Skip to main content

Advertisement

Log in

The myeloarchitectonic studies on the human cerebral cortex of the Vogt–Vogt school, and their significance for the interpretation of functional neuroimaging data

  • Review
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The human cerebral cortex contains numerous myelinated fibres, many of which are concentrated in tangentially organized layers and radially oriented bundles. The spatial organization of these fibres is by no means homogeneous throughout the cortex. Local differences in the thickness and compactness of the fibre layers, and in the length and strength of the radial bundles renders it possible to recognize areas with a different myeloarchitecture. The neuroanatomical subdiscipline aimed at the identification and delineation of such areas is known as myeloarchitectonics. There is another, closely related neuroanatomical subdiscipline, named cytoarchitectonics. The aims and scope of this subdiscipline are the same as those of myeloarchitectonics, viz. parcellation. However, this subdiscipline focuses, as its name implies, on the size, shape and arrangement of the neuronal cell bodies in the cortex, rather than on the myelinated fibres. At the beginning of the twentieth century, two young investigators, Oskar and Cécile Vogt founded a centre for brain research, aimed to be devoted to the study of the (cyto + myelo) architecture of the cerebral cortex. The study of the cytoarchitecture was entrusted to their collaborator Korbinian Brodmann, who gained great fame with the creation of a cytoarchitectonic map of the human cerebral cortex. Here, we focus on the myeloarchitectonic studies on the cerebral cortex of the Vogt–Vogt school, because these studies are nearly forgotten in the present attempts to localize functional activations and to interprete findings in modern neuroimaging studies. Following introductory sections on the principles of myeloarchitectonics, and on the achievements of three myeloarchitectonic pioneers who did not belong to the Vogt–Vogt school, the pertinent literature is reviewed in some detail. These studies allow the conclusion that the human neocortex contains about 185 myeloarchitectonic areas, 70 frontal, 6 insular, 30 parietal, 19 occipital, and 60 temporal. It is emphasized that the data available, render it possible to compose a myeloarchitectonic map of the human neocortex, which is at least as reliable as any of the classic architectonic maps. During the realization of their myeloarchitectonic research program, in which numerous able collaborators were involved, the Vogts gradually developed a general concept of the organization of the cerebral cortex. The essence of this concept is that this structure is composed of about 200 distinct, juxtaposed ‘Rindenfelder’ or ‘topistische Einheiten’, which represent fundamental structural as well as functional entities. The second main part of this article is devoted to a discussion and evaluation of this ‘Vogt–Vogt concept’. It is concluded that there is converging quantitative cytoarchitectonic, receptor architectonic, myeloarchitectonic, hodological, and functional evidence, indicating that this concept is essentially correct. The third, and final part of this article deals with the problem of relating particular cortical functions, as determined with neuroimaging techniques, to particular cortical structures. At present, these ‘translation’ operations are generally based on adapted, three-dimensional versions of Brodmann’s famous map. However, it has become increasingly clear that these maps do not provide the neuroanatomical precision to match the considerable degree of functional segregation, suggested by neuroimaging studies. Therefore, we strongly recommend an attempt at combining and synthesizing the results of Brodmann’s cytoarchitectonic analysis, with those of the detailed myeloarchitectonic studies of the Vogt–Vogt school. These studies may also be of interest for the interpretation of the myeloarchitectonic features, visualized in modern in vivo mappings of the human cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40

Similar content being viewed by others

References

  • Amunts K, Zilles K (2012) Architecture and organizational principles of Broca’s region. Trends Cogn Sci 16(8):418–426. doi:10.1016/j.tics.2012.06.005

    Google Scholar 

  • Amunts K, Schleicher A, Bürgel U, Mohlberg H, Uylings HB, Zilles K (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412(2):319–341. doi:10.1002/(SICI)1096-9861(19990920)412:2<319::AID-CNE10>3.0.CO;2-7

    Article  PubMed  CAS  Google Scholar 

  • Amunts K, Schleicher A, Ditterich A, Zilles K (2003) Broca’s region: cytoarchitectonic asymmetry and developmental changes. J Comp Neurol 465(1):72–89. doi:10.1002/cne.10829

    Article  PubMed  Google Scholar 

  • Amunts K, Lenzen M, Friederici AD, Schleicher A, Morosan P, Palomero-Gallagher N, Zilles K (2010) Broca’s region: novel organizational principles and multiple receptor mapping. PLoS Biol 8(9):e1000489. doi:10.1371/journal.pbio.1000489

    Article  PubMed  CAS  Google Scholar 

  • Anwander A, Tittgemeyer M, von Cramon DY, Friederici AD, Knosche TR (2007) Connectivity-based parcellation of Broca’s area. Cereb Cortex 17(4):816–825. doi:10.1093/cercor/bhk034

    Article  PubMed  CAS  Google Scholar 

  • Bailey P, von Bonin G (1951) The isocortex of man. University of Illinois Press, Urbana

    Google Scholar 

  • Batsch EG (1956) Die myeloarchitektonische Untergliederung des Isocortex parietalis beim Menschen. J Hirnforsch 2:225–258

    Google Scholar 

  • Beck E (1925) Zur Exaktheit der myeloarchitektonischen Felderung des Cortex cerebri. J Psychol Neurol 31:281–288

    Google Scholar 

  • Beck E (1928) Die myeloarchitektonische Felderung des in der Sylvischen Furche gelegenen Teils des menschlichen Schläfenlappens. J Psychol Neurol 36:1–21

    Google Scholar 

  • Beck E (1929) Der myeloarchitektonische Bau des in der Sylvischen Furche gelegenen Teiles des Schläfenlappens beim Schimpansen (Troglodytes niger). J Psychol Neurol 38:309–420

    Google Scholar 

  • Beck E (1930) Die Myeloarchotektonik der dorsalen Schläfenlappenrinde beim Menschen. J Psychol Neurol 41:129–262

    Google Scholar 

  • Behrens TE, Johansen-Berg H (2005) Relating connectional architecture to grey matter function using diffusion imaging. Philos Trans R Soc Lond B Biol Sci 360(1457):903–911. doi:10.1098/rstb.2005.1640

    Article  PubMed  CAS  Google Scholar 

  • Braak H (1980) Architectonics of the human telencephalic cortex. Springer, Berlin

    Book  Google Scholar 

  • Braitenberg V (1956) Die Gliederung der Stirnhirnrinde auf Grund ihres Markfaserbaus (Myeloarchitektonik). In: Rehwald E (ed) Das Hirntrauma. Thieme, Stuttgart, pp 183–203

    Google Scholar 

  • Braitenberg V (1962) A note on myeloarchitectonics. J Comp Neurol 118:141–156

    Article  PubMed  CAS  Google Scholar 

  • Brockhaus H (1940) Die Cyto-und Myeloarchitektonik des Cortex claustralis und des Claustrum beim Menschen. J Psychol Neurol 49:249–348

    Google Scholar 

  • Brodmann K (1903a) Beiträge zur histologischen Lokalisation der Grosshirnrinde: regio Rolandica. J Psychol Neurol 2:79–107

    Google Scholar 

  • Brodmann K (1903b) Beiträge zur histologischen Lokalisation der Grosshirnrinde. Zweite Mitteilung: der Calcarinatypus. J Psychol Neurol 2:133–159

    Google Scholar 

  • Brodmann K (1905a) Beiträge zur histologischen Lokalisation der Grosshirnrinde. Dritte Mitteilung: die Rindenfelder der niederen Affen. J Psychol Neurol 4:177–226

    Google Scholar 

  • Brodmann K (1905b) Beiträge zur histologischen Lokalisation der Grosshirnrinde. IV. Mitteilung: der Riesenpyramidentypus und sein Verhalten zu den Furchen bei den Karnivoren. J Psychol Neurol 6:108–120

    Google Scholar 

  • Brodmann K (1906) Beiträge zur histologischen Lokalisation der Grosshirnrinde: fünfte Mitteilung: Über den allgemeinen Bauplan des Cortex Pallii bei den Mammaliern und zwei homologe Rindenfelder im besonderen. Zugleich ein Beitrag zur Furchenlehre. J Psychol Neurol 6:275–400

    Google Scholar 

  • Brodmann K (1908a) Beiträge zur histologischen Lokalisation der Grosshirnrinde. Sechste Mitteilung: die Cortexgliederung des Menschen. J Psychol Neurol 10:231–246

    Google Scholar 

  • Brodmann K (1908b) Beiträge zur histologischen Lokalisation der Grosshirnrinde. VII. Mitteilung: die cytoarchitektonische Cortexgliederung der Halbaffen (Lemuriden). J Psychol Neurol 10:287–334

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. J. A. Barth, Leipzig

    Google Scholar 

  • Brodmann K (1913) Neue Forschungsergebnisse der Großhirnrindenanatomie mit besonderer Berücksichtigung anthropologischer Fragen. Gesellschaft deutscher Naturforscher und Ärtze 85:200–240

    Google Scholar 

  • Brodmann K (1914) Physiologie des Gehirns. In: Von Bruns P (ed) Neue deutsche Chirurgie, vol 11 Pt. 1. Enke, Stuttgart, pp 85–426

  • Cajal SR (1894) The Croonian Lecture : the fine structure of the nerve centres. Proc R Soc Lond 55:444–468

    Article  Google Scholar 

  • Campbell AW (1905) Histological studies on the localisation of cerebral function. Cambridge University Press, Cambridge

    Google Scholar 

  • Carmichael ST, Price JL (1994) Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey. J Comp Neurol 346(3):366–402. doi:10.1002/cne.903460305

    Article  PubMed  CAS  Google Scholar 

  • Carmichael ST, Price JL (1995a) Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 363(4):615–641. doi:10.1002/cne.903630408

    Article  PubMed  CAS  Google Scholar 

  • Carmichael ST, Price JL (1995b) Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. J Comp Neurol 363(4):642–664. doi:10.1002/cne.903630409

    Article  PubMed  CAS  Google Scholar 

  • Carmichael ST, Price JL (1996) Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. J Comp Neurol 371(2):179–207. doi:10.1002/(SICI)1096-9861(19960722)371:2<179::AID-CNE1>3.0.CO;2-#

    Article  PubMed  CAS  Google Scholar 

  • Caspers S, Geyer S, Schleicher A, Mohlberg H, Amunts K, Zilles K (2006) The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. Neuroimage 33(2):430–448. doi:10.1016/j.neuroimage.2006.06.054

    Article  PubMed  Google Scholar 

  • Caspers S, Eickhoff SB, Geyer S, Scheperjans F, Mohlberg H, Zilles K, Amunts K (2008) The human inferior parietal lobule in stereotaxic space. Brain Struct Funct 212(6):481–495. doi:10.1007/s00429-008-0195-z

    Article  PubMed  Google Scholar 

  • Creutzfeldt OD (1983) Cortex cerebri. Leistung, strukturelle und funktionelle Organisation der Hirnrinde. Springer, Berlin

  • Eickhoff SB, Rottschy C, Kujovic M, Palomero-Gallagher N, Zilles K (2008) Organizational principles of human visual cortex revealed by receptor mapping. Cereb Cortex 18(11):2637–2645. doi:10.1093/cercor/bhn024

    Article  PubMed  Google Scholar 

  • Elliot Smith G (1907) A new topographical survey of the human cerebral cortex, being an account of the distribution of the anatomically distinct cortical areas and their relationship to the cerebral sulci. J Anat Physiol 41(Pt 4):237–254

    Google Scholar 

  • Flores A (1911) Die Myeloarchitektonik und die Myelogenic des Cortex Cerebri beim Igel. J Psychol Neurol 17:215–247

    Google Scholar 

  • Foerster O (1936) Motorische Felder und Bahnen. Sensible cortical Felder. In: Bumke O, Foerster O (eds) Handbuch der Neurologie, vol 6. Springer, Berlin, pp 1–448

    Google Scholar 

  • Gerhardt E (1938) Der lsocortex parietalis beim Schimpanzen. J Psychol Neurol 48:329–386

    Google Scholar 

  • Gerhardt E (1940) Die Cytoarchitektonik des Isocortex parietalis beim Menschen. J Psychol Neurol 49:367–419

    Google Scholar 

  • Geyer S, Ledberg A, Schleicher A, Kinomura S, Schormann T, Burgel U, Klingberg T, Larsson J, Zilles K, Roland PE (1996) Two different areas within the primary motor cortex of man. Nature 382(6594):805–807. doi:10.1038/382805a0

    Article  PubMed  CAS  Google Scholar 

  • Geyer S, Weiss M, Reimann K, Lohmann G, Turner R (2011) Microstructural parcellation of the human cerebral cortex—from Brodmann’s post-mortem map to in vivo mapping with high-field magnetic resonance imaging. Front Hum Neurosci 5:19. doi:10.3389/fnhum.2011.00019

    Article  PubMed  Google Scholar 

  • Glasser MF, Van Essen DC (2011) Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J Neurosci 31(32):11597–11616. doi:10.1523/JNEUROSCI.2180-11.2011

    Article  PubMed  CAS  Google Scholar 

  • Hadjikani N, Liu AK, Dale AM, Cavavanagh P, Tootell RB (1998) Retinotopy and color sensitivity in human visual cortical area V8. Nat Neurosci 1:235–241

    Google Scholar 

  • Hopf A (1954a) Die Myeloarchitektonik des Isocortex temporalis beim Menschen. J Hirnforsch 1:208–279

    Google Scholar 

  • Hopf A (1954b) Die Myeloarchitektonik des Isocortex temporalis beim Menschen. J Hirnforsch 1:443–496

    Google Scholar 

  • Hopf A (1955) Über die Verteilung myeloarchitektonischer Merkmale in der isokortikalen Schläfenlappenrinde beim Menschen. J Hirnforsch 2:36–54

    Google Scholar 

  • Hopf A (1956) Über die Verteilung myeloarchitektonischer Merkmale in der Stirnhirnrinde beim Menschen. J Hirnforsch 2(4):311–333

    PubMed  CAS  Google Scholar 

  • Hopf A (1966) Über eine Methode zur objektiven Registrierung der Myeloarchitektonik der Hirnrinde. J Hirnforsch 8(4):301–313

    PubMed  CAS  Google Scholar 

  • Hopf A (1968a) Photometric studies on the myeloarchitecture of the human temporal lobe. J Hirnforsch 10(4):285–297

    PubMed  CAS  Google Scholar 

  • Hopf A (1968b) Registration of the myeloarchitecture of the human frontal lobe with an extinction method. J Hirnforsch 10(3):259–269

    PubMed  CAS  Google Scholar 

  • Hopf A (1969) Photometric studies on the myeloarchitecture of the human parietal lobe. I. Parietal region. J Hirnforsch 11(4):253–265

    PubMed  CAS  Google Scholar 

  • Hopf A (1970a) Oskar Vogt. 100th anniversary of his birthday. J Hirnforsch 12(1):1–10

    PubMed  CAS  Google Scholar 

  • Hopf A (1970b) Photometric studies on the myeloarchitecture of the human parietal lobe. II. Postcentral region. J Hirnforsch 12(1):135–141

    PubMed  CAS  Google Scholar 

  • Hopf A, Vitzthum HG (1957) Uber die Verteilung myeloarchitektonischer Merkmale in der Scheitellappenrinde beim Menschen. J Hirnforsch 3(2–3):79–104

    PubMed  CAS  Google Scholar 

  • Johansen-Berg H, Behrens TE, Robson MD, Drobnjak I, Rushworth MF, Brady JM, Smith SM, Higham DJ, Matthews PM (2004) Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. Proc Natl Acad Sci USA 101(36):13335–13340. doi:10.1073/pnas.0403743101

    Article  PubMed  CAS  Google Scholar 

  • Jones EG (1987) Brodmann’s areas. In: Adelman G (ed) Encyclopedia of neurosciences, vol 1., BirkhäuserBoston, Basel, pp 180–181

    Google Scholar 

  • Jones EG (2003) Two minds. Nature 421(6918):19–20

    Article  CAS  Google Scholar 

  • Jones EG (2008) Cortical maps and modern phrenology. Brain 131(8):2227–2233

    Article  Google Scholar 

  • Jones EG, Burton H (1976) Areal differences in the laminar distribution of thalamic afferents in cortical fields of the insular, parietal and temporal regions of primates. J Comp Neurol 168(2):197–247. doi:10.1002/cne.901680203

    Article  PubMed  CAS  Google Scholar 

  • Kaas JH (2002) Neocortex. In: Ramachandran VS (ed) Encyclopedia of the human brain, vol 3. Academic Press, Amsterdam, pp 291–303

    Chapter  Google Scholar 

  • Kaes T (1907) Die grosshirnrinde des menschen in ihren Massen und in ihrem Fasergehalt. Ein gehirnanatomischer Atlas. G. Fischer, Jena

    Google Scholar 

  • Klatzo I (2002) Cécile and Oskar Vogt: the visionaries of modern neuroscience. Springer, Wien

    Book  Google Scholar 

  • Kleist K (1934) Gehirnpathologie. J.A. Barth, Leipzig

  • Kurth F, Eickhoff SB, Schleicher A, Hoemke L, Zilles K, Amunts K (2010) Cytoarchitecture and probabilistic maps of the human posterior insular cortex. Cereb Cortex 20(6):1448–1461. doi:10.1093/cercor/bhp208

    Article  PubMed  Google Scholar 

  • Lashley KS, Clark G (1946) The cytoarchitecture of the cerebral cortex of Ateles; a critical examination of architectonic studies. J Comp Neurol 85(2):223–305

    Article  PubMed  CAS  Google Scholar 

  • Le Gros Clark WE (1952) A note on cortical cyto-architectonics. Brain 75(1):96–104

    Article  Google Scholar 

  • Lungwitz W (1937) Zur myeloarchitektonischen Untergliederung der menschlichen Area praeoccipitalis (Area 19 Brodmann). J Psychol Neurol 47:607–639

    Google Scholar 

  • Mauss F (1908) Die faserarchitektonische Gliederung der Grosshirnrinde. J Psychol Neurol 13:263–325

    Google Scholar 

  • Mauss F (1911) Die faserarchitektonische Gliederung des Cortex cerebri der anthropomorphen Affen. J Psychol Neurol 18:410–467

    Google Scholar 

  • Mesulam M (2012) The evolving landscape of human cortical connectivity: facts and inferences. Neuroimage. doi:10.1016/j.neuroimage.2011.12.033 (online 22 Dec 2011)

  • Meynert T (1884) Psychiatrie: Klinik der Erkrankungen des Vorderhirns begründet auf dessen Bau, Leistungen und Ernährung. W. Braumüller, Wein

    Google Scholar 

  • Nieuwenhuys R, Voogd J, van Huijzen C (2008) The human central nervous system. Springer, Heidelberg

    Google Scholar 

  • Öngür D, Ferry AT, Price JL (2003) Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurol 460(3):425–449. doi:10.1002/cne.10609

    Article  PubMed  Google Scholar 

  • Palomero-Gallagher N, Mohlberg H, Zilles K, Vogt B (2008) Cytology and receptor architecture of human anterior cingulate cortex. J Comp Neurol 508(6):906–926. doi:10.1002/cne.21684

    Article  PubMed  CAS  Google Scholar 

  • Passingham RE, Stephan KE, Kotter R (2002) The anatomical basis of functional localization in the cortex. Nat Rev Neurosci 3(8):606–616. doi:10.1038/nrn893

    PubMed  CAS  Google Scholar 

  • Press WA, Brewer AA, Dougherty RF, Wade AR, Wandell BA (2001) Visual areas and spatial summation in human visual cortex. Vis Res 41(10–11):1321–1332

    Article  PubMed  CAS  Google Scholar 

  • Roland PE, Zilles K (1998) Structural divisions and functional fields in the human cerebral cortex. Brain Res Brain Res Rev 26(2–3):87–105

    Article  PubMed  CAS  Google Scholar 

  • Rose JE, Woolsey CN (1948) Structure and relations of limbic cortex and anterior thalamic nuclei in rabbit and cat. J Comp Neurol 89(3):279–347. doi:10.1002/cne.900890307

    Article  PubMed  CAS  Google Scholar 

  • Rose JE, Woolsey CN (1949) The relations of thalamic connections, cellular structure and evocable electrical activity in the auditory region of the cat. J Comp Neurol 91(3):441–466

    Article  PubMed  CAS  Google Scholar 

  • Sanides F (1962) Die Architektonik des menschlichen Stirnhirns. In: Müller M, Spatz H, Vogel P (eds) Monographien aus dem Gesamtgebiete der Neurologie und Psychiatrie, vol 98. Springer, Berlin

    Google Scholar 

  • Sanides F (1964) The cyto-myeloarchitecture of the human frontal lobe and its relation to phylogenetic differentiation of the cerebral cortex. J Hirnforsch 47:269–282

    PubMed  CAS  Google Scholar 

  • Sarkissov S, Filimonoff I, Kononowa E, Preobraschenskaja I, Kukuew L (1955) Atlas of the cytoarchitectonics of the human cerebral cortex. Medgiz 20, Moscow

  • Scheperjans F, Eickhoff SB, Homke L, Mohlberg H, Hermann K, Amunts K, Zilles K (2008a) Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior parietal cortex. Cereb Cortex 18(9):2141–2157. doi:10.1093/cercor/bhm241

    Article  PubMed  Google Scholar 

  • Scheperjans F, Hermann K, Eickhoff SB, Amunts K, Schleicher A, Zilles K (2008b) Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. Cereb Cortex 18(4):846–867. doi:10.1093/cercor/bhm116

    Article  PubMed  Google Scholar 

  • Seltzer B, Pandya DN (1978) Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res 149(1):1–24

    Article  PubMed  CAS  Google Scholar 

  • Stephan KE, Kamper L, Bozkurt A, Burns GA, Young MP, Kötter R (2001) Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). Philos Trans R Soc Lond B Biol Sci 356(1412):1159–1186. doi:10.1098/rstb.2001.0908

    Article  PubMed  CAS  Google Scholar 

  • Strasburger EH (1937a) Die myeloarchitektonische Gliederung des Stirnhirns beim Menschen und Schimpansen—I. J Psychol Neurol 47:460–491

    Google Scholar 

  • Strasburger EH (1937b) Die myeloarchitektonische Gliederung des Stirnhirns beim Menschen und Schimpansen—II. J Psychol Neurol 47:565–606

    Google Scholar 

  • Strasburger EH (1938) Vergleichende myeloarchitektonische Studien an der erweiterten Brocaschen Region des Menschen. J Psychol Neurol 48:477–511

    Google Scholar 

  • Uttal WR (2001) The new phrenology: the limits of localizing cognitive processes in the brain. MIT Press, Cambridge

    Google Scholar 

  • Uylings HB, Sanz-Arigita EJ, de Vos K, Pool CW, Evers P, Rajkowska G (2010) 3-D cytoarchitectonic parcellation of human orbitofrontal cortex correlation with postmortem MRI. Psychiatry Res 183(1):1–20. doi:10.1016/j.pscychresns.2010.04.012

    Article  PubMed  Google Scholar 

  • Van Essen DC (2006) SumsDB (2006). http://sumsdb.wustl.edu:8081/sums/index.jsp

  • Vogt O (1903) Zur anatomischen Gliederung des Cortex cerebri. J Psychol Neurol 2:160–180

    Google Scholar 

  • Vogt O (1906) Über strukturelle Hirnzentra mit besonderer Berücksichtingung der strukturellen Felder des Cortex pallii. Anat Anz 29:74–114

    Google Scholar 

  • Vogt O (1910a) Die myeloarchitektonische Felderung des Menschlichen Stirnhirns. J Psychol Neurol 15:221–232

    Google Scholar 

  • Vogt O (1910b) Considerations generales sur la myelo-architecture du lobe frontal. Rev Neurol 19:405–420

    Google Scholar 

  • Vogt O (1911) Die myeloarchitektonik des isocortex parietalis. J Psychol Neurol 18:379–390

    Google Scholar 

  • Vogt O (1918) Korbinian Brodmann. J Psychol Neurol 24:I–X

  • Vogt O (1923) Furchenbildung und Architectonische Rindenfelderung. J Psychol Neurol 29:438–439

    Google Scholar 

  • Vogt O (1927) Architektonik der menschlichen Hirnrinde. Jahresversammlung d. deutschen Verein fuer Psychiatrie Düsseldorf, 23./24.9.1926. Allg Z Psychiat 86:247–266

    Google Scholar 

  • Vogt M (1928a) Über omnilaminaire Strukturdifferenzen und lineare Grenzen der architektonischen Felder der hinteren Zentralwindung des Menschen. J Psychol Neurol 35:177–193

    Google Scholar 

  • Vogt M (1928b) Erwiderung zu dem vorstehenden Aufsatz von Economos. J Psychol Neurol 36:320–322

    Google Scholar 

  • Vogt O (1943) Der heutigen Stand der cerebralen Organologie und die zukünftige Hirnforschung. Anat Anz 94:49–73

    Google Scholar 

  • Vogt O (1951) Die anatomische Vertiefung der menschlichen Hirnlokalisation. Klin Wochenschr 29(7–8):111–125

    Article  PubMed  CAS  Google Scholar 

  • Vogt C, Vogt O (1907) Zur Kenntnis der elektrisch erregbaren Hirnrindengebiete bei den Säugetieren. J Psychol Neurol 8:277–456

    Google Scholar 

  • Vogt C, Vogt O (1911) Nouvelle contribution à l’étude de la myéloarchitecture de l’écorce cérébrale. XX. Congres des médecins aliénistes et neurologistes de France, Brüssel

    Google Scholar 

  • Vogt C, Vogt O (1919) Allgemeinere Ergebnisse unserer Hirnforschung. J Psychol Neurol 25:279–468

    Google Scholar 

  • Vogt O, Vogt C (1922) Erkrankungen der Grosshirnrinde im Lichte der Topistik, Pathoklise und Pathoarchitektonik. J Psychol Neurol 28:8–171

    Google Scholar 

  • Vogt C, Vogt O (1928) Die Grundlagen und die Teildisziplinen der mikroskopischen Anatomie des Zentralnervensystems. In: Handbuch des mikroskopischen Anatomie des Menschen, vol 4 Teil 1. Springer, Berlin, pp 448–477

  • Vogt C, Vogt O (1929) Űber die Neuheit und den Wert des Pathoklisen begriffes. J Psychol Neurol 38:147–154

    Google Scholar 

  • Vogt C, Vogt O (1936) Sitz und Wesen der Krankheiten im Lichte der topistischen Hirnforschung und des Variierens der Tiere. J Psychol Neurol 47:237–457

    Google Scholar 

  • Vogt C, Vogt O (1942) Morphologische Gestaltungen unter normalen und pathogenen Bedingüngen. J Psychol Neurol 50:161–524

    Google Scholar 

  • Vogt C, Vogt O (1954) Gestaltung der topistischen Hirnforschung und ihre Forderung durch den Hirnbau und seine Anomalien. J Hirnforsch 1:1–46

    Google Scholar 

  • Vogt C, Vogt O (1956) Weitere Ausführungen zum Arbeitsprogramm des Hirnforschungsinstitutes in Neustadt/Schwarzwald. J Hirnforsch 2:403–427

    PubMed  CAS  Google Scholar 

  • Von Economo C (1928) Bemerkungen zu dem Aufsatz von Marthe Vogt. J Psychol Neurol 36:320–322

    Google Scholar 

  • Von Economo C (2009) Cellular structure of the human cerebral cortex. Triarhou, L.C. (translator) edn. Karger, Basel

  • Von Economo C, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, Wien

    Google Scholar 

  • Wandell BA, Dumoulin SO, Brewer AA (2007) Visual field maps in human cortex. Neuron 56(2):366–383. doi:10.1016/j.neuron.2007.10.012

    Article  PubMed  CAS  Google Scholar 

  • Zilles K, Amunts K (2009) Receptor mapping: architecture of the human cerebral cortex. Curr Opin Neurol 22(4):331–339. doi:10.1097/WCO.0b013e32832d95db

    Article  PubMed  Google Scholar 

  • Zilles K, Amunts K (2010) Centenary of Brodmann’s map conception and fate. Nat Rev Neurosci 11:139–145. doi:10.1038/nrn2776

    Article  PubMed  CAS  Google Scholar 

  • Zilles K, Palomero-Gallagher N (2001) Cyto-, myelo- and receptor architectonics of the human parietal cortex. NeuroImage 14:8–20

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks Drs. Bob Turner and Karl Zilles for critically reading an earlier version of this paper, Mr. Ton Put for help with the illustrations, and Suzanne Bakker M.Sc. for moral support and reference management. Finally, the author wants to acknowledge especially the invaluable and continuous assistance of Dr. Jenneke Kruisbrink, the librarian of our Institute. Without her help, this article would not have been possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Nieuwenhuys.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nieuwenhuys, R. The myeloarchitectonic studies on the human cerebral cortex of the Vogt–Vogt school, and their significance for the interpretation of functional neuroimaging data. Brain Struct Funct 218, 303–352 (2013). https://doi.org/10.1007/s00429-012-0460-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-012-0460-z

Keywords

Navigation