Skip to main content
Log in

The 79,370-bp conjugative plasmid pB4 consists of an IncP-1β backbone loaded with a chromate resistance transposon, the strA-strB streptomycin resistance gene pair, the oxacillinase gene bla NPS-1, and a tripartite antibiotic efflux system of the resistance-nodulation-division family

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Plasmid pB4 is a conjugative antibiotic resistance plasmid, originally isolated from a microbial community growing in activated sludge, by means of an exogenous isolation method with Pseudomonas sp. B13 as recipient. We have determined the complete nucleotide sequence of pB4. The plasmid is 79,370 bp long and contains at least 81 complete coding regions. A suite of coding regions predicted to be involved in plasmid replication, plasmid maintenance, and conjugative transfer revealed significant similarity to the IncP-1β backbone of R751. Four resistance gene regions comprising mobile genetic elements are inserted in the IncP-1β backbone of pB4. The modular 'gene load' of pB4 includes (1) the novel transposon Tn5719 containing genes characteristic of chromate resistance determinants, (2) the transposon Tn5393c carrying the widespread streptomycin resistance gene pair strA-strB, (3) the β-lactam antibiotic resistance gene bla NPS-1 flanked by highly conserved sequences characteristic of integrons, and (4) a tripartite antibiotic resistance determinant comprising an efflux protein of the resistance-nodulation-division (RND) family, a periplasmic membrane fusion protein (MFP), and an outer membrane factor (OMF). The components of the RND-MFP-OMF efflux system showed the highest similarity to the products of the mexCD-oprJ determinant from the Pseudomonas aeruginosa chromosome. Functional analysis of the cloned resistance region from pB4 in Pseudomonas sp. B13 indicated that the RND-MFP-OMF efflux system conferred high-level resistance to erythromycin and roxithromycin resistance on the host strain. This is the first example of an RND-MFP-OMF-type antibiotic resistance determinant to be found in a plasmid genome. The global genetic organization of pB4 implies that its gene load might be disseminated between bacteria in different habitats by the combined action of the conjugation apparatus and the mobility of its component elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  Google Scholar 

  • Berg T, Firth N, Apisiridej S, Hettiaratchi A, Leelaporn A, Skurray RA (1998) Complete nucleotide sequence of pSK41: evolution of staphylococcal conjugative multiresistance plasmids. J Bacteriol 180:4350–4359

    CAS  PubMed  Google Scholar 

  • Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198

    PubMed  Google Scholar 

  • Cervantes C, Ohtake H, Chu L, Misra TK, Silver S (1990) Cloning, nucleotide sequence, and expression of the chromate resistance determinant of Pseudomonas aeruginosa plasmid pUM505. J Bacteriol 172:287–291

    CAS  PubMed  Google Scholar 

  • Cervantes C, Campos-Garcia J, Devars S, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzman JC, Moreno-Sanchez R (2001) Interaction of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  CAS  PubMed  Google Scholar 

  • Chiou C-S, Jones AL (1993) Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria. J Bacteriol 175:732–740

    CAS  PubMed  Google Scholar 

  • Chiou C-S, Jones AL (1995) Expression and identification of the strA-strB gene pair from streptomycin-resistant Erwinia amylovora. Gene 152:47–51

    Article  CAS  PubMed  Google Scholar 

  • Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27:4636–4641

    Article  CAS  PubMed  Google Scholar 

  • Dodd IB, Egan JB (1990) Improved detection of helix-turn-helix DNA-binding motifs in protein sequences. Nucleic Acids Res 18:5019–5026

    CAS  PubMed  Google Scholar 

  • Dröge M, Pühler A, Selbitschka W (1999) Horizontal gene transfer among bacteria in terrestrial and aquatic habitats as assessed by microcosm and field studies. Biol Fertil Soils 29:221–245

    Article  Google Scholar 

  • Dröge M, Pühler A, Selbitschka W (2000) Phenotypic and molecular characterization of conjugative antibiotic resistance plasmids isolated from bacterial communities of activated sludge. Mol Gen Genet 263:471–482

    Article  PubMed  Google Scholar 

  • Gotoh N, Kusumi T, Tsujimoto H, Wada T, Nishino T (1999) Topological analysis of an RND family transporter, MexD of Pseudomonas aeruginosa. FEBS Lett 458:32–36

    Article  CAS  PubMed  Google Scholar 

  • Hall RM, Brown HJ, Brookes DE, Stokes HW (1994) Integrons found in different locations have identical 5′ ends but variable 3′ ends. J Bacteriol 176:6286–6294

    CAS  PubMed  Google Scholar 

  • Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 22:4633–4642

    Article  Google Scholar 

  • L'Abée-Lund TM, Sørum H (2000) Functional Tn5393-like transposon in the R plasmid pRAS2 from the fish pathogen Aeromonas salmonicida subspecies salmonicida isolated in Norway. Appl Environ Microbiol 66:5533–5535

    Article  PubMed  Google Scholar 

  • Levesque RC, Jacoby GA (1988) Molecular structure and interrelationships of multiresistance β-lactamase transposons. Plasmid 19:21–29

    CAS  PubMed  Google Scholar 

  • Livermore DM, Jones CS (1986) Characterization of NPS-1, a novel plasmid-mediated β-lactamase, from two Pseudomonas aeruginosa isolates. Antimicrob Agents Chemother 29:99–103

    CAS  PubMed  Google Scholar 

  • Morita Y, Komori Y, Mima T, Kuroda T, Mizushima T, Tsuchiya T (2001) Construction of a series of mutants lacking all of the four major mex operons for multidrug efflux pumps or possessing each one of the operons from Pseudomonas aeruginosa PAO1: MexCD-OprJ is an inducible pump. FEMS Microbiol Lett 202:139–143

    Article  CAS  PubMed  Google Scholar 

  • Myers EW, Miller W (1988) Optimal alignments in linear space. Comput Appl Biosci 4:11–17

    CAS  PubMed  Google Scholar 

  • Naas T, Nordmann P (1999) OXA-type β-lactamases. Curr Pharm Design 5:865–879

    CAS  Google Scholar 

  • National Committee of Clinical Laboratory Standards (1997) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standards (4th edn). National Committee of Clinical Laboratory Standards, Wayne, Penn.

    Google Scholar 

  • Nies A, Nies DH, Silver S (1990) Nucleotide sequence and expression of a plasmid-encoded chromate resistance determinant from Alcaligenes eutrophus. J Biol Chem 265:5648–5653

    CAS  PubMed  Google Scholar 

  • Pai H, Jacoby GA (2001) Sequences of the NPS-1 and TLE-1 β-lactamase genes. Antimicrob Agents Chemother 45:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Pansegrau W, Lanka E, Barth PT, Figurski DH, Guiney DG, Haas D, Helinski DR, Schwab H, Stanisich VA, Thomas CM (1994) Complete nucleotide sequence of Birmingham IncPα plasmids: compilation and comparative analysis. J Mol Biol 239:623–663

    Article  CAS  PubMed  Google Scholar 

  • Perreten V, Schwarz F, Cresta L, Boeglin M, Dasen G, Teuber M (1997) Antibiotic resistance spread in food. Nature 389:801–802

    Article  CAS  Google Scholar 

  • Poole K (2001a) Multidrug resistance in gram-negative bacteria. Curr Opin Microbiol 4:500–508

    Article  CAS  PubMed  Google Scholar 

  • Poole K (2001b) Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Mol Microbiol Biotechnol 3:255–264

    CAS  PubMed  Google Scholar 

  • Poole K, Gotoh N, Tsujimoto H, Zhao Q, Wada A, Yamasaki T, Neshat S, Yamagishi J, Li X-Z, Nishino T (1996) Overexpression of the mexC - mexD - oprJ efflux operon in nfxB -type multidrug-resistant strains of Pseudomonas aeruginosa. Mol Microbiol 21:713–724

    CAS  PubMed  Google Scholar 

  • Prell J, Boesten B, Poole P, Priefer UB (2002) The Rhizobium leguminosarum bv. viciae VF39 γ-aminobutyrate (GABA) aminotransferase gene ( gabT) is induced by GABA and highly expressed in bacteroids. Microbiology 148:615–623

    CAS  PubMed  Google Scholar 

  • Radström P, Sköld O, Swedeberg G, Flensburg J, Roy PH, Sundström L (1994) Transposon Tn5090 of plasmid R751, which carries an integron, is related to Tn7, Mu, and the retroelements. J Bacteriol 176:3257–3268

    PubMed  Google Scholar 

  • Recchia GD, Hall RM (1995) Gene cassettes: a new class of mobile elements. Microbiology 141:3015–3027

    CAS  PubMed  Google Scholar 

  • Reese MG, Harris NL, Eeckman FH (1996) Large scale sequencing specific neural networks for promoter and splice site recognition. In: Hunter L, Klein TE (eds) Biocomputing (Proceedings of the 1996 Pacific Symposium). World Scientific Publishing, Singapore

  • Rost B, Casadio R, Fariselli P, Sander C (1995) Prediction of helical transmembrane segments at 95% accuracy. Protein Sci 4:521–533

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Schneiker S, Keller M, Dröge M, Lanka E, Pühler A, Selbitschka W (2001) The genetic organization and evolution of the broad host range mercury resistance plasmid pSB102 isolated from a microbial population residing in the rhizosphere of alfalfa. Nucleic Acids Res 29:5169–5181

    Article  CAS  PubMed  Google Scholar 

  • Schwarz FV, Perreten V, Teuber M (2001) Sequence of the 50-kb conjugative multiresistance plasmid pRE25 from Enterococcus faecalis RE25. Plasmid 46:170–187

    Article  CAS  PubMed  Google Scholar 

  • Séveno NA, Kallifidas D, Smalla K, van Elsas JD, Collard J-M, Karagouni AD, Wellington MH (2002) Occurrence and reservoirs of antibiotic resistance genes in the environment. Rev Med Microbiol 13:15–27

    Google Scholar 

  • Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. Biotechnology 1:784–794

    CAS  Google Scholar 

  • Staden R (1996) The Staden sequence analysis package. Mol Biotechnol 5:233–241

    Google Scholar 

  • Stover CK, et al (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:959–964

    PubMed  Google Scholar 

  • Sundin GW (2000) Examination of base pair variants of the strA - strB streptomycin resistance genes from bacterial pathogens of humans, animals and plants. J Antimicrob Chemother 46:848–849

    Article  CAS  PubMed  Google Scholar 

  • Sundin GW, Bender CL (1995) Expression of the strA - strB streptomycin resistance genes in Pseudomonas syringae and Xanthomonas campestris and characterization of IS6100 in X. campestris. Appl Environ Microbiol 61:2891–2897

    CAS  PubMed  Google Scholar 

  • Sundin GW, Bender CL (1996) Dissemination of the strA - strB streptomycin-resistance genes among commensal and pathogenic bacteria from humans, animals, and plants. Mol Ecol 5:133–143

    CAS  PubMed  Google Scholar 

  • Tan Y-T, Tillet DJ, McKay IA (2000) Molecular strategies for overcoming antibiotic resistance in bacteria. Mol Medicine Today 6:309–314

    Article  CAS  Google Scholar 

  • Tauch A, Krieft S, Kalinowski J, Pühler A (2000) The 51,409-bp R-plasmid pTP10 from the multiresistant clinical isolate Corynebacterium striatum M82B is composed of DNA segments initially identified in soil bacteria and in plant, animal, and human pathogens. Mol Gen Genet 263:1–11

    CAS  PubMed  Google Scholar 

  • Teuber M (2001) Veterinary use and antibiotic resistance. Curr Opin Microbiol 4:493–499

    Article  CAS  PubMed  Google Scholar 

  • Thorsted PB, Macartney DP, Akhtar P, Haines AS, Ali N, Davidson P, Stafford T, Pocklington MJ, Pansegrau W, Wilkins BM, Lanka E, Thomas CM (1998) Complete sequence of the IncPβ plasmid R751: implications for evolution and organization of the IncP backbone. J Mol Biol 282:969–990

    Article  CAS  PubMed  Google Scholar 

  • Witte W (1998) Medical consequences of antibiotic use in agriculture. Science 279:996–997

    Article  CAS  PubMed  Google Scholar 

  • Zgurskaya HI, Nikaido H (2000) Multidrug resistance mechanisms: drug efflux across two membranes. Mol Microbiol 37:219–225

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the sequencing team from IIT GmbH (Bielefeld, Germany) for DNA sequencing. This work was supported by BMBF grant 0312384.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tauch.

Additional information

Communicated by A. Kondorosi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tauch, A., Schlüter, A., Bischoff, N. et al. The 79,370-bp conjugative plasmid pB4 consists of an IncP-1β backbone loaded with a chromate resistance transposon, the strA-strB streptomycin resistance gene pair, the oxacillinase gene bla NPS-1, and a tripartite antibiotic efflux system of the resistance-nodulation-division family. Mol Gen Genomics 268, 570–584 (2003). https://doi.org/10.1007/s00438-002-0785-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-002-0785-z

Keywords

Navigation