Skip to main content
Log in

The ire1 and ptc2 genes involved in the unfolded protein response pathway in the filamentous fungus Trichoderma reesei

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

A signal transduction pathway called the unfolded protein response is activated when increased levels of misfolded proteins or incorrectly assembled subunits accumulate in the endoplasmic reticulum (ER). The expression of several genes for ER-resident foldases and chaperones, as well as genes encoding proteins that are involved in functions associated with the secretory process, are induced by this pathway. This paper describes the cloning and characterisation of genes for two components of the pathway, ire1 and ptc2, from the filamentous fungus Trichoderma reesei ( Hypocrea jecorina). The data presented demonstrates that the T. reesei genes can complement Saccharomyces cerevisiae mutants that are deficient in the corresponding homologues. The T. reesei IREI protein has intrinsic kinase activity, as revealed by an in vitro autophosphorylation assay. Overexpression of ire1 in a T. reesei strain that expresses a foreign protein (laccase 1 from Phlebia radiata), results in up-regulation of the UPR pathway, as indicated by the increased expression levels of the known UPR target genes bip1 and pdi1. Splicing of the mRNA encoding the transcription factor HAC1 is also observed. Other genes encoding proteins from different parts of the secretory pathway also respond to ire1 overexpression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–c
Fig. 4a, b
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Meyers EW, Lipman DJ (1990) Basic Local Alignment Search Tool*1. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Bailey MJ, Linko M (1990) Production of β-galactosidase by Aspergillus oryzae in submerged bioreactor cultivation. J Biotechnol 16:57–66

    Article  CAS  Google Scholar 

  • Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded- protein response. Nat Cell Biol 2:326–332

    Article  CAS  PubMed  Google Scholar 

  • Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92–96

    Article  CAS  PubMed  Google Scholar 

  • Chang HJ, Jones EW, Henry SA (2002) Role of the Unfolded Protein Response pathway in regulation of INO1 and in the sec14 bypass mechanism in Saccharomyces cerevisiae. Genetics 162:29–43

    CAS  PubMed  Google Scholar 

  • Cox JS, Walter P (1996) A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87:391–404

    Article  CAS  PubMed  Google Scholar 

  • Cox JS, Shamu CE, Walter P (1993) Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73:1197–1206

    Article  CAS  PubMed  Google Scholar 

  • Dorner AJ, Wasley LC, Kaufman RJ (1989) Increased synthesis of secreted proteins induces expression of glucose- regulated proteins in butyrate-treated Chinese hamster ovary cells. J Biol Chem 264:20602–20607

    CAS  PubMed  Google Scholar 

  • Falquet L, Pagni M, Bucher P, Hulo N, Sigrist CJA, Hofmann K, Bairoch A (2002) The PROSITE database, its status in 2002. Nucleic Acids Res 30:235–238

    Article  CAS  PubMed  Google Scholar 

  • Haze K, Yoshida H, Yanagi H, Yura T, Mori K (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10:3787–3799

    CAS  PubMed  Google Scholar 

  • Kawahara T, Yanagi H, Yura T, Mori K (1998) Unconventional splicing of HAC1/ERN4 mRNA required for the unfolded protein response. Sequence-specific and non-sequential cleavage of the splice sites. J Biol Chem 273:1802–1807

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Tirasophon W, Shen X, Michalak M, Prywes R, Okada T, Yoshida H, Mori K, Kaufman RJ (2002) IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev 16:452–466

    Article  CAS  PubMed  Google Scholar 

  • Martinez IM, Chrispeels MJ (2003) Genomic analysis of the Unfolded Protein Response in Arabidopsis shows its connection to important cellular processes. Plant Cell 15:561–576

    Article  CAS  PubMed  Google Scholar 

  • Montenecourt BS, Eveleigh DE (1979) Selective screening methods for the isolation of high yielding mutants of Trichoderma reesei. Adv Chem Ser 181:289–301

    Google Scholar 

  • Mori K, Ma W, Gething MJ, Sambrook J (1993) A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell 74:743–756

    Article  CAS  PubMed  Google Scholar 

  • Mori K, Ogawa N, Kawahara T, Yanagi H, Yura T (2000) mRNA splicing-mediated C-terminal replacement of transcription factor Hac1p is required for efficient activation of the unfolded protein response. Proc Natl Acad Sci USA 97:4660–4665

    Article  CAS  PubMed  Google Scholar 

  • Mulder HJ, Saloheimo M, Penttilä M, Madrid SM (2004) The transcription factor HACA mediates the unfolded protein response in Aspergillus niger, and up-regulates its own transcription. Mol Genet Genomics 271:130–140

    Article  CAS  PubMed  Google Scholar 

  • Nikawa J, Yamashita S (1992) IRE1 encodes a putative protein kinase containing a membrane-spanning domain and is required for inositol phototrophy in Saccharomyces cerevisiae. Mol Microbiol 6:1441–1446

    CAS  PubMed  Google Scholar 

  • Niku-Paavola ML, Karhunen E, Salola P, Raunio V (1988) Ligninolytic enzymes of the white-rot fungus Phlebia radiata. Biochem J 254:877–884

    CAS  PubMed  Google Scholar 

  • Nyfeler B, Nufer O, Matsui T, Mori K, Hauri HP (2003) The cargo receptor ERGIC-53 is a target of the unfolded protein response. Biochem Biophys Res Comm 304:599-604.

    Article  CAS  PubMed  Google Scholar 

  • Patil C, Walter P (2001) Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol 13:349–355

    Article  CAS  PubMed  Google Scholar 

  • Penttilä M, Nevalainen H, Rättö M, Salminen E, Knowles J (1987) A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 61:155–164

    Article  PubMed  Google Scholar 

  • Punt PJ, van Gemeren IA, Drint-Kuijvenhoven J, Hessing JG, van Muijlwijk-Harteveld GM, Beijersbergen A, Verrips CT, van den Hondel CA (1998) Analysis of the role of the gene bipA, encoding the major endoplasmic reticulum chaperone protein in the secretion of homologous and heterologous proteins in black Aspergilli. Appl Microbiol Biotechnol 50:447–454

    Article  CAS  PubMed  Google Scholar 

  • Robinson AS, Hines V, Wittrup KD (1994) Protein disulfide isomerase overexpression increases secretion of foreign proteins in Saccharomyces cerevisiae. Biotechnology (NY) 12:381–384

    Google Scholar 

  • Saloheimo M, Niku-Paavola ML, Knowles JK (1991) Isolation and structural analysis of the laccase gene from the lignin-degrading fungus Phlebia radiata. J Gen Microbiol 137:1537–1544

    CAS  PubMed  Google Scholar 

  • Saloheimo A, Henrissat B, Hoffren AM, Teleman O, Penttilä M (1994) A novel, small endoglucanase gene, egl5 , from Trichoderma reesei isolated by expression in yeast. Mol Microbiol 13:219–228

    CAS  PubMed  Google Scholar 

  • Saloheimo M, Lund M, Penttilä ME (1999) The protein disulphide isomerase gene of the fungus Trichoderma reesei is induced by endoplasmic reticulum stress and regulated by the carbon source. Mol Gen Genet 262:35–45

    Article  CAS  PubMed  Google Scholar 

  • Saloheimo M, Valkonen M, Penttilä M (2003) Activation mechanisms of the HACI-mediated unfolded protein response in filamentous fungi. Mol Microbiol 47:1149–1161

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Sherman F (1991) Getting started with yeast. Met Enzymol 194:3–21

    Article  CAS  Google Scholar 

  • Sidrauski C, Walter P (1997) The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 90:1031–1039

    Article  CAS  PubMed  Google Scholar 

  • Sidrauski C, Cox JS, Walter P (1996) tRNA ligase is required for regulated mRNA splicing in the unfolded protein response. Cell 87:405–413

    Article  CAS  PubMed  Google Scholar 

  • Smith DB, Johnson KS (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67:31–40

    Article  CAS  PubMed  Google Scholar 

  • Stålbrand H, Saloheimo A, Vehmaanperä J, Henrissat B, Penttilä M (1995) Cloning and expression in Saccharomyces cerevisiae of a Trichoderma reesei β-mannanase gene containing a cellulose binding domain. Appl Environ Microbiol 61:1090–1097

    PubMed  Google Scholar 

  • Stroobants AK, Hettema EH, van den Berg M, Tabak HF (1999) Enlargement of the endoplasmic reticulum membrane in Saccharomyces cerevisiae is not necessarily linked to the unfolded protein response via Ire1p. FEBS Lett 453:210–214

    Article  CAS  PubMed  Google Scholar 

  • Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101:249–258

    Article  CAS  PubMed  Google Scholar 

  • Valkonen M, Penttilä M, Saloheimo M (2003a) Effects of inactivation and constitutive expression of the Unfolded-Protein Response pathway on protein production in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 69:2065–2072

    Article  CAS  PubMed  Google Scholar 

  • Valkonen M, Ward M, Wang H, Penttilä M, Saloheimo M (2003b) Improvement of foreign protein production in Aspergillus niger var. awamori by constitutive induction of the Unfolded-Protein Response. Appl Environ Microbiol 69:6979–6986

    Article  CAS  PubMed  Google Scholar 

  • Van Tilbeurgh H, Claeyssens M, de Bruyne CK (1982) The use of 4-methylumbelliferyl and other chromophoric glycosides in the study of cellulolytic enzymes. FEBS Lett 149:152–156

    Article  Google Scholar 

  • Welihinda AA, Kaufman RJ (1996) The unfolded protein response pathway in Saccharomyces cerevisiae. Oligomerization and trans-phosphorylation of Ire1p (Ern1p) are required for kinase activation. J Biol Chem 271:18181–18187

    Article  CAS  PubMed  Google Scholar 

  • Welihinda AA, Tirasophon W, Green SR, Kaufman RJ (1998) Protein serine/threonine phosphatase Ptc2p negatively regulates the unfolded-protein response by dephosphorylating Ire1p kinase. Mol Cell Biol 18:1967–1977

    CAS  PubMed  Google Scholar 

  • Yoshida H, Haze K, Yanagi H, Yura T, Mori K (1998) Identification of the cis -acting endoplasmic reticulum Stress Response Element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem 273:33741–33749

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Riitta Nurmi for excellent technical assistance, Dr. Randal Kaufman for S. cerevisiae strains and Drs Michael Ward and Huaming Wang for fruitful discussions. The work was supported by Genencor International Inc. and the Finnish Technology Agency (Tekes) and partly by the Academy of Finland in the VTT Industrial Biotechnology Finnish Centre of Excellence Program 2000–2005, Project 64330.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Valkonen.

Additional information

Communicated by E. Cerdá-Olmedo

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valkonen, M., Penttilä, M. & Saloheimo, M. The ire1 and ptc2 genes involved in the unfolded protein response pathway in the filamentous fungus Trichoderma reesei. Mol Genet Genomics 272, 443–451 (2004). https://doi.org/10.1007/s00438-004-1070-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-004-1070-0

Keywords

Navigation