Skip to main content
Log in

Do early sensory cortices integrate cross-modal information?

  • Review
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Our different senses provide complementary evidence about the environment and their interaction often aids behavioral performance or alters the quality of the sensory percept. A traditional view defers the merging of sensory information to higher association cortices, and posits that a large part of the brain can be reduced into a collection of unisensory systems that can be studied in isolation. Recent studies, however, challenge this view and suggest that cross-modal interactions can already occur in areas hitherto regarded as unisensory. We review results from functional imaging and electrophysiology exemplifying cross-modal interactions that occur early during the evoked response, and at the earliest stages of sensory cortical processing. Although anatomical studies revealed several potential origins of these cross-modal influences, there is yet no clear relation between particular functional observations and specific anatomical connections. In addition, our view on sensory integration at the neuronal level is coined by many studies on subcortical model systems of sensory integration; yet, the patterns of cross-modal interaction in cortex deviate from these model systems in several ways. Consequently, future studies on cortical sensory integration need to leave the descriptive level and need to incorporate cross-modal influences into models of the organization of sensory processing. Only then will we be able to determine whether early cross-modal interactions truly merit the label sensory integration, and how they increase a sensory system’s ability to scrutinize its environment and finally aid behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adrian ED (1949) The Sherrington lectures: 1. Sensory integration: University of Liverpool Press

  • Alvarado JC, Vaughan JW, Stanford TR, Stein BE (2007) Multisensory versus unisensory integration: contrasting modes in the superior colliculus. J Neurophysiol 97:3193–3205

    PubMed  Google Scholar 

  • Avillac M, Ben Hamed S, Duhamel JR (2007) Multisensory integration in the ventral intraparietal area of the macaque monkey. J Neurosci 27:1922–1932

    PubMed  CAS  Google Scholar 

  • Banati RB, Goerres GW, Tjoa C, Aggleton JP, Grasby P (2000) The functional anatomy of visual-tactile integration in man: a study using positron emission tomography. Neuropsychologia 38:115–124

    PubMed  CAS  Google Scholar 

  • Barnes CL, Pandya DN (1992) Efferent cortical connections of multimodal cortex of the superior temporal sulcus in the rhesus monkey. J Comp Neurol 318:222–244

    PubMed  CAS  Google Scholar 

  • Barraclough NE, Xiao D, Baker CI, Oram MW, Perrett DI (2005) Integration of visual and auditory information by superior temporal sulcus neurons responsive to the sight of actions. J Cogn Neurosci 17:377–391

    PubMed  Google Scholar 

  • Beauchamp MS (2005) Statistical criteria in FMRI studies of multisensory integration. Neuroinformatics 3:93–114

    PubMed  Google Scholar 

  • Beauchamp MS, Lee KE, Argall BD, Martin A (2004) Integration of auditory and visual information about objects in superior temporal sulcus. Neuron 41:809–823

    PubMed  CAS  Google Scholar 

  • Benevento LA, Fallon J, Davis BJ, Rezak M (1977) Auditory–visual interaction in single cells in the cortex of the superior temporal sulcus and the orbital frontal cortex of the macaque monkey. Exp Neurol 57:849–872

    PubMed  CAS  Google Scholar 

  • Bental E, Dafny N, Feldman S (1968) Convergence of auditory and visual stimuli on single cells in the primary visual cortex of unanesthetized unrestrained cats. Exp Neurol 20:341–351

    PubMed  CAS  Google Scholar 

  • Bernstein LE, Auer ET Jr, Moore JK, Ponton CW, Don M, Singh M (2002) Visual speech perception without primary auditory cortex activation. Neuroreport 13:311–315

    PubMed  Google Scholar 

  • Bizley JK, Nodal FR, Bajo VM, Nelken I, King AJ (2006) Physiological and anatomical evidence for multisensory interactions in auditory cortex. Cereb Cortex Epub doi:10.1093/cercor/bhl128

  • Bremmer F, Klam F, Duhamel JR, Ben Hamed S, Graf W (2002) Visual-vestibular interactive responses in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16:1569–1586

    PubMed  Google Scholar 

  • Bruce C, Desimone R, Gross CG (1981) Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol 46:369–384

    PubMed  CAS  Google Scholar 

  • Budinger E, Heil P, Hess A, Scheich H (2006) Multisensory processing via early cortical stages: connections of the primary auditory cortical field with other sensory systems. Neuroscience 143:1065–1083

    PubMed  CAS  Google Scholar 

  • Bullier J (2001) Integrated model of visual processing. Brain Res Brain Res Rev 36:96–107

    PubMed  CAS  Google Scholar 

  • Calvert GA (2001) Crossmodal processing in the human brain: insights from functional neuroimaging studies. Cereb Cortex 11:1110–1123

    PubMed  CAS  Google Scholar 

  • Calvert GA, Bullmore ET, Brammer MJ, Campbell R, Williams SC, McGuire PK, Woodruff PW, Iversen SD, David AS (1997) Activation of auditory cortex during silent lipreading. Science 276:593–596

    PubMed  CAS  Google Scholar 

  • Calvert GA, Brammer MJ, Bullmore ET, Campbell R, Iversen SD, David AS (1999) Response amplification in sensory-specific cortices during crossmodal binding. Neuroreport 10:2619–2623

    PubMed  CAS  Google Scholar 

  • Calvert GA, Campbell R, Brammer MJ (2000) Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortex. Curr Biol 10:649–657

    PubMed  CAS  Google Scholar 

  • Cappe C, Barone P (2005) Heteromodal connections supporting multisensory integration at low levels of cortical processing in the monkey. Eur J Neurosci 22:2886–2902

    PubMed  Google Scholar 

  • Colin C, Radeau M, Soquet A, Demolin D, Colin F, Deltenre P (2002) Mismatch negativity evoked by the McGurk-MacDonald effect: a phonetic representation within short-term memory. Clin Neurophysiol 113:495–506

    PubMed  CAS  Google Scholar 

  • Crabtree JW, Isaac JT (2002) New intrathalamic pathways allowing modality-related and cross-modality switching in the dorsal thalamus. J Neurosci 22:8754–8761

    PubMed  CAS  Google Scholar 

  • Crabtree JW, Collingridge GL, Isaac JT (1998) A new intrathalamic pathway linking modality-related nuclei in the dorsal thalamus. Nat Neurosci 1:389–394

    PubMed  CAS  Google Scholar 

  • Crivello F, Schormann T, Tzourio-Mazoyer N, Roland PE, Zilles K, Mazoyer BM (2002) Comparison of spatial normalization procedures and their impact on functional maps. Hum Brain Mapp 16:228–250

    PubMed  Google Scholar 

  • Cusick CG, Seltzer B, Cola M, Griggs E (1995) Chemoarchitectonics and corticocortical terminations within the superior temporal sulcus of the rhesus monkey: evidence for subdivisions of superior temporal polysensory cortex. J Comp Neurol 360:513–535

    PubMed  CAS  Google Scholar 

  • de la Mothe LA, Blumell S, Kajikawa Y, Hackett TA (2006) Thalamic connections of the auditory cortex in marmoset monkeys: core and medial belt regions. J Comp Neurol 496:72–96

    Google Scholar 

  • Dehner LR, Keniston LP, Clemo HR, Meredith MA (2004) Cross-modal circuitry between auditory and somatosensory areas of the cat anterior ectosylvian sulcal cortex: a ‘new’ inhibitory form of multisensory convergence. Cereb Cortex 14:387–403

    PubMed  Google Scholar 

  • Desai R, Liebenthal E, Possing ET, Waldron E, Binder JR (2005) Volumetric vs. surface-based alignment for localization of auditory cortex activation. Neuroimage 26:1019–1029

    PubMed  Google Scholar 

  • Driver J, Spence C (1998) Crossmodal attention. Curr Opin Neurobiol 8:245–253

    PubMed  CAS  Google Scholar 

  • Duhamel JR, Colby CL, Goldberg ME (1998) Ventral intraparietal area of the macaque: congruent visual and somatic response properties. J Neurophysiol 79:126–136

    PubMed  CAS  Google Scholar 

  • Engel SA, Rumelhart DE, Wandell BA, Lee AT, Glover GH, Chichilnisky EJ, Shadlen MN (1994) fMRI of human visual cortex. Nature 369:525

    PubMed  CAS  Google Scholar 

  • Ernst MO, Bulthoff HH (2004) Merging the senses into a robust percept. Trends Cogn Sci 8:162–169

    PubMed  Google Scholar 

  • Falchier A, Clavagnier S, Barone P, Kennedy H (2002) Anatomical evidence of multimodal integration in primate striate cortex. J Neurosci 22:5749–5759

    PubMed  CAS  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    PubMed  CAS  Google Scholar 

  • Fishman MC, Michael P (1973) Integration of auditory information in the cat’s visual cortex. Vision Res 13:1415–1419

    PubMed  CAS  Google Scholar 

  • Fogassi L, Gallese V, Fadiga L, Luppino G, Matelli M, Rizzolatti G (1996) Coding of peripersonal space in inferior premotor cortex (area F4). J Neurophysiol 76:141–157

    PubMed  CAS  Google Scholar 

  • Fort A, Delpuech C, Pernier J, Giard MH (2002a) Dynamics of cortico-subcortical cross-modal operations involved in audio–visual object detection in humans. Cereb Cortex 12:1031–1039

    PubMed  Google Scholar 

  • Fort A, Delpuech C, Pernier J, Giard MH (2002b) Early auditory-visual interactions in human cortex during nonredundant target identification. Brain Res Cogn Brain Res 14:20–30

    PubMed  Google Scholar 

  • Foxe JJ, Schroeder CE (2005) The case for feedforward multisensory convergence during early cortical processing. Neuroreport 16:419–423

    PubMed  Google Scholar 

  • Foxe JJ, Wylie GR, Martinez A, Schroeder CE, Javitt DC, Guilfoyle D, Ritter W, Murray MM (2002) Auditory-somatosensory multisensory processing in auditory association cortex: an fMRI study. J Neurophysiol 88:540–543

    PubMed  Google Scholar 

  • Frens MA, Van Opstal AJ (1995) A quantitative study of auditory-evoked saccadic eye movements in two dimensions. Exp Brain Res 107:103–117

    PubMed  CAS  Google Scholar 

  • Fu KM, Johnston TA, Shah AS, Arnold L, Smiley J, Hackett TA, Garraghty PE, Schroeder CE (2003) Auditory cortical neurons respond to somatosensory stimulation. J Neurosci 23:7510–7515

    PubMed  CAS  Google Scholar 

  • Fuster JM, Bodner M, Kroger JK (2000) Cross-modal and cross-temporal association in neurons of frontal cortex. Nature 405:347–351

    PubMed  CAS  Google Scholar 

  • Ghazanfar AA, Schroeder CE (2006) Is neocortex essentially multisensory? Trends Cogn Sci 10:278–285

    PubMed  Google Scholar 

  • Ghazanfar AA, Maier JX, Hoffman KL, Logothetis NK (2005) Multisensory integration of dynamic faces and voices in rhesus monkey auditory cortex. J Neurosci 25:5004–5012

    PubMed  CAS  Google Scholar 

  • Giard MH, Peronnet F (1999) Auditory-visual integration during multimodal object recognition in humans: a behavioral and electrophysiological study. J Cogn Neurosci 11:473–490

    PubMed  CAS  Google Scholar 

  • Gielen SC, Schmidt RA, Van den Heuvel PJ (1983) On the nature of intersensory facilitation of reaction time. Percept Psychophys 34:161–168

    PubMed  CAS  Google Scholar 

  • Graziano MS, Yap GS, Gross CG (1994) Coding of visual space by premotor neurons. Science 266:1054–1057

    PubMed  CAS  Google Scholar 

  • Graziano MS, Reiss LA, Gross CG (1999) A neuronal representation of the location of nearby sounds. Nature 397:428–430

    PubMed  CAS  Google Scholar 

  • Guest S, Catmur C, Lloyd D, Spence C (2002) Audiotactile interactions in roughness perception. Exp Brain Res 146:161–171

    PubMed  Google Scholar 

  • Hackett TA, Stepniewska I, Kaas JH (1998) Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. J Comp Neurol 394:475–495

    PubMed  CAS  Google Scholar 

  • Hackett TA, De La Mothe LA, Ulbert I, Karmos G, Smiley J, Schroeder CE (2007) Multisensory convergence in auditory cortex, II. Thalamocortical connections of the caudal superior temporal plane. J Comp Neurol 502:924–952

    PubMed  Google Scholar 

  • Hershenson M (1962) Reaction time as a measure of intersensory facilitation. J Exp Psychol 63:289–293

    PubMed  CAS  Google Scholar 

  • Hikosaka K, Iwai E, Saito H, Tanaka K (1988) Polysensory properties of neurons in the anterior bank of the caudal superior temporal sulcus of the macaque monkey. J Neurophysiol 60:1615–1637

    PubMed  CAS  Google Scholar 

  • Howard IP, Templeton WB (1966) Human spatial orientation. Wiley, London

    Google Scholar 

  • Hyvarinen J, Shelepin Y (1979) Distribution of visual and somatic functions in the parietal associative area 7 of the monkey. Brain Res 169:561–564

    PubMed  CAS  Google Scholar 

  • Jones EG (1998) Viewpoint: the core and matrix of thalamic organization. Neuroscience 85:331–345

    PubMed  CAS  Google Scholar 

  • Jones EG, Powell TP (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93:793–820

    PubMed  CAS  Google Scholar 

  • Jousmaki V, Hari R (1998) Parchment-skin illusion: sound-biased touch. Curr Biol 8:R190

    PubMed  CAS  Google Scholar 

  • Kaas JH, Hackett TA (2000) Subdivisions of auditory cortex and processing streams in primates. Proc Natl Acad Sci USA 97:11793–11799

    PubMed  CAS  Google Scholar 

  • Kayser C, Petkov CI, Augath M, Logothetis NK (2005) Integration of touch and sound in auditory cortex. Neuron 48:373–384

    PubMed  CAS  Google Scholar 

  • Kayser C, Petkov CI, Augath M, Logothetis NK (2007) Functional imaging reveals visual modulation of specific fields in auditory cortex. J Neurosci 27:1824–1835

    PubMed  CAS  Google Scholar 

  • Krauzlis RJ, Liston D, Carello CD (2004) Target selection and the superior colliculus: goals, choices and hypotheses. Vision Res 44:1445–1451

    PubMed  Google Scholar 

  • Lakatos P, Chen CM, O’Connell MN, Mills A, Schroeder CE (2007) Neuronal oscillations and multisensory interaction in primary auditory cortex. Neuron 53:279–292

    PubMed  CAS  Google Scholar 

  • Lamme VA, Roelfsema PR (2000) The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci 23:571–579

    PubMed  CAS  Google Scholar 

  • Lauritzen M (2005) Reading vascular changes in brain imaging: is dendritic calcium the key? Nat Rev Neurosci 6:77–85

    PubMed  CAS  Google Scholar 

  • Laurienti PJ, Perrault TJ, Stanford TR, Wallace MT, Stein BE (2005) On the use of superadditivity as a metric for characterizing multisensory integration in functional neuroimaging studies. Exp Brain Res 166:298–297

    Google Scholar 

  • Lehmann C, Herdener M, Esposito F, Hubl D, di Salle F, Scheffler K, Bach DR, Federspiel A, Kretz R, Dierks T, Seifritz E (2006) Differential patterns of multisensory interactions in core and belt areas of human auditory cortex. Neuroimage 31:294–300

    PubMed  Google Scholar 

  • Levitt JB, Lund JS (1997) Contrast dependence of contextual effects in primate visual cortex. Nature 387:73–76

    PubMed  CAS  Google Scholar 

  • Logothetis NK, Wandell BA (2004) Interpreting the BOLD Signal. Annu Rev Physiol 66:735–769

    PubMed  CAS  Google Scholar 

  • Logothetis NK, Guggenberger H, Peled S, Pauls J (1999) Functional imaging of the monkey brain. Nat Neurosci 2:555–562

    PubMed  CAS  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    PubMed  CAS  Google Scholar 

  • Lomo T, Mollica A (1959) Activity of single units of the primary optic cortex during stimulation by light, sound, smell and pain, in unanesthetized rabbits. Boll Soc Ital Biol Sper 35:1879–1882

    PubMed  CAS  Google Scholar 

  • Macaluso E, Frith CD, Driver J (2000) Modulation of human visual cortex by crossmodal spatial attention. Science 289:1206–1208

    PubMed  CAS  Google Scholar 

  • Martin KA (2002) Microcircuits in visual cortex. Curr Opin Neurobiol 12:418–425

    PubMed  CAS  Google Scholar 

  • McDonald JJ, Teder-Salejarvi WA, Hillyard SA (2000) Involuntary orienting to sound improves visual perception. Nature 407:906–908

    PubMed  CAS  Google Scholar 

  • McGurk H, MacDonald J (1976) Hearing lips and seeing voices. Nature 264:746–748

    PubMed  CAS  Google Scholar 

  • Meredith MA, Keniston LR, Dehner LR, Clemo HR (2006) Crossmodal projections from somatosensory area SIV to the auditory field of the anterior ectosylvian sulcus (FAES) in Cat: further evidence for subthreshold forms of multisensory processing. Exp Brain Res Epub (ahead of publication)

  • Molholm S, Ritter W, Murray MM, Javitt DC, Schroeder CE, Foxe JJ (2002) Multisensory auditory-visual interactions during early sensory processing in humans: a high-density electrical mapping study. Brain Res Cogn Brain Res 14:115–128

    PubMed  Google Scholar 

  • Moore CI, Nelson SB, Sur M (1999) Dynamics of neuronal processing in rat somatosensory cortex. Trends Neurosci 22:513–520

    PubMed  CAS  Google Scholar 

  • Morel A, Kaas JH (1992) Subdivisions and connections of auditory cortex in owl monkeys. J Comp Neurol 318:27–63

    PubMed  CAS  Google Scholar 

  • Morrell F (1972) Visual system’s view of acoustic space. Nature 238:44–46

    PubMed  CAS  Google Scholar 

  • Mottonen R, Krause CM, Tiippana K, Sams M (2002) Processing of changes in visual speech in the human auditory cortex. Brain Res Cogn Brain Res 13:417–425

    PubMed  Google Scholar 

  • Murata K, Cramer H, Bach-y-Rita P (1965) Neuronal convergence of noxious, acoustic, and visual stimuli in the visual cortex of the cat. J Neurophysiol 28:1223–1239

    PubMed  CAS  Google Scholar 

  • Murray MM, Molholm S, Michel CM, Heslenfeld DJ, Ritter W, Javitt DC, Schroeder CE, Foxe JJ (2005) Grabbing your ear: rapid auditory-somatosensory multisensory interactions in low-level sensory cortices are not constrained by stimulus alignment. Cereb Cortex 15:963–974

    PubMed  Google Scholar 

  • Pandya DN, Rosene DL, Doolittle AM (1994) Corticothalamic connections of auditory-related areas of the temporal lobe in the rhesus monkey. J Comp Neurol 345:447–471

    PubMed  CAS  Google Scholar 

  • Pekkola J, Ojanen V, Autti T, Jaaskelainen IP, Mottonen R, Sams M (2005a) Attention to visual speech gestures enhances hemodynamic activity in the left planum temporale. Hum Brain Mapp 27:471–477

    Google Scholar 

  • Pekkola J, Ojanen V, Autti T, Jaaskelainen IP, Mottonen R, Tarkiainen A, Sams M (2005b) Primary auditory cortex activation by visual speech: an fMRI study at 3 T. Neuroreport 16:125–128

    PubMed  Google Scholar 

  • Perrault TJ Jr, Vaughan JW, Stein BE, Wallace MT (2003) Neuron-specific response characteristics predict the magnitude of multisensory integration. J Neurophysiol 90:4022–4026

    PubMed  Google Scholar 

  • Petkov CI, Kayser C, Augath M, Logothetis NK (2006) Functional imaging reveals numerous fields in the monkey auditory cortex. PLOS Biology 4:e215

    PubMed  Google Scholar 

  • Rademacher J, Caviness VS Jr, Steinmetz H, Galaburda AM (1993) Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex 3:313–329

    PubMed  CAS  Google Scholar 

  • Rao RP, Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci 2:79–87

    PubMed  CAS  Google Scholar 

  • Riesenhuber M, Poggio T (2000) Models of object recognition. Nat Neurosci 3(Suppl):1199–1204

    PubMed  CAS  Google Scholar 

  • Rizzolatti G, Scandolara C, Gentilucci M, Camarda R (1981) Response properties and behavioral modulation of “mouth” neurons of the postarcuate cortex (area 6) in macaque monkeys. Brain Res 225:421–424

    PubMed  CAS  Google Scholar 

  • Rockland KS, Ojima H (2003) Multisensory convergence in calcarine visual areas in macaque monkey. Int J Psychophysiol 50:19–26

    PubMed  Google Scholar 

  • Romanski LM, Bates JF, Goldman-Rakic PS (1999) Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey. J Comp Neurol 403:141–157

    PubMed  CAS  Google Scholar 

  • Saito DN, Yoshimura K, Kochiyama T, Okada T, Honda M, Sadato N (2005) Cross-modal binding and activated attentional networks during audio–visual speech integration: a functional MRI study. Cereb Cortex 15:1750–1760

    PubMed  Google Scholar 

  • Schlack A, Sterbing-D’Angelo SJ, Hartung K, Hoffmann KP, Bremmer F (2005) Multisensory space representations in the macaque ventral intraparietal area. J Neurosci 25:4616–4625

    PubMed  CAS  Google Scholar 

  • Schroeder CE, Foxe JJ (2002) The timing and laminar profile of converging inputs to multisensory areas of the macaque neocortex. Brain Res Cogn Brain Res 14:187–198

    PubMed  Google Scholar 

  • Schroeder CE, Lindsley RW, Specht C, Marcovici A, Smiley JF, Javitt DC (2001) Somatosensory input to auditory association cortex in the macaque monkey. J Neurophysiol 85:1322–1327

    PubMed  CAS  Google Scholar 

  • Schroeder CE, Smiley J, Fu KG, McGinnis T, O’Connell MN, Hackett TA (2003) Anatomical mechanisms and functional implications of multisensory convergence in early cortical processing. Int J Psychophysiol 50:5–17

    PubMed  Google Scholar 

  • Schroeder CE, Molholm S, Lakatos P, Ritter W, Foxe JJ (2004) Human–simian correspondence in the early cortical processing of multisensory cues. Cogn Process 5:140–151

    Google Scholar 

  • Schurmann M, Caetano G, Hlushchuk Y, Jousmaki V, Hari R (2006) Touch activates human auditory cortex. Neuroimage 30:1325–1331

    PubMed  Google Scholar 

  • Seltzer B, Cola MG, Gutierrez C, Massee M, Weldon C, Cusick CG (1996) Overlapping and nonoverlapping cortical projections to cortex of the superior temporal sulcus in the rhesus monkey: double anterograde tracer studies. J Comp Neurol 370:173–190

    PubMed  CAS  Google Scholar 

  • Shams L, Kamitani Y, Shimojo S (2000) Illusions. What you see is what you hear. Nature 408:788

    PubMed  CAS  Google Scholar 

  • Sillito AM, Cudeiro J, Jones HE (2006) Always returning: feedback and sensory processing in visual cortex and thalamus. Trends Neurosci 29:307–316

    PubMed  CAS  Google Scholar 

  • Smiley JF, Hackett TA, Ulbert I, Karmas G, Lakatos P, Javitt DC, Schroeder CE (2007) Multisensory convergence in auditory cortex, I. Cortical connections of the caudal superior temporal plane in macaque monkeys. J Comp Neurol 502:894–923

    PubMed  Google Scholar 

  • Somers DC, Todorov EV, Siapas AG, Toth LJ, Kim DS, Sur M (1998) A local circuit approach to understanding integration of long-range inputs in primary visual cortex. Cereb Cortex 8:204–217

    PubMed  CAS  Google Scholar 

  • Spinelli DN, Starr A, Barrett TW (1968) Auditory specificity in unit recordings from cat’s visual cortex. Exp Neurol 22:75–84

    PubMed  CAS  Google Scholar 

  • Stanford TR, Stein BE (2007) Superadditivity in multisensory integration: putting the computation in context. Neuroreport 18:787–792

    PubMed  Google Scholar 

  • Stanford TR, Quessy S, Stein BE (2005) Evaluating the operations underlying multisensory integration in the cat superior colliculus. J Neurosci 25:6499–6508

    PubMed  CAS  Google Scholar 

  • Stein BE (1998) Neural mechanisms for synthesizing sensory information and producing adaptive behaviors. Exp Brain Res 123:124–135

    PubMed  CAS  Google Scholar 

  • Stein BE, Meredith MA (1993) Merging of the Senses. MIT Press, Cambridge

    Google Scholar 

  • Stein BE, Wallace MT (1996) Comparisons of cross-modality integration in midbrain and cortex. Prog Brain Res 112:289–299

    Article  PubMed  CAS  Google Scholar 

  • Sugihara T, Diltz MD, Averbeck BB, Romanski LM (2006) Integration of auditory and visual communication information in the primate ventrolateral prefrontal cortex. J Neurosci 26:11138–11147

    PubMed  CAS  Google Scholar 

  • Sumby WH, Polack I (1954) Visual contribution to speech intelligibility in noise. J Acoust Soc Am 26:212–215

    Google Scholar 

  • Towe AL, Harding GW (1970) Extracellular microelectrode sampling bias. Exp Neurol 29:366–381

    PubMed  CAS  Google Scholar 

  • Ullman S (1995) Sequence seeking and counter streams: a computational model for bidirectional information flow in the visual cortex. Cereb Cortex 5:1–11

    PubMed  CAS  Google Scholar 

  • van Atteveldt N, Formisano E, Goebel R, Blomert L (2004) Integration of letters and speech sounds in the human brain. Neuron 43:271–282

    PubMed  Google Scholar 

  • Vaudano E, Legg CR, Glickstein M (1991) Afferent and efferent connections of temporal association cortex in the rat: a horseradish peroxidase study. Eur J Neurosci 3:317–330

    PubMed  Google Scholar 

  • Vroomen J, de Gelder B (2000) Sound enhances visual perception: cross-modal effects of auditory organization on vision. J Exp Psychol Hum Percept Perform 26:1583–1590

    PubMed  CAS  Google Scholar 

  • Zaborszky L (2002) The modular organization of brain systems. Basal forebrain: the last frontier. Prog Brain Res 136:359–372

    PubMed  Google Scholar 

  • Zaborszky L, Duque A (2000) Local synaptic connections of basal forebrain neurons. Behav Brain Res 115:143–158

    PubMed  CAS  Google Scholar 

  • Zikopoulos B, Barbas H (2006) Prefrontal projections to the thalamic reticular nucleus form a unique circuit for attentional mechanisms. J Neurosci 26:7348–7361

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the Max Planck Society and the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Kayser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kayser, C., Logothetis, N.K. Do early sensory cortices integrate cross-modal information? . Brain Struct Funct 212, 121–132 (2007). https://doi.org/10.1007/s00429-007-0154-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-007-0154-0

Keywords

Navigation