Skip to main content
Log in

Synergy temporal sequences and topography in the spinal cord: evidence for a traveling wave in frog locomotion

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Locomotion is produced by a central pattern generator. Its spinal cord organization is generally considered to be distributed, with more rhythmogenic rostral lumbar segments. While this produces a rostrocaudally traveling wave in undulating species, this is not thought to occur in limbed vertebrates, with the exception of the interneuronal traveling wave demonstrated in fictive cat scratching (Cuellar et al. J Neurosci 29:798–810, 2009). Here, we reexamine this hypothesis in the frog, using the seven muscle synergies A to G previously identified with intraspinal NMDA (Saltiel et al. J Neurophysiol 85:605–619, 2001). We find that locomotion consists of a sequence of synergy activations (A–B–G–A–F–E–G). The same sequence is observed when focal NMDA iontophoresis in the spinal cord elicits a caudal extension-lateral force-flexion cycle (flexion onset without the C synergy). Examining the early NMDA-evoked motor output at 110 sites reveals a rostrocaudal topographic organization of synergy encoding by the lumbar cord. Each synergy is preferentially activated from distinct regions, which may be multiple, and partially overlap between different synergies. Comparing the sequence of synergy activation in locomotion with their spinal cord topography suggests that the locomotor output is achieved by a rostrocaudally traveling wave of activation in the swing–stance cycle. A two-layer circuitry model, based on this topography and a traveling wave reproduces this output and explores its possible modifications under different afferent inputs. Our results and simulations suggest that a rostrocaudally traveling wave of excitation takes advantage of the topography of interneuronal regions encoding synergies, to activate them in the proper sequence for locomotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alpert MH, Alford S (2013) Synaptic NMDA receptor-dependent Ca2+ entry drives membrane potential and Ca2+ oscillations in spinal ventral horn neurons. PLoS One 8(4):e63154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antri M, Mellen N, Cazalets JR (2011) Functional organization of locomotor interneurons in the ventral lumbar spinal cord of the newborn rat. PLoS One 6(6):e20529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • AuYong N, Ollivier-Lanvin K, Lemay MA (2011) Preferred locomotor phase of activity of lumbar interneurons during air-stepping in subchronic spinal cats. J Neurophysiol 105:1011–1022

    Article  PubMed  Google Scholar 

  • Berger DJ, Gentner R, Edmunds T, Pai DK, d’Avella A (2013) Differences in adaptation rates after virtual surgeries provide direct evidence for modularity. J Neurosci 33:12384–12394

    Article  CAS  PubMed  Google Scholar 

  • Bizzi E, Cheung VC (2013) The neural origin of muscle synergies. Front Comput Neurosci 7:51. doi:10.3389/fncom.2013.00051

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonnot A, Whelan PJ, Mentis GZ, O’Donovan MJ (2002) Spatiotemporal pattern of motoneuron activation in the rostral lumbar and the sacral segments during locomotor-like activity in the neonatal mouse spinal cord. J Neurosci 22(RC203):1–6

    Google Scholar 

  • Burke RE, Degtyarenko AM, Simon ES (2001) Patterns of locomotor drive to motoneurons and last-order interneurons: clues to the structure of the CPG. J Neurophysiol 86:447–462

    CAS  PubMed  Google Scholar 

  • Butt SJ, Kiehn O (2003) Functional identification of interneurons responsible for left-right coordination of hindlimbs in mammals. Neuron 38:953–963

    Article  CAS  PubMed  Google Scholar 

  • Carter A (2014) Critical values of Fmax for Hartley’s homogeneity of variance test. http://www.csulb.edu/~acarter3/course-biostats/tables/table-Fmax-values.pdf

  • Cazalets JR, Borde M, Clarac F (1995) Localization and organization of the central pattern generator for hindlimb locomotion in newborn rat. J Neurosci 15:4943–4951

    CAS  PubMed  Google Scholar 

  • Cazalets JR (2005) Metachronal propagation of motoneurone burst activation in isolated spinal cord of newborn rat. J Physiol 568(2):583–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chávez D, Rodriguez E, Jiménez I, Rudomin P (2012) Changes in correlation between spontaneous activity of dorsal horn neurons lead to differential recruitment of inhibitory pathways in the cat spinal cord. J Physiol 590:1563–1584

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng J, Jovanovic K, Aoyagi Y, Bennett DJ, Han Y, Stein RB (2002) Differential distribution of interneurons in the neural networks that control walking in the mudpuppy (Necturus maculatus) spinal cord. Exp Brain Res 145:190–198

    Article  CAS  PubMed  Google Scholar 

  • Cheung VC, d’Avella A, Tresch MC, Bizzi E (2005) Central and sensory contributions to the activation and organization of muscle synergies during natural motor behaviors. J Neurosci 25:6419–6434

    Article  CAS  PubMed  Google Scholar 

  • Cheung VC, Piron L, Agostini M, Silvoni S, Turolla A, Bizzi E (2009) Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proc Natl Acad Sci 106:19563–19568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Churchland MM, Cunningham JP, Kaufman MT, Foster JD, Nuyujukian P, Ryu SI, Shenoy KV (2012) Neural population dynamics during reaching. Nature 487:51–56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chvatal SA, Ting L (2012) Voluntary and reactive recruitment of locomotor muscle synergies during perturbed walking. J Neurosci 32:12237–12250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen A (1988) Evolution of the central pattern generator for locomotion. In: Cohen AH, Rossignol S, Grillner S (eds) Neural control of rhythmic movements in vertebrates. John Wiley & Sons, New York, pp 129–166

    Google Scholar 

  • Connor JA, Stevens CF (1971) Voltage clamp studies of a transient outward current in gastropod neural somata. J Physiol 213:21–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowley KC, Zaporozhets E, Schmidt BJ (2010) Propriospinal transmission of the locomotor command signal in the neonatal rat. Ann N Y Acad Sci 1198:42–53

    Article  PubMed  Google Scholar 

  • Cramer SW, Gao W, Chen G, Ebner TJ (2013) Reevaluation of the beam and radial hypotheses of parallel fiber action in the cerebellar cortex. J Neurosci 33:11412–11424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruce WL (1974) The anatomical organization of hindlimb motoneurons in the lumbar spinal cord of the frog, Rana catesbiana. J Comp Neurol 153:59–76

    Article  CAS  PubMed  Google Scholar 

  • Cuellar CA, Tapia JA, Juárez V, Quevedo J, Linares P, Martínez L, Manjarrez E (2009) Propagation of sinusoidal electrical waves along the spinal cord during a fictive motor task. J Neurosci 29:798–810

    Article  CAS  PubMed  Google Scholar 

  • d’Avella A, Portone A, Fernandez L, Lacquaniti F (2006) Control of fast-reaching movements by muscle synergy combinations. J Neurosci 26:7791–7810

    Article  PubMed  Google Scholar 

  • Davis BL, Vaughan CL (1993) Phasic behavior of EMG signals during gait: use of multivariate statistics. J Electromyogr Kinesiol 3:51–60

    Article  CAS  PubMed  Google Scholar 

  • Deliagina TG, Orlovsky GN, Pavlova GA (1983) The capacity for rhythmic oscillations is distributed in the lumbosacral spinal cord of the cat. Exp Brain Res 53:81–90

    Article  CAS  PubMed  Google Scholar 

  • Dominici N, Ivanenko YP, Cappellini G, d’Avella A, Mondi V, Cicchese M, Fabiano A, Silei T, Di Paolo A, Giannini C, Poppele RE, Lacquaniti F (2011) Locomotor primitives in newborn babies and their development. Science 334:997–999

    Article  CAS  PubMed  Google Scholar 

  • Dougherty KJ, Kiehn O (2010) Firing and cellular properties of V2a interneurons in the rodent spinal cord. J Neurosci 6:24–37

    Article  Google Scholar 

  • Ecker A (1971) The anatomy of the Frog (Haslam G, translator). Asher, Amsterdam

    Google Scholar 

  • Falgairolle M, Cazalets JR (2007) Metachronal coupling between spinal neuronal networks during locomotor activity in newborn rat. J Physiol 580:87–102

    Article  CAS  PubMed  Google Scholar 

  • Ferguson GA, Takane Y (1989) Statistical analysis in psychology and education, 6th edn. McGraw-Hill, New York, chapters 15, 16, 18 and 19

  • Freeman JA, Nicholson CN (1970) Space-time transformation in the frog cerebellum through an intrinsic tapped delay-line. Nature 226:640–642

    Article  CAS  PubMed  Google Scholar 

  • Getting PA (1981) Mechanisms of pattern generation underlying swimming in Tritonia I. Network formed by monosynaptic connections. J Neurophysiol 46:65–79

    CAS  PubMed  Google Scholar 

  • Getting PA (1983) Mechanisms of pattern generation underlying swimming in Tritonia III. Intrinsic and synaptic mechanisms for delayed excitation. J Neurophysiol 49:1036–1050

    CAS  PubMed  Google Scholar 

  • Giszter SF, Mussa-Ivaldi FA, Bizzi E (1993) Convergent force fields organized in the frog’s spinal cord. J Neurosci 13:467–491

    CAS  PubMed  Google Scholar 

  • Grillner S (1981) Control of locomotion in bipeds, tetrapods, and fish. In: Brooks VB (ed) Handbook of physiology. The nervous system. Motor control, vol. 2. Bethesda, Maryland, pp 1179–1236

  • Hägglund M, Dougherty KJ, Borgius L, Itohara S, Iwasato T, Kiehn O (2013) Optogenetic dissection reveals multiple rhythmogenic modules underlying locomotion. Proc Natl Acad Sci 110:11589–11594

    Article  PubMed  PubMed Central  Google Scholar 

  • Hart CB, Giszter SF (2010) A neural basis for motor primitives in the spinal cord. J Neurosci 30:1322–1336

    Article  CAS  PubMed  Google Scholar 

  • Hinckley CA, Pfaff SL (2013) Imaging spinal neuronal ensembles active during locomotion with genetically encoded calcium indicators. Ann N Y Acad Sci 1279:71–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollander M, Wolfe DA, Chicken E (2014) Nonparametric statistical methods, sect. 7.9–7.10, 3rd edn. Wiley, Hoboken, pp 354–369

    Google Scholar 

  • Howell DC (2007) Statistical methods for psychology. 7th edn. Wadsworth, Cengage Learning, Belmont, chapter 12

  • Hulshof JB, de Boer-van Huizen R, ten Donkelaar HJ (1987) The distribution of motoneurons supplying hindlimb muscles in the clawed toad Xenopus laevis. Acta Morphol Neerl Scand 25:1–16

    CAS  PubMed  Google Scholar 

  • Ivanenko YP, Poppele RE, Lacquaniti F (2004) Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol 556(1):267–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanenko YP, Poppele RE, Lacquaniti F (2006a) Spinal cord maps of spatiotemporal alpha-motoneuron activation in humans walking at different speeds. J Neurophysiol 95:602–618

    Article  CAS  PubMed  Google Scholar 

  • Ivanenko YP, Poppele RE, Lacquaniti F (2006b) Motor control programs and walking. Neuroscientist 12:339–348

    Article  PubMed  Google Scholar 

  • Jankowska E (2008) Spinal interneuronal networks in the cat: elementary components. Brain Res Rev 57:46–55

    Article  PubMed  Google Scholar 

  • Kjaerulff O, Kiehn O (1996) Distribution of networks generating and coordinating locomotor activity in the neonatal rat spinal cord in vitro: a lesion study. J Neurosci 75:1472–1482

    Google Scholar 

  • Klein Breteler MD, Simura K, Flanders M (2007) Timing of muscle activation in a hand movement sequence. Cereb Cortex 17:803–815

    Article  PubMed  Google Scholar 

  • Krouchev N, Drew T (2013) Motor cortical regulation of sparse synergies provides a framework for the flexible control of precision walking. Front Comput Neurosci 7:83. doi:10.3389/fncom.2013.00083

    Article  PubMed  PubMed Central  Google Scholar 

  • Krouchev N, Kalaska JF, Drew T (2006) Sequential activation of muscle synergies during locomotion in the intact cat as revealed by cluster analysis and direct decomposition. J Neurophysiol 96:1991–2010

    Article  PubMed  Google Scholar 

  • Kwan AC, Dietz SB, Zhong G, Harris-Warrick RM, Webb WW (2010) Spatiotemporal dynamics of rhythmic spinal interneurons measured with two-photon calcium imaging and coherence analysis. J Neurophysiol 104:3323–3333

    Article  PubMed  PubMed Central  Google Scholar 

  • Lennard PR (1985) Afferent perturbations during “monopodal” swimming movements in the turtle: phase-dependent cutaneous modulation and proprioceptive resetting of the locomotor rhythm. J Neurosci 5:1434–1445

    CAS  PubMed  Google Scholar 

  • Levine AJ, Lewallen KA, Pfaff SL (2012) Spatial organization of cortical and spinal neurons controlling motor behaviour. Curr Opin Neurobiol 22:812–821

    Article  PubMed  PubMed Central  Google Scholar 

  • Levine AJ, Hinckley CA, Hilde KL, Driscoll SP, Poon TH, Montgomery JM, Pfaff SL (2014) Identification of a cellular node for motor control pathways. Nat Neurosci 17:586–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C (2008) Functions of neuronal network motifs. Phys Rev E 78:037101

    Article  Google Scholar 

  • Loeb EP, Giszter SF, Saltiel P, Mussa-Ivaldi FA, Bizzi E (2000) Output units of motor behavior: an experimental and modeling study. J Cognit Neurosci 12:78–97

    Article  CAS  Google Scholar 

  • Lomeli J, Quevedo J, Linares P, Rudomin P (1998) Local control of information flow in segmental and ascending collaterals of single afferents. Nature 395:600–604

    Article  CAS  PubMed  Google Scholar 

  • Mack GA, Skillings JH (1980) A Friedman-type rank test for main effects in two-factor ANOVA. J Am Statist Assoc 75:947–951

    Article  Google Scholar 

  • Manjarrez E, Jiménez I, Rudomin P (2003) Intersegmental synchronization of spontaneous activity of dorsal horn neurons in the cat spinal cord. Exp Brain Res 148:401–413

    CAS  PubMed  Google Scholar 

  • Marcoux J, Rossignol S (2000) Initiating or blocking locomotion in spinal cats by applying noradrenergic drugs to restricted lumbar spinal segments. J Neurosci 20:8577–8585

    CAS  PubMed  Google Scholar 

  • Markin SN, Lemay MA, Prilutsky BI, Rybak IA (2012) Motoneuronal and muscle synergies involved in cat hindlimb control during fictive and real locomotion: a comparison study. J Neurophysiol 107:2057–2071

    Article  PubMed  Google Scholar 

  • McCrea DA, Rybak IA (2008) Organization of mammalian locomotor rhythm and pattern generation. Brain Res Rev 57:134–146

    Article  PubMed  Google Scholar 

  • O’Donovan MJ, Bonnot A, Mentis GZ, Arai Y, Chub N, Schreider NA, Wenner P (2008) Imaging the spatiotemporal organization of neural activity in the developing spinal cord. Develop Neurobiol 68:788–803

    Article  Google Scholar 

  • Olree KS, Vaughan CL (1995) Fundamental patterns of bilateral muscle activity in human locomotion. Biol Cybern 73:409–414

    Article  CAS  PubMed  Google Scholar 

  • Overduin SA, d’Avella A, Carmena JM, Bizzi E (2012) Microstimulation activates a handful of muscle synergies. Neuron 76:1071–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patla AE (1985) Some characteristics of EMG patterns during locomotion: implications for the locomotor control process. J Motor Behav 17:443–461

    Article  CAS  Google Scholar 

  • Pérez T, Tapia JA, Mirasso CR, Garcia-Ojalvo J, Quevedo J, Cuellar CA, Manjarrez E (2009) An intersegmental neuronal architecture for spinal wave propagation under deletions. J Neurosci 29:10254–10263

    Article  PubMed  Google Scholar 

  • Puskàr Z, Antal M (1997) Localization of last-order premotor interneurons in the lumbar spinal cord of rats. J Comp Neurol 389:377–389

    Article  PubMed  Google Scholar 

  • Rivest F, Kalaska JF, Bengio Y (2010) Alternative time representation in dopamine models. J Comput Neurosci 28:107–130

    Article  PubMed  Google Scholar 

  • Roh J, Cheung VC, Bizzi E (2011) Modules in the brainstem and spinal cord underlying motor behaviors. J Neurophysiol 106:1363–1378

    Article  PubMed  PubMed Central  Google Scholar 

  • Rudomin P (2002) Selectivity of the central control of sensory information in the mammalian spinal cord. Adv Exp Med Biol 508:157–170

    Article  PubMed  Google Scholar 

  • Rybak IA, Shevtsova NA, Lafreniere-Roula M, McCrea DA (2006) Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion. J Physiol 577:617–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saltiel P, Rossignol S (2004a) Critical points in the forelimb fictive locomotor cycle and motor coordination: evidence from the effects of tonic proprioceptive perturbations in the cat. J Neurophysiol 92:1329–1341

    Article  PubMed  Google Scholar 

  • Saltiel P, Rossignol S (2004b) Critical points in the forelimb fictive locomotor cycle and motor coordination: effects of phasic retractions and protractions of the shoulder in the cat. J Neurophysiol 92:1342–1356

    Article  PubMed  Google Scholar 

  • Saltiel P, Tresch MC, Bizzi E (1998) Spinal cord modular organization and rhythm generation: an NMDA iontophoretic study in the frog. J Neurophysiol 80:2323–2339

    CAS  PubMed  Google Scholar 

  • Saltiel P, Wyler-Duda K, d’Avella A, Tresch MC, Bizzi E (2001) Muscle synergies encoded within the spinal cord: evidence from focal intraspinal NMDA iontophoresis in the frog. J Neurophysiol 85:605–619

    CAS  PubMed  Google Scholar 

  • Saltiel P, Wyler-Duda K, d’Avella A, Ajemian R, Bizzi E (2005) Localization and connectivity in spinal interneuronal networks: the adduction–caudal extension–flexion rhythm in the frog. J Neurophysiol 94:2120–2138

    Article  CAS  PubMed  Google Scholar 

  • Schneider SP (1992) Functional properties and axon terminations of interneurons in laminae III–IV of the mammalian spinal dorsal horn in vitro. J Neurophysiol 68:1746–1759

    CAS  PubMed  Google Scholar 

  • Schneider SP (2003) Spike frequency adaptation and signalling properties of identified neurons in rodent deep spinal dorsal horn. J Neurophysiol 90:245–258

    Article  CAS  PubMed  Google Scholar 

  • Stein PSG (2008) Motor pattern deletions and modular organization of turtle spinal cord. Brain Res Rev 57:118–124

    Article  CAS  PubMed  Google Scholar 

  • Székely G, Czéh G (1971) Muscle activities of partially innervated limbs during locomotion in Ambystoma. Acta Physiol Acad Sci Hung 40:269–286

    PubMed  Google Scholar 

  • Ting LH, Macpherson JM (2004) A limited set of muscle synergies for force control during a postural task. J Neurophysiol 93:609–613

    Article  PubMed  Google Scholar 

  • Tresch MC, Kiehn O (1999) Coding of locomotor phase in populations of neurons in rostral and caudal segments of the neonatal rat lumbar spinal cord. J Neurophysiol 82:3563–3574

    CAS  PubMed  Google Scholar 

  • Tresch MC, Saltiel P, Bizzi E (1999) The construction of movement by the spinal cord. Nature Neurosci 2:162–167

    Article  CAS  PubMed  Google Scholar 

  • Tripodi M, Stepien AE, Arber S (2011) Motor antagonism exposed by spatial segregation and timing of neurogenesis. Nature 479:61–66

    Article  CAS  PubMed  Google Scholar 

  • Yakovenko S, Mushahwar V, VanderHorst V, Holstege G, Prochazka A (2002) Spatiotemporal activation of lumbosacral motoneurons in the locomotor step cycle. J Neurophysiol 87:1542–1553

    PubMed  Google Scholar 

  • Yakovenko S, Krouchev N, Drew T (2011) Sequential activation of motor cortical neurons contributes to intralimb coordination during reaching in the cat by modulating muscle synergies. J Neurophysiol 105:388–409

    Article  PubMed  Google Scholar 

  • Zhong G, Droho S, Crone SA, Dietz S, Kwan AC, Webb WW, Sharma K, Harris-Warrick RM (2010) Electrophysiological characterization of V2a interneurons and their locomotor-related activity in the neonatal mouse spinal cord. J Neurosci 30:170–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong G, Shevtsova NA, Rybak IA, Harris-Warrick RM (2012) Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights in locomotor central pattern generator organization. J Physiol 590(19):4735–4759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zipser D (1986) A model of hippocampal learning during classical conditioning. Behav Neurosci 100:764–776

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant NS 09343 to Emilio Bizzi, and the Swiss National Science Foundation to Kuno Wyler-Duda. We would like to thank Vincent Cheung and Serge Rossignol for their helpful reading of the manuscript, Margo Cantor and Sylvester Szczepanowski for technical support, and Charlotte Potak for administrative assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Saltiel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saltiel, P., d’Avella, A., Wyler-Duda, K. et al. Synergy temporal sequences and topography in the spinal cord: evidence for a traveling wave in frog locomotion. Brain Struct Funct 221, 3869–3890 (2016). https://doi.org/10.1007/s00429-015-1133-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1133-5

Keywords

Navigation