Skip to main content
Log in

Hirudins and hirudin-like factors in Hirudinidae: implications for function and phylogenetic relationships

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Haematophagous leeches express a broad variety of bioactive factors that are released from the salivary gland cells into the wound of a host during feeding. Among these, hirudin is probably the best studied factor and, moreover, the only one that has successfully made the transition from nature to clinical use. Many components of the leech saliva still remain either poorly characterized or yet completely unknown. Only recently, a new class of leech-derived factors has been discovered in Hirudo medicinalis, the hirudin-like factors (HLFs). HLFs comprise typical structural features of hirudin but lack others. We were able to verify the expression of HLFs not only in two additional species of the genus Hirudo, but also in Hirudinaria manillensis. Various phylogenetic analyses based on gene and protein sequences support a sister group relationship between hirudins and HLFs. Although potential molecular targets of HLFs remain unknown, the presence of multiple isoforms in individual leeches of different genera points to key functions in the regulation of several processes associated with the blood-sucking life style of leeches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Apakupakul K, Siddall ME, Burreson EM (1999) Higher level relationships of leeches (Annelida: Clitellata:Euhirudinea) based on morphology and gene sequences. Mol Phylogenet Evol 12(3):350–359

    Article  CAS  PubMed  Google Scholar 

  • Baskova IP, Zavalova LL (2001) Proteinase inhibitors from the medicinal leech Hirudo medicinalis. Biochemistry (Mosc) 66(7):703–714

    Article  CAS  Google Scholar 

  • Baskova IP, Kostrjukova ES, Vlasova MA, Kharitonova OV, Levitskiy SA, Zavalova LL, Moshkovskii SA, Lazarev NV (2008) Proteins and peptides of the salivary gland secretion of medicinal leeches Hirudo verbana, H. medicinalis, and H. orientalis. Biochemistry (Mosc) 73(3):315–320

    Article  CAS  Google Scholar 

  • Bock PE, Panizzi P, Verhamme IM (2007) Exosites in the substrate specificity of blood coagulation reactions. J Thromb Haemost 5(Suppl 1):81–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borda E, Siddall ME (2004) Arhynchobdellida (Annelida: Oligochaeta: Hirudinida): phylogenetic relationships and evolution. Mol Phylogenet Evol 30(1):213–225

    Article  CAS  PubMed  Google Scholar 

  • Borda E, Oceguera-Figueroa A, Siddall ME (2008) On the classification, evolution and biogeography of terrestrial haemadipsoid leeches (Hirudinida: Arhynchobdellida: Hirudiniformes). Mol Phylogenet Evol 46(1):142–154

    Article  PubMed  Google Scholar 

  • Cichocka J, Bielecki A (2008) Biological diversity of leeches (Clitellata: Hirudinida) based on characteristics of the karyotype. Wiad Parazytol 54(4):309–314

    PubMed  Google Scholar 

  • Cichocka J, Bielecki A (2015) Phylogenetic utility of the geometric model of the body form in leeches (Clitellata: Hirudinida). Biologia 70(8):1078–1092

    Article  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27:1164–1165

    Article  CAS  PubMed  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8):772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Cera E (2009) Serine proteases. IUBMB Life 61(5):510–515

    Article  PubMed  PubMed Central  Google Scholar 

  • Dodt J, Müller HP, Seemüller U, Chang JY (1984) The complete amino acid sequence of hirudin, a thrombin specific inhibitor: application of colour carboxymethylation. FEBS Lett 165(2):180–184

    Article  CAS  Google Scholar 

  • Dodt J, Köhler S, Baici A (1988) Interaction of site specific hirudin variants with α-thrombin. FEBS Lett 229(1):87–90

    Article  CAS  PubMed  Google Scholar 

  • Farady CJ, Craik CS (2010) Mechanisms of macromolecular protease inhibitors. Chembiochem 11(17):2341–2346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3(5):294–299

    CAS  PubMed  Google Scholar 

  • Furie B, Bing DH, Feldmann RJ, Robison DJ, Burnier JP, Furie BC (1982) Computer-generated models of blood coagulation factor Xa, factor IXa, and thrombin based upon structural homology with other serine proteases. J Biol Chem 257(7):3875–3882

    CAS  PubMed  Google Scholar 

  • Grütter MG, Priestle JP, Rahuel J, Grossenbacher H, Bode W, Hofsteenge J, Stone SR (1990) Crystal structure of the thrombin-hirudin complex: a novel mode of serine protease inhibition. EMBO J 9(8):2361–2365

    PubMed  PubMed Central  Google Scholar 

  • Hedstrom L (2002) Serine protease mechanism and specificity. Chem Rev 102(12):4501–4524

    Article  CAS  PubMed  Google Scholar 

  • Hess PN, De Moraes Russo CA (2007) An empirical test of the midpoint rooting method. Biol J Linn Soc Lond 92:669–674

    Article  Google Scholar 

  • Hildebrandt J-P, Lemke S (2011) Small bite, large impact – saliva and salivary molecules in the medicinal leech, Hirudo medicinalis. Naturwissenschaften 98:995–1008

    Article  CAS  PubMed  Google Scholar 

  • Hong SK (1999) Antithrombins from the blood-sucking leech, Hirudo nipponia. Doctoral Dissertation, Department of Biological Sciences, Korean Advanced Institute of Science and Technology

    Google Scholar 

  • Huang Y, Zhang Y, Zhao B, Xu Q, Zhou X, Song H, Yu M, Mo W (2014) Structural basis of RGD-hirudin binding to thrombin: Tyr3 and five C-terminal residues are crucial for inhibiting thrombin activity. BMC Struct Biol 14:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Huntington JA (2014) Natural inhibitors of thrombin. Thromb Haemost 111(4):583–589

    Article  CAS  PubMed  Google Scholar 

  • Johnson PH, Sze P, Winant R, Payne PW, Lazar JB (1989) Biochemistry and genetic engineering of hirudin. Semin Thromb Hemost 5(3):302–315

    Article  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh CY, Kini RM (2011) Thrombin inhibitors from haematophagous animals. In: Kini RM, Clemetson KJ, Markland FS, McLane MA, Morita T (eds) Toxins and hemostasis. Springer, Heidelberg, pp 239–254

    Google Scholar 

  • Krowarsch D, Cierpicki T, Jelen F, Otlewski J (2003) Canonical protein inhibitors of serine proteases. Cell Mol Life Sci 60(11):2427–2444

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U, Roth M (2006) Notes on the ecology of the Asian medicinal leech Hirudinaria manillensis (Hirudinea: Hirudinidae). Lauterbornia 56:9–13

    Google Scholar 

  • Kvist S, Min GS, Siddall ME (2013) Diversity and selective pressures of anticoagulants in three medicinal leeches (Hirudinida: Hirudinidae, Macrobdellidae). Ecol Evol 3(4):918–933

    Article  PubMed  PubMed Central  Google Scholar 

  • Kvist S, Brugler MR, Goh TG, Giribet G, Siddall ME (2014) Pyrosequencing the salivary transcriptome of Haemadipsa interrupta (Annelida: Clitellata: Haemadipsidae): anticoagulant diversity and insight into the evolution of anticoagulation capabilities in leeches. Invert Biol 133(1):74–98

    Article  Google Scholar 

  • Lockhart PJ, Steel MA, Hendy MD, Penny D (1994) Recovering evolutionary trees under a more realistic model of sequence evolution. Mol Biol Evol 11(4):605–612

    CAS  PubMed  Google Scholar 

  • Lockhart PJ, Larkum AW, Steel M, Waddell PJ, Penny D (1996) Evolution of chlorophyll and bacteriochlorophyll: the problem of invariant sites in sequence analysis. Proc Natl Acad Sci U S A 93(5):1930–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maddison WP (1997) Gene trees in species trees. Syst Biol 46(3):523–536

    Article  Google Scholar 

  • Mann KH (1962) Leeches (Hirudinea) - their structure, physiology, ecology and embryology. Pergamon Press, Oxford

    Google Scholar 

  • Märki WE, Grossenbacher H, Grütter MG, Liersch MH, Meyhack B, Heim J (1991) Recombinant hirudin: genetic engineering and structure analysis. Semin Thromb Hemost 17(2):88–93

    Article  PubMed  Google Scholar 

  • Markwardt F (1955) Untersuchungen über Hirudin. Naturwissenschaften 42(19):537–538

    Article  Google Scholar 

  • Min GS, Sarkar IN, Siddall ME (2010) Salivary transcriptome of the North American medicinal leech, Macrobdella decora. J Parasitol 96(6):1211–1221

    Article  CAS  PubMed  Google Scholar 

  • Müller C, Mescke K, Liebig S, Mahfoud H, Lemke S, Hildebrandt J-P (2016) More than just one: multiplicity of hirudins and hirudin-like factors in the medicinal leech, Hirudo medicinalis. Mol Genet Genomics 291(1):227–240

    Article  PubMed  Google Scholar 

  • Neurath H (1986) The versatility of proteolytic enzymes. J Cell Biochem 32(1):35–49

    Article  CAS  PubMed  Google Scholar 

  • Page MJ, Di Cera E (2008) Serine peptidases: classification, structure and function. Cell Mol Life Sci 65(7-8):1220–1236

    Article  CAS  PubMed  Google Scholar 

  • Page MJ, MacGillivray RT, Di Cera E (2005) Determinants of specificity in coagulation proteases. J Thromb Haemost 3(11):2401–2408

    Article  CAS  PubMed  Google Scholar 

  • Pamilo P, Nei M (1988) Relationships between gene trees and species trees. Mol Biol Evol 5(5):568–583

    CAS  PubMed  Google Scholar 

  • Perkins SL, Budinoff RB, Siddall ME (2005) New gammaproteobacteria associated with blood-feeding leeches and a broad phylogenetic analysis of leech endosymbionts. Appl Environ Microbiol 71(9):5219–5224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perona JJ, Craik CS (1995) Structural basis of substrate specificity in the serine proteases. Protein Sci 4(3):337–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips AJ (2012) Phylogenetic placement of a new species of Asian buffalo leech (Arhynchobdellida: Hirudinidae), and confirmation of human-mediated dispersal of a congener to the Caribbean. Invert System 26:293–302

    Article  Google Scholar 

  • Phillips AJ, Siddall ME (2009) Poly-paraphyly of Hirudinidae: many lineages of medicinal leeches. BMC Evol Biol 9:246

    Article  PubMed  PubMed Central  Google Scholar 

  • Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6., Available from http://beast.bio.ed.ac.uk/Tracer

    Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Rydel TJ, Ravichandran KKG, Tulinsky A, Bode W, Huber R, Roitsch C, Fenton JW (1990) The structure of a complex of recombinant hirudin and human α-thrombin. Science 249(4966):277–280

    Article  CAS  PubMed  Google Scholar 

  • Sawyer RT (1986a) Leech biology and behaviour I. Anatomy, physiology and behaviour. Clarendon Press, Oxford

    Google Scholar 

  • Sawyer RT (1986b) Leech Biology and Behaviour II. Feeding biology, ecology and systematics. Clarendon Press, Oxford

    Google Scholar 

  • Scacheri E, Nitti G, Valsasina B, Orsini G, Visco C, Ferrera M, Sawyer RT, Sarmientos P (1993) Novel hirudin variants from the leech Hirudinaria manillensis. Amino acid sequence, cDNA cloning and genomic organization. Eur J Biochem 214(1):295–304

    Article  CAS  PubMed  Google Scholar 

  • Siddall ME, Burreson EM (1998) Phylogeny of leeches (Hirudinea) based on mitochondrial cytochrome c oxidase subunit I. Mol Phylogenet Evol 9(1):156–162

    Article  CAS  PubMed  Google Scholar 

  • Siddall ME, Trontelj P, Utevsky SY, Nkamany M, Macdonald KS (2007) Diverse molecular data demonstrate that commercially available medicinal leeches are not Hirudo medicinalis. Proc Biol Sci B 274(1617):1481–1487

    Article  CAS  Google Scholar 

  • Siddall ME, Min GS, Fontanella FM, Phillips AJ, Watson SC (2011) Bacterial symbiont and salivary peptide evolution in the context of leech phylogeny. Parasitology 138(13):1815–1827

    Article  PubMed  Google Scholar 

  • Siddall ME, Brugler MR, Kvist S (2015) Comparative transcriptomic analyses of three species of Placobdella (Rhynchobdellida: Glossiphoniidae) confirms a single origin of blood feeding in leeches. J Parasitol 102(1):143–150

    Article  PubMed  Google Scholar 

  • Steiner V, Knecht R, Börnsen KO, Gassmann E, Stone SR, Raschdorf F, Schlaeppi JM, Maschler R (1992) Primary structure and function of novel O-glycosylated hirudins from the leech Hirudinaria manillensis. Biochemistry 31(8):2294–2298

    Article  CAS  PubMed  Google Scholar 

  • Stone SR, Hofsteenge J (1986) Kinetics of the inhibition of thrombin by hirudin. Biochemistry 25(16):4622–4628

    Article  CAS  PubMed  Google Scholar 

  • Strube KH, Kröger B, Bialojan S, Otte M, Dodt J (1993) Isolation, sequence analysis, and cloning of haemadin. An anticoagulant peptide from the Indian leech. J Biol Chem 268(12):8590–8595

    CAS  PubMed  Google Scholar 

  • Swofford DL (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • Szöllosi GJ, Tannier E, Daubin V, Boussau B (2015) The inference of gene trees with species trees. Syst Biol 64(1):e42–e62

    Article  PubMed  Google Scholar 

  • Trontelj P, Utevsky SY (2005) Celebrity with a neglected taxonomy: molecular systematics of the medicinal leech (genus Hirudo). Mol Phylogenet Evol 34(3):616–624

    Article  CAS  PubMed  Google Scholar 

  • Trontelj P, Utevsky SY (2012) Phylogeny and phylogeography of medicinal leeches (genus Hirudo): fast dispersal and shallow genetic structure. Mol Phylogenet Evol 63(2):475–485

    Article  PubMed  Google Scholar 

  • Trontelj P, Sket B, Steinbrück G (1999) Molecular phylogeny of leeches: Congruence of nuclear and mitochondrial rDNA data sets and the origin of bloodsucking. J Zool Syst Evol Res 3:141–147

    Article  Google Scholar 

  • Utevsky SY, Trontelj P (2005) A new species of the medicinal leech (Oligochaeta, Hirudinida, Hirudo) from Transcaucasia and an identification key for the genus Hirudo. Parasitol Res 98(1):61–66

    Article  PubMed  Google Scholar 

  • Utevsky SY, Kovalenko N, Doroshenko K, Petrauskiene L, Klymenko V (2009) Chromosome numbers for three species of medicinal leeches (Hirudo spp.). Syst Parasitol 74:95–102

    Article  PubMed  Google Scholar 

  • van de Locht A, Stubbs MT, Bode W, Friedrich T, Bollschweiler C, Höffken W, Huber R (1996) The ornithodorin-thrombin crystal structure, a key to the TAP enigma? EMBO J 15(22):6011–6017

    PubMed  PubMed Central  Google Scholar 

  • Vankhede GN, Gomase VS, Deshmukh SV, Chikhale NJ (2005) Prediction of antigenic epitope of hirudin from Poecilobdella viridis. J Comp Toxicol Physiol 2:110–118

    Google Scholar 

  • Wallace A, Dennis S, Hofsteenge J, Stone SR (1989) Contribution of the N-terminal region of hirudin to its interaction with thrombin. Biochemistry 28(26):10079–10084

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Whitman CO (1884) The external morphology of the leech. Proc Am Acad Arts Sci 20:76–87

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Detlef Menzel (Futura-Egel-Zucht, Potsdam) for providing the Hirudo specimens and Bethany Sawyer (Biopharm U.K. Ltd, Swansea) for providing the Hirudinaria specimens. We are thankful to Sabine Ziesemer and Amanda Wiesenthal for critical reading of the manuscript and to the reviewers for their constructive and helpful comments. Sarah Lemke received a doctoral stipend from the Konrad Adenauer-Stiftung, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Müller.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

We declare that the experiments described in this paper comply with the current laws in Germany. All applicable international, national and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Phylogenetic trees based on best-fitting substitution matrix WAG + I + Γ. The remaining settings were identical to the analyses presented in the main text. a Bayesian reconstruction based on protein sequences of hirudin, haemadin, hirujin and HLF variants including a putative hirudin sequence of Macrobdella decora. b Bayesian reconstruction based on protein sequences without the putative hirudin sequence of Macrobdella decora. Node support as posterior probabilities. Scale bars indicate substitutions per site. Hiru_med, Hirudo medicinalis; Hiru_ver, Hirudo verbana; Hiru_ori, Hirudo orientalis; Hiru_man, Hirudinaria manillensis; Haem_syl, Haemadipsa sylvestris; Haem_int, Haemadipsa interrupta; Poec_vir, Poecilobdella viridis, Alio_fen, Aliolimnatis fenestrata, Macr_dec, Macrobdella decora, Plac_kwe, Placobdella kwetlumye, Plac_ par, Placobdella parasitica. (GIF 52 kb)

High resolution image (TIF 2072 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, C., Haase, M., Lemke, S. et al. Hirudins and hirudin-like factors in Hirudinidae: implications for function and phylogenetic relationships. Parasitol Res 116, 313–325 (2017). https://doi.org/10.1007/s00436-016-5294-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-016-5294-9

Keywords

Navigation