  PubMed  CAS  Google Scholar 

  • Menkes B, Sandor S, Elias S (1968) Researches on the formation of axial organs of the chick embryo. IV. Rev Roum Embryol Cytol 5:131–137

    Google Scholar 

  • Nakaya MA, Biris K, Tsukiyama T, Jaime S, Rawls JA, Yamaguchi TP (2005) Wnt3alinks left-right determination with segmentation and anteroposterior axis elongation. Development 132:5425–5436

    Article  PubMed  CAS  Google Scholar 

  • Oka C, Nakano T, Wakeham A, de la Pompa JL, Mori C, Sakai T, Okazaki S, Kawaichi M, Shiota K, Mak TW, Honjo T (1995) Disruption of the mouse RBP-J kappa gene results in early embryonic death. Development 121:3291–3301

    PubMed  CAS  Google Scholar 

  • Packard DSJ (1978) Chick somite determination: the role of factors in young somites and the segmental plate. J Exp Zool 203:295–306

    Article  PubMed  Google Scholar 

  • Palmeirim I, Henrique D, Ish-Horowicz D, Pourquié O (1997) Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesiss. Cell 91:639–648

    Article  PubMed  CAS  Google Scholar 

  • Palmeirim I, Dubrulle J, Henrique D, Ish-Horowicz D, Pourquié O (1998) Uncoupling segmentation and somitogenesis in the chick presomitic mesoderm. Dev Genet 23:77–85

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh CS (1954) On temperature independence in the clock system controlling emergence time in drosophila. Proc Natl Acad Sci USA 40:1018–1029

    Article  PubMed  CAS  Google Scholar 

  • Pourquie O (2003) Vertebrate somitogenesis: a novel paradigm for animal segmentation? Int J Dev Biol 47:597–603

    PubMed  Google Scholar 

  • Saga Y, Takeda H (2001) The making of the somite: molecular events in vertebrate segmentation. Nat Rev Genet 2:835–845

    Article  PubMed  CAS  Google Scholar 

  • Satoh W, Gotoh T, Tsunematsu Y, Aizawa S, Shimono A (2006) Sfrp1 and Sfrp2 regulate anteroposterior axis elongation and somite segmentation during mouse embryogenesis. Development 133:989–999

    Article  PubMed  CAS  Google Scholar 

  • Sirbu IO, Duester G (2006) Retinoic-acid signalling in node ectoderm and posterior neural plate directs left-right patterning of somitic mesoderm. Nat Cell Biol 8:271–277

    Article  PubMed  CAS  Google Scholar 

  • Stern CD, Fraser SE, Keynes RJ, Primmett DR (1988) A cell lineage analysis of segmentation in the chick embryo. Development 104:231–244

    PubMed  Google Scholar 

  • Takada S, Stark KL, Shea MJ, Vassileva G, McMahon JA, McMahon AP (1994) Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev 8:174–189

    Article  PubMed  CAS  Google Scholar 

  • Tam PP (1981) The control of somitogenesis in mouse embryos. J.Embryol.Exp Morphol 65(Suppl):103–128

    PubMed  Google Scholar 

  • Vermot J, Pourquie O (2005) Retinoic acid coordinates somitogenesis and left-right patterning in vertebrate embryos. Nature 435:215–220

    Article  PubMed  CAS  Google Scholar 

  • Vermot J, Gallego Llamas J, Fraulob V, Niederreither K, Chambon P, Dolle P (2005) Retinoic acid controls the bilateral symmetry of somite formation in the mouse embryo. Science 308(5721):563–566

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi TP, Harpal K, Henkemeyer M, Rossant J (1994) fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev 8:3032–3044

    Article  PubMed  CAS  Google Scholar 

  • Yu HM, Jerchow B, Sheu TJ, Liu B, Costantini F, Puzas JE, Birchmeier W, Hsu W (2005) The role of Axin2 in calvarial morphogenesis and craniosynostosis. Development 132:1995–2005

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Gridley T (1998) Defects in somite formation in lunatic fringe-deficient mice.Nature 394:374–377

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

A. A was funded by the Swiss Foundation for medical-biological grants. Current work is supported by the Stowers Institute for Medical Research and NIH grant 1R01 HD043158-01. O. P. is a Howard Hughes Medical Institute Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Pourquié.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aulehla, A., Pourquié, O. On periodicity and directionality of somitogenesis. Brain Struct Funct 211 (Suppl 1), 3–8 (2006). https://doi.org/10.1007/s00429-006-0124-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-006-0124-y

Keywords

Navigation