Skip to main content
Log in

Increased cortical involvement and synchronization during CAP A1 slow waves

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Slow waves recorded with EEG in NREM sleep are indicative of the strength and spatial extent of synchronized firing in neuronal assemblies of the cerebral cortex. Slow waves often appear in the A1 part of the cyclic alternating patterns (CAP), which correlate with a number of behavioral and biological parameters, but their physiological significance is not adequately known. We automatically detected slow waves from the scalp recordings of 37 healthy patients, visually identified CAP A1 events and compared slow waves during CAP A1 with those during NCAP. For each slow wave, we computed the amplitude, slopes, frequency, synchronization (synchronization likelihood) between specific cortical areas, as well as the location of origin and scalp propagation of individual waves. CAP A1 slow waves were characterized by greater spatial extent and amplitude, steeper slopes and greater cortical synchronization, but a similar prominence in frontal areas and similar propagation patterns to other areas on the scalp. Our results indicate that CAP A1 represents a period of highly synchronous neuronal firing over large areas of the cortical mantle. This feature may contribute to the role CAP A1 plays in both normal synaptic homeostasis and in the generation of epileptiform phenomena in epileptic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abt K (1987) Descriptive data analysis: a concept between confirmatory and exploratory data analysis. Methods Inf Med 26:77–88

    Article  CAS  Google Scholar 

  • Amzica F, Steriade M (1995) Disconnection of intracortical synaptic linkages disrupts synchronization of a slow oscillation. J Neurosci Off J Soc Neurosci 15:4658–4677

    Article  CAS  Google Scholar 

  • AricĂČ D, Drago V, Foster PS, Heilman KM, Williamson J, Ferri R (2010) Effects of NREM sleep instability on cognitive processing. Sleep Med 11:791–798. https://doi.org/10.1016/j.sleep.2010.02.009

    Article  PubMed  Google Scholar 

  • BĂłdizs R, Gombos F, Ujma PP, KovĂĄcs I (2014) Sleep spindling and fluid intelligence across adolescent development: sex matters. Front Hum Neurosci https://doi.org/10.3389/fnhum.2014.00952

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonakis A, Koutroumanidis M (2009) Epileptic discharges and phasic sleep phenomena in patients with juvenile myoclonic epilepsy. Epilepsia 50:2434–2445

    Article  Google Scholar 

  • Borbely AA, Achermann P (1999) Sleep homeostasis and models of sleep regulation. J Biol Rhythms 14:557–568

    CAS  PubMed  Google Scholar 

  • Borbely AA, Baumann F, Brandeis D, Strauch I, Lehmann D (1981) Sleep deprivation: effect on sleep stages and EEG power density in man. Electroencephalogr Clin Neurophysiol 51:483–495

    Article  CAS  Google Scholar 

  • Botella-Soler V, Valderrama M, CrĂ©pon B, Navarro V, Le Van Quyen M (2012) Large-scale cortical dynamics of sleep slow waves. PloS one 7:e30757. https://doi.org/10.1371/journal.pone.0030757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruni O et al (2010a) Reduced NREM sleep instability in benign childhood epilepsy with centro-temporal spikes. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 121:665–671

    Article  Google Scholar 

  • Bruni O, Novelli L, Miano S, Parrino L, Terzano MG, Ferri R (2010b) Cyclic alternating pattern: a window into pediatric sleep. Sleep Med 11:628–636. https://doi.org/10.1016/j.sleep.2009.10.003

    Article  PubMed  Google Scholar 

  • Carrier J, Land S, Buysse DJ, Kupfer DJ, Monk TH (2001) The effects of age and gender on sleep EEG power spectral density in the middle years of life (ages 20–60 years old). Psychophysiology 38:232–242. https://doi.org/10.1111/1469-8986.3820232

    Article  CAS  PubMed  Google Scholar 

  • Chauvette S, Volgushev M, Timofeev I (2010) Origin of active states in local neocortical networks during slow. sleep oscillation. Cereb Cortex 20:2660–2674. https://doi.org/10.1093/cercor/bhq009

    Article  PubMed  PubMed Central  Google Scholar 

  • Contreras D, Steriade M (1995a) Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J Neurosci Off J Soc Neurosci 15:604–622

    Article  CAS  Google Scholar 

  • Contreras D, Steriade M (1995b) Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J Neurosci 15:604–622

    Article  CAS  Google Scholar 

  • Crunelli V, Hughes SW (2010) The slow (< 1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nat Neurosci 13:9–17. https://doi.org/10.1038/nn.2445

    Article  CAS  PubMed  Google Scholar 

  • Csercsa R et al (2010) Laminar analysis of slow wave activity in humans. Brain 133:2814–2829

    Article  Google Scholar 

  • David F et al (2013) Essential thalamic contribution to slow waves of natural sleep. J Neurosci Off J Soc Neurosci 33:19599–19610

    Article  CAS  Google Scholar 

  • De Gennaro L, Ferrara M, Spadini V, Curcio G, Cristiani R, Bertini M (2002) The cyclic alternating pattern decreases as a consequence of total sleep deprivation and correlates with. EEG arousals. Neuropsychobiology 45:95–98

    Article  Google Scholar 

  • Destexhe A, Contreras D, Steriade M (1999) Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J Neurosci 19:4595–4608

    Article  CAS  Google Scholar 

  • Drago V, Foster PS, Heilman KM, AricĂČ D, Williamson J, Montagna P, Ferri R (2011) Cyclic alternating pattern in sleep and its relationship to creativity. Sleep Med 12:361–366. https://doi.org/10.1016/j.sleep.2010.11.009

    Article  PubMed  Google Scholar 

  • Esser SK, Huber R, Massimini M, Peterson MJ, Ferrarelli F, Tononi G (2006) A direct demonstration of cortical LTP in humans: a combined TMS/EEG study. Brain Res Bull 69:86–94

    Article  CAS  Google Scholar 

  • Esser SK, Hill SL, Tononi G (2007) Sleep homeostasis and cortical synchronization: I. Modeling the effects of synaptic strength on sleep slow waves. Sleep 30:1617–1630

    Article  Google Scholar 

  • Ferini-Strambi L, Ortelli P, Castronovo V, Cappa S (2004) Increased periodic arousal fluctuations during non-REM sleep are associated to superior memory. Brain Res Bull 63:439–442

    Article  Google Scholar 

  • Ferri R, Bruni O, Miano S, Plazzi G, Terzano MG (2005a) All-night EEG power spectral analysis of the cyclic alternating pattern components in young adult subjects. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 116:2429–2440

    Article  Google Scholar 

  • Ferri R, Bruni O, Miano S, Terzano MG (2005b) Topographic mapping of the spectral components of the cyclic alternating pattern (CAP). Sleep Med 6:29–36

    Article  Google Scholar 

  • Ferri R, Rundo F, Bruni O, Terzano MG, Stam CJ (2005c) Dynamics of the EEG slow-wave synchronization during sleep. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 116:2783–2795

    Article  Google Scholar 

  • Ferri R, Rundo F, Bruni O, Terzano MG, Stam CJ (2006) Regional scalp EEG slow-wave synchronization during sleep cyclic alternating pattern A1 subtypes. Neurosci Lett 404:352–357

    Article  CAS  Google Scholar 

  • Ferri R et al (2008) The slow-wave components of the cyclic alternating pattern (CAP) have a role in sleep-related learning processes. Neurosci Lett 432:228–231. https://doi.org/10.1016/j.neulet.2007.12.025

    Article  CAS  PubMed  Google Scholar 

  • Ferri R, Drago V, Arico D, Bruni O, Remington RW, Stamatakis K, Punjabi NM (2010) The effects of experimental sleep fragmentation on cognitive processing. Sleep Med 11:378–385

    Article  Google Scholar 

  • Frauscher B, von Ellenrieder N, Ferrari-Marinho T, Avoli M, Dubeau F, Gotman J (2015) Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves. Brain 138:1629–1641

    Article  Google Scholar 

  • Geiger A, Huber R, Kurth S, Ringli M, Jenni OG, Achermann P (2011) The sleep EEG as a marker of intellectual ability in school age children. Sleep 34:181–189

    Article  Google Scholar 

  • Gigli GL et al (1992) Sleep microstructure and EEG epileptiform activity in patients with juvenile myoclonic epilepsy. Epilepsia 33:799–804

    Article  CAS  Google Scholar 

  • Halasz P, Terzano MG, Parrino L (2002) Spike-wave discharge and the microstructure of sleep–wake continuum in idiopathic generalised epilepsy. Neurophysiol Clin 32:38–53

    Article  CAS  Google Scholar 

  • Halasz P, Bodizs R, Parrino L, Terzano M (2014) Two features of sleep slow waves: homeostatic and reactive aspects—from long term to instant sleep homeostasis. Sleep Med 15:1184–1195

    Article  Google Scholar 

  • Hassainia F, Petit D, Montplaisir J (1994) Significance probability mapping: the final touch in t-statistic mapping. Brain Topogr 7:3–8

    Article  CAS  Google Scholar 

  • Hirshkowitz M (2002) Arousals and anti-arousals. Sleep Med 3(3):203–204

    Article  Google Scholar 

  • Huber R, Felice Ghilardi M, Massimini M, Tononi G (2004) Local sleep learning Nature 430:78–81

    Article  CAS  Google Scholar 

  • Huber R, Ghilardi MF, Massimini M, Ferrarelli F, Riedner BA, Peterson MJ, Tononi G (2006) Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity. Nat Neurosci 9:1169–1176. http://www.nature.com/neuro/journal/v9/n9/suppinfo/nn1758_S1.html

    Article  CAS  Google Scholar 

  • Huber R, Esser SK, Ferrarelli F, Massimini M, Peterson MJ, Tononi G (2007) TMS-induced cortical potentiation during wakefulness locally increases slow wave activity during sleep. PloS one 2:e276. https://doi.org/10.1371/journal.pone.0000276

    Article  PubMed  PubMed Central  Google Scholar 

  • Huber R et al (2013) Human cortical excitability increases with time awake. Cereb cortex 23:1–7

    Article  Google Scholar 

  • Iber C, Ancoli-Israel S, Chesson A, Quan S (2007) The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specification, 1st edn. American Academy of Sleep Medicine, Westchester

    Google Scholar 

  • Lazar AS, Lazar ZI, Dijk DJ (2015) Circadian regulation of slow waves in human sleep: topographical aspects. Neuroimage 116:123–134

    Article  Google Scholar 

  • Massimini M, Huber R, Ferrarelli F, Hill S, Tononi G (2004) The sleep slow oscillation as a traveling wave. J Neurosci Off J Soc Neurosci 24:6862–6870

    Article  CAS  Google Scholar 

  • Menicucci D, Piarulli A, Debarnot U, d’Ascanio P, Landi A, Gemignani A (2009) Functional structure of spontaneous sleep slow oscillation activity in humans. PloS one 4:e7601 https://doi.org/10.1371/journal.pone.0007601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy M, Riedner BA, Huber R, Massimini M, Ferrarelli F, Tononi G (2009) Source modeling sleep slow waves. Proc Natl Acad Sci USA 106:1608–1613. https://doi.org/10.1073/pnas.0807933106

    Article  PubMed  Google Scholar 

  • Nir Y, Staba RJ, Andrillon T, Vyazovskiy VV, Cirelli C, Fried I, Tononi G (2011) Regional slow waves spindles in human sleep. Neuron 70:153–169

    Article  CAS  Google Scholar 

  • Parrino L et al (2012a) Distinctive polysomnographic traits in nocturnal frontal lobe epilepsy. Epilepsia 53:1178–1184

    Article  Google Scholar 

  • Parrino L, Ferri R, Bruni O, Terzano MG (2012b) Cyclic alternating pattern (CAP): the marker of sleep instability. Sleep Med Rev 16:27–45

    Article  Google Scholar 

  • Piantoni G, Poil SS, Linkenkaer-Hansen K, Verweij IM, Ramautar JR, Van Someren EJ, Van Der Werf YD (2013) Individual differences in white matter diffusion affect sleep oscillations. J Neurosci Off J Soc Neurosci 33:227–233

    Article  CAS  Google Scholar 

  • Riedner BA, Vyazovskiy VV, Huber R, Massimini M, Esser S, Murphy M, Tononi G (2007) Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep 30:1643–1657

    Article  Google Scholar 

  • Riedner BA, Hulse BK, Murphy MJ, Ferrarelli F, Tononi G (2011) Temporal dynamics of cortical sources underlying spontaneous and peripherally evoked slow waves. Progress Brain Res 193:201–218. https://doi.org/10.1016/b978-0-444-53839-0.00013-2

    Article  Google Scholar 

  • Stam CJ, van Dijk BW (2002) Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets. Phys D Nonlinear Phenom 163:236–251. https://doi.org/10.1016/S0167-2789(01)00386-4

    Article  Google Scholar 

  • Steriade M, Nunez A, Amzica F (1993) A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci Off J Soc Neurosci 13:3252–3265

    Article  CAS  Google Scholar 

  • Terry JR, Anderson C, Horne JA (2004) Nonlinear analysis of EEG during NREM sleep reveals changes in functional connectivity due to natural aging. Hum Brain Mapp 23:73–84

    Article  Google Scholar 

  • Terzano MG, Parrino L, Anelli S, Halasz P, Portera-SĂĄnchez A (1989) Modulation of generalized spike-and-wave discharges during sleep by cyclic alternating pattern. Epilepsia 30:772–781. https://doi.org/10.1111/j.1528-1157.1989.tb05337.x

    Article  CAS  PubMed  Google Scholar 

  • Terzano MG, Parrino L, Fioriti G, Orofiamma B, Depoortere H (1990) Modifications of sleep structure induced by increasing levels of acoustic perturbation in normal subjects. Electroencephalogr Clin Neurophysiol 76:29–38

    Article  CAS  Google Scholar 

  • Terzano MG, Parrino L, Spaggiari MC, Barusi R, Simeoni S (1991) Discriminatory effect of cyclic alternating pattern in focal lesional and benign rolandic interictal spikes during sleep. Epilepsia 32:616–628

    Article  CAS  Google Scholar 

  • Terzano MG et al (2001) Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (CAP) in human sleep. Sleep Med 2:537–553

    Article  CAS  Google Scholar 

  • Terzano MG, Parrino L, Rosa A, Palomba V, Smerieri A (2002) CAP and arousals in the structural development of sleep: an integrative perspective. Sleep Med 3:221–229

    Article  Google Scholar 

  • Terzano MG, Parrino L, Smerieri A, Carli F, Nobili L, Donadio S, Ferrillo F (2005) CAP and arousals are involved in the homeostatic and ultradian sleep processes. J Sleep Res 14:359–368

    Article  Google Scholar 

  • Timofeev I, Steriade M (1996) Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. J Neurophysiol 76:4152–4168

    Article  CAS  Google Scholar 

  • Timofeev I, Grenier F, Bazhenov M, Sejnowski TJ, Steriade M (2000) Origin of slow cortical oscillations in deafferented cortical slabs. Cereb Cortex 10:1185–1199. https://doi.org/10.1093/cercor/10.12.1185

    Article  CAS  PubMed  Google Scholar 

  • Tononi G, Cirelli C (2014) Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration Neuron 81:12–34. https://doi.org/10.1016/j.neuron.2013.12.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ujma PP et al (2015) Increased interictal spike activity associated with transient slow wave trains during non-rapid eye movement sleep. Sleep Biol Rhythms 13:155–162. https://doi.org/10.1111/sbr.12101

    Article  Google Scholar 

  • Ujma PP, Sandor P, Szakadat S, Gombos F, Bodizs R (2016) Sleep spindles and intelligence in early childhood-developmental and trait-dependent aspects. Dev Psychol 52:2118–2129

    Article  Google Scholar 

  • Ujma PP et al (2017) The sleep EEG spectrum is a sexually dimorphic marker of general intelligence. Sci Rep 7:18070. https://doi.org/10.1038/s41598-017-18124-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vyazovskiy VV, Riedner BA, Cirelli C, Tononi G (2007) Sleep homeostasis and cortical synchronization: II. A local field potential study of sleep slow waves in the rat Sleep 30:1631–1642

    Article  Google Scholar 

  • Vyazovskiy VV, Cirelli C, Pfister-Genskow M, Faraguna U, Tononi G (2008) Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat Neurosci 11:200–208

    Article  CAS  Google Scholar 

  • Vyazovskiy VV, Faraguna U, Cirelli C, Tononi G (2009) Triggering slow waves during NREM sleep in the rat by intracortical electrical stimulation: effects of sleep/wake history and background activity. J Neurophysiol 101:1921–1931

    Article  Google Scholar 

Download references

Funding

This study was funded by the 2017-1.2.1-NKP-2017-00002 grant. PĂ©ter P. Ujma and PĂ©ter Simor were supported by the ÚNKP-17-4 New National Excellence Program of the Ministry of Human Capacities. PĂ©ter Simor was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4A/-11-1-2012-0001 ‘National Excellence Program’ and by the JĂĄnos Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PĂ©ter Przemyslaw Ujma.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ujma, P.P., Halász, P., Simor, P. et al. Increased cortical involvement and synchronization during CAP A1 slow waves. Brain Struct Funct 223, 3531–3542 (2018). https://doi.org/10.1007/s00429-018-1703-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-018-1703-4

Keywords

Navigation