Skip to main content

Advertisement

Log in

The cell adhesion gene PVRL3 is associated with congenital ocular defects

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

We describe a male patient (patient DGAP113) with a balanced translocation, 46,XY,t(1;3)(q31.3;q13.13), severe bilateral congenital cataracts, CNS abnormalities and mild developmental delay. Fluorescence in situ hybridization (FISH) and suppression PCR demonstrated that the chromosome 3 breakpoint lies ~515 kb upstream of the PVRL3 gene, while the chromosome 1 breakpoint lies ~50 kb upstream of the NEK7 gene. Despite the fact that NEK7 is closer to a translocation breakpoint than PVRL3, NEK7 transcript levels are unaltered in patient DGAP113 lymphoblastoid cells and Nek7-deficient mice exhibit no detectable ocular phenotype. In contrast, the expression of PVRL3, which encodes the cell adhesion protein Nectin 3, is significantly reduced in patient DGAP113 lymphoblastoid cells, likely due to a position effect caused by the chromosomal translocation. Nectin 3 is expressed in the mouse embryonic ciliary body and lens. Moreover, Pvrl3 knockout mice as well as a spontaneous mouse mutant ari (anterior retinal inversion), that maps to the Pvrl3 locus, exhibit lens and other ocular defects involving the ciliary body. Collectively, these data identify PVRL3 as a critical gene involved in a Nectin-mediated cell–cell adhesion mechanism in human ocular development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alkuraya FS, Saadi I, Lund JJ, Turbe-Doan A, Morton CC, Maas RL (2006) SUMO1 haploinsufficiency leads to cleft lip and palate. Science 313(5794):1751

    Article  PubMed  Google Scholar 

  • Azuma N, Hirakiyama A, Inoue T, Asaka A, Yamada M (2000) Mutations of a human homologue of the Drosophila eyes absent gene (EYA1) detected in patients with congenital cataracts and ocular anterior segment anomalies. Hum Mol Genet 9(3):363–366

    Article  PubMed  CAS  Google Scholar 

  • Barron MJ, Brookes SJ, Draper CE, Garrod D, Kirkham J, Shore RC, Dixon MJ (2008) The cell adhesion molecule nectin-1 is critical for normal enamel formation in mice. Hum Mol Genet 17:3509–3520

    Article  PubMed  CAS  Google Scholar 

  • Bassnett S, Beebe D (2001) Lens fiber differentiation. In: Robinson ML, Lovicuo F (eds) Development of the ocular lens, Chap 9, pp 214–244

  • Beebe DC, Vasiliev O, Guo J, Shui YB, Bassnett S (2001) Changes in adhesion complexes define stages in the differentiation of lens fiber cells. Invest Ophthalmol Vis Sci 42(3):727–734

    PubMed  CAS  Google Scholar 

  • Bermejo E, Martinez-Frias ML (1998) Congenital eye malformations: clinical-epidemiological analysis of 1, 124, 654 consecutive births in Spain. Am J Med Genet 75(5):497–504

    Article  PubMed  CAS  Google Scholar 

  • Bernacki SH, Stankovic AK, Williams LO, Beck JC, Herndon JE, Snow-Bailey K, Prior TW, Matteson KJ, Wasserman LM, Cole EC, Stenzel TT (2003) Establishment of stably EBV transformed cell lines from residual clinical blood samples for use in performance evaluation and quality assurance in molecular genetic testing. J Mol Diagn 5(4):227–230

    Article  PubMed  Google Scholar 

  • Berry V, Francis P, Kaushal S, Moore A, Bhattacharya S (2000) Missense mutations in MIP underlie autosomal dominant ‘polymorphic’ and lamellar cataracts linked to 12q. Nat Genet 25(1):15–17

    Article  PubMed  CAS  Google Scholar 

  • Bu L, Jin Y, Shi Y, Chu R, Ban A, Eiberg H, Andres L, Jiang H, Zheng G, Qian M, Cui B, Xia Y, Liu J, Hu L, Zhao G, Hayden MR, Kong X (2002) Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataract. Nat Genet 31(3):276–278

    Article  PubMed  CAS  Google Scholar 

  • Chauhan BK, Disanza A, Choi SY, Faber SC, Lou M, Beggs HE, Scita G, Zheng Y, Lang RA (2009) Cdc42- and IRSp53-dependent contractile filopodia tether presumptive lens and retina to coordinate epithelial invagination. Development 136(21):3657–3667

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Ma Z, Jiao X, Fariss R, Kantorow WL, Kantorow M, Pras E, Frydman M, Pras E, Riazuddin S, Riazuddin SA, Hejtmancik JF (2011) Mutations in FYCO1 cause autosomal-recessive congenital cataracts. Am J Hum Genet 88(6):827–838

    Google Scholar 

  • Choe SE, Boutros M, Michelson AM, Church GM, Halfon MS (2005) Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset. Genome Biol 6(2):R16

    Article  PubMed  Google Scholar 

  • Conley YP, Erturk D, Keverline A, Mah TS, Keravala A, Barnes LR, Bruchis A, Hess JF, FitzGerald PG, Weeks DE, Ferrell RE, Gorin MB (2000) A juvenile-onset, progressive cataract locus on chromosome 3q21–q22 is associated with a missense mutation in the beaded filament structural protein-2. Am J Hum Genet 66(4):1426–1431

    Article  PubMed  CAS  Google Scholar 

  • Davies AF, Mirza G, Flinter F, Ragoussis J (1999) An interstitial deletion of 6p24–p25 proximal to the FKHL7 locus and including AP-2alpha that affects anterior eye chamber development. J Med Genet 36(9):708–710

    PubMed  CAS  Google Scholar 

  • Donner AL, Lachke SA, Maas RL (2006) Lens induction in vertebrates: variations on a conserved theme of signaling events. Semin Cell Dev Biol 17(6):676–685

    Article  PubMed  CAS  Google Scholar 

  • Fabre S, Reymond N, Cocchi F, Menotti L, Dubreuil P, Campadelli-Fiume G, Lopez M (2002) Prominent role of the Ig-like V domain in trans-interactions of nectins. Nectin3 and nectin 4 bind to the predicted C-C’-C”-D beta-strands of the nectin1 V domain. J Biol Chem 277(30):27006–27013

    Article  PubMed  CAS  Google Scholar 

  • Feige E, Motro B (2002) The related murine kinases, Nek6 and Nek7, display distinct pattern of expression. Mech Dev 110(1–2):219–223

    Article  PubMed  CAS  Google Scholar 

  • Glaser T, Jepeal L, Edwards JG, Young SR, Favor J, Maas RL (1994) PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nat Genet 7(4):463–471

    Article  PubMed  CAS  Google Scholar 

  • Graw J (2009) Mouse models of cataract. J Genet 88(4):469–486

    Article  PubMed  CAS  Google Scholar 

  • Heintzman ND, Stuart RK, Hon G, Fu Y et al (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39(3):311–318

    Article  PubMed  CAS  Google Scholar 

  • Hejtmancik JF (2008) Congenital cataracts and their molecular genetics. Semin Cell Dev Biol 19(2):134–149

    Article  PubMed  CAS  Google Scholar 

  • Higgins AW, Alkuraya FS, Bosco AF, Brown KK, Bruns GA, Donovan DJ, Eisenman R, Fan Y, Farra CG, Ferguson HL, Gusella JF, Harris DJ, Herrick SR, Kelly C, Kim HG, Kishikawa S, Korf BR, Kulkarni S, Lally E, Leach NT, Lemyre E, Lewis J, Ligon AH, Lu W, Maas RL, MacDonald ME, Moore SD, Peters RE, Quade BJ, Quintero-Rivera F, Saadi I, Shen Y, Shendure J, Williamson RE, Morton CC (2008) Characterization of apparently balanced chromosomal rearrangements from the developmental genome anatomy project. Am J Hum Genet 82(3):712–722

    Article  PubMed  CAS  Google Scholar 

  • Hon G, Ren B, Wang W (2008) ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome. PLoS Comput Biol 4(10):e1000201

    Article  PubMed  Google Scholar 

  • Inagaki M, Irie K, Ishizaki H, Tanaka-Okamoto M, Morimoto K, Inoue E, Ohtsuka T, Miyoshi J, Takai Y (2005) Roles of cell-adhesion molecules nectin 1 and nectin 3 in ciliary body development. Development 132(7):1525–1537

    Article  PubMed  CAS  Google Scholar 

  • Inagaki M, Irie K, Ishizaki H, Tanaka-Okamoto M, Miyoshi J, Takai Y (2006) Role of cell adhesion molecule nectin-3 in spermatid development. Genes Cells 11(9):1125–1132

    Article  PubMed  CAS  Google Scholar 

  • Jamieson RV, Perveen R, Kerr B, Carette M, Yardley J, Heon E, Wirth MG, van Heyningen V, Donnai D, Munier F, Black GC (2002) Domain disruption and mutation of the bZIP transcription factor, MAF, associated with cataract, ocular anterior segment dysgenesis and coloboma. Hum Mol Genet 11(1):33–42

    Article  PubMed  CAS  Google Scholar 

  • Jensen S, Goldschmidt E (1971) Genetic counselling in sporadic cases of congenital cataract. Acta Ophthalmol (Copenh) 49(4):572–576

    Article  CAS  Google Scholar 

  • Kandli M, Feige E, Chen A, Kilfin G, Motro B (2000) Isolation and characterization of two evolutionarily conserved murine kinases (Nek6 and nek7) related to the fungal mitotic regulator, NIMA. Genomics 68(2):187–196

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Okano Y (2001) Identification and assignment of the human NIMA-related protein kinase 7 gene (NEK7) to human chromosome 1q31.3. Cytogenet Cell Genet 94(1–2):33–38

    Article  PubMed  CAS  Google Scholar 

  • Kleinjan DJ, van Heyningen V (1998) Position effect in human genetic disease. Hum Mol Genet 7(10):1611–1618

    Article  PubMed  CAS  Google Scholar 

  • Kleinjan DJ, van Heyningen V (2005) Long-range control of gene expression: emerging mechanisms and disruption in disease. Am J Hum Genet 76(1):8–32

    Article  PubMed  CAS  Google Scholar 

  • Kuszak JR, Novak LA, Brown HG (1995) An ultrastructural analysis of the epithelial-fiber interface (EFI) in primate lenses. Exp Eye Res 61(5):579–597

    Article  PubMed  CAS  Google Scholar 

  • Lachke SA, Maas RL (2010) Building the developmental oculome: systems biology in vertebrate eye development and disease. Wiley Inter Rev: Sys Biol Med 2(3):305–323

    Article  CAS  Google Scholar 

  • Lachke SA, Alkuraya FS, Kneeland S, Ohn T, Aboukhalil A, Howell G, Saadi I, Cavallesco R, Yingzi Y, Tsai AC, Nair SK, Cosma MI, Smith RS, Hodges E, AlFadhli SM, Al-Hajeri A, Shamseddin H, Behbehani A, Hannon G, Bulyk ML, Drack AV, Anderson PJ, John SW, Maas RL (2011) Mutations in the RNA granule component TDRD7 cause cataract and glaucoma. Science 331(6024):1571–1576

    Article  PubMed  CAS  Google Scholar 

  • Lauderdale JD, Wilensky JS, Oliver ER, Walton DS, Glaser T (2000) 3′ deletions cause aniridia by preventing PAX6 gene expression. Proc Natl Acad Sci USA 97(25):13755–13759

    Article  PubMed  CAS  Google Scholar 

  • Le TT, Conley KW, Brown NL (2009) Jagged 1 is necessary for normal mouse lens formation. Dev Biol 328(1):118–126

    Article  PubMed  CAS  Google Scholar 

  • Mackay D, Ionides A, Kibar Z, Rouleau G, Berry V, Moore A, Shiels A, Bhattacharya S (1999) Connexin46 mutations in autosomal dominant congenital cataract. Am J Hum Genet 64(5):1357–1364

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi A, Nakanishi H, Kimura K, Matsubara K, Ozaki-Kuroda K, Katata T, Honda T, Kiyohara Y, Heo K, Higashi M, Tsutsumi T, Sonoda S, Ide C, Takai Y (2002) Nectin: an adhesion molecule involved in formation of synapses. J Cell Biol 156(3):555–565

    Article  PubMed  CAS  Google Scholar 

  • Nguyen MM, Rivera C, Griep AE (2005) Localization of PDZ domain containing proteins discs large-1 and scribble in the mouse eye. Mol Vis 11:1183–1199

    PubMed  CAS  Google Scholar 

  • Nielsen PA, Baruch A, Shestopalov VI, Giepmans BN, Dunia I, Benedetti EL, Kumar NM (2003) Lens connexins alpha3Cx46 and alpha8Cx50 interact with zonula occludens protein-1 (ZO-1). Mol Biol Cell 14(6):2470–2481

    Article  PubMed  CAS  Google Scholar 

  • O’Connell MJ, Krien MJ, Hunter T (2003) Never say never. The NIMA-related protein kinases in mitotic control. Trends Cell Biol 13(5):221–228

    Article  PubMed  Google Scholar 

  • Ogita H, Takai Y (2008) Cross-talk among integrin, cadherin, and growth factor receptor: roles of nectin and nectin-like molecule. Int Rev Cytol 265:1–54

    Article  PubMed  CAS  Google Scholar 

  • Ogita H, Rikitake Y, Miyoshi J, Takai Y (2010) Cell adhesion molecules nectins and associating proteins: Implications for physiology and pathology. Proc Jpn Acad Ser B Phys Biol Sci 86(6):621–629

    Article  PubMed  CAS  Google Scholar 

  • Okabe N, Ozaki-Kuroda K, Nakanishi H, Shimizu K, Takai Y (2004) Expression patterns of nectins and afadin during epithelial remodeling in the mouse embryo. Dev Dyn 230(1):174–186

    Article  PubMed  CAS  Google Scholar 

  • Pontoriero GF, Smith AN, Miller LA, Radice GL, West-Mays JA, Lang RA (2009) Co-operative roles for E-cadherin and N-cadherin during lens vesicle separation and lens epithelial cell survival. Dev Biol 326(2):403–417

    Article  PubMed  CAS  Google Scholar 

  • Pras E, Levy-Nissenbaum E, Bakhan T, Lahat H, Assia E, Geffen-Carmi N, Frydman M, Goldman B, Pras E (2002) A missense mutation in the LIM2 gene is associated with autosomal recessive presenile cataract in an inbred Iraqi Jewish family. Am J Hum Genet 70(5):1363–1367

    Article  PubMed  CAS  Google Scholar 

  • Prosser J, van Heyningen V (1998) PAX6 mutations reviewed. Hum Mutat 11(2):93–108

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran RD, Perumalsamy V, Hejtmancik JF (2007) Autosomal recessive juvenile onset cataract associated with mutation in BFSP1. Hum Genet 121(3–4):475–482

    Article  PubMed  CAS  Google Scholar 

  • Reymond N, Borg J-P, Lecocq E, Adelaide J, Campadelli-Fiume G, Dubreuil P, Lopez M (2000) Human nectin3/PRR3: a novel member of the PVR/PRR/nectin family that interacts with afadin. Gene 255(2):347–355

    Article  PubMed  CAS  Google Scholar 

  • Robinson ML, Overbeek PA, Verran DJ, Grizzle WE, Stockard CR, Friesel R, Maciag T, Thompson JA (1995) Extracellular FGF-1 acts as a lens differentiation factor in transgenic mice. Development 121(2):505–514

    PubMed  CAS  Google Scholar 

  • Roessler E, Ward DE, Gaudenz K, Belloni E, Scherer SW, Donnai D, Siegel-Bartelt J, Tsui LC, Muenke M (1997) Cytogenetic rearrangements involving the loss of the Sonic Hedgehog gene at 7q36 cause holoprosencephaly. Hum Genet 100(2):172–181

    Article  PubMed  CAS  Google Scholar 

  • Salem H, Rachmin I, Yissachar N, Cohen S, Amiel A, Haffner R, Lavi L, Motro B (2010) Nek7 kinase targeting leads to early mortality, cytokinesis disturbance and polyploidy. Oncogene 29(28):4046–4057

    Article  PubMed  CAS  Google Scholar 

  • Sandilands A, Prescott AR, Wegener A, Zoltoski RK, Hutcheson AM, Masaki S, Kuszak JR, Quinlan RA (2003) Knockout of the intermediate filament protein CP49 destabilises the lens fibre cell cytoskeleton and decreases lens optical quality, but does not induce cataract. Exp Eye Res 76(3):385–391

    Article  PubMed  CAS  Google Scholar 

  • Saravanamuthu SS, Gao CY, Zelenka PS (2009) Notch signaling is required for lateral induction of Jagged1 during FGF-induced lens fiber differentiation. Dev Biol 332(1):166–176

    Article  PubMed  CAS  Google Scholar 

  • Satoh-Horikawa K, Nakanishi H, Takahashi K, Miyahara M, Nishimura M, Tachibana K, Mizoguchi A, Takai Y (2000) Nectin-3, a new member of immunoglobulin-like cell adhesion molecules that shows homophilic and heterophilic cell–cell adhesion activities. J Biol Chem 275(14):10291–10299

    Article  PubMed  CAS  Google Scholar 

  • Seidman JG, Seidman C (2002) Transcription factor haploinsufficiency: when half a loaf is not enough. J Clin Invest 109(4):451–455

    PubMed  CAS  Google Scholar 

  • Semina EV, Ferrell RE, Mintz-Hittner HA, Bitoun P, Alward WL, Reiter RS, Funkhauser C, Daack-Hirsch S, Murray JC (1998) A novel homeobox gene PITX3 is mutated in families with autosomal-dominant cataracts and ASMD. Nat Genet 19(2):167–170

    Article  PubMed  CAS  Google Scholar 

  • Semina EV, Brownell I, Mintz-Hittner HA, Murray JC, Jamrich M (2001) Mutations in the human forkhead transcription factor FOXE3 associated with anterior segment ocular dysgenesis and cataracts. Hum Mol Genet 10(3):231–236

    Article  PubMed  CAS  Google Scholar 

  • Shiels A, Hejtmancik JF (2007) Genetic origins of cataract. Arch Ophthalmol 125(2):165–173

    Article  PubMed  CAS  Google Scholar 

  • Shiels A, Bennett TM, Hejtmancik JF (2010) Cat-Map: putting cataract on the map. Mol Vis 16:2007–2015

    Google Scholar 

  • Shiels A, Mackay D, Ionides A, Berry V, Moore A, Bhattacharya S (1998) A missense mutation in the human connexin50 gene (GJA8) underlies autosomal dominant “zonular pulverulent” cataract, on chromosome 1q. Am J Hum Genet 62(3):526–532

    Article  PubMed  CAS  Google Scholar 

  • Shiels A, Bennett TM, Knopf HL, Maraini G, Li A, Jiao X, Hejtmancik JF (2008) The EPHA2 gene is associated with cataracts linked to chromosome 1p. Mol Vis 14:2042–2055

    PubMed  CAS  Google Scholar 

  • Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA (1995) An improved PCR method for walking in uncloned genomic DNA. Nuc Acids Res 23(6):1087–1088

    Article  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98(3):503–517

    Article  PubMed  CAS  Google Scholar 

  • Takai Y, Ikeda W, Ogita H, Rikitake Y (2008a) The immunoglobulin-like cell adhesion molecule nectin and its associated protein afadin. Annu Rev Cell Dev Biol 24:309–342

    Article  PubMed  CAS  Google Scholar 

  • Takai Y, Miyoshi J, Ikeda W, Ogita H (2008b) Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol 9(8):603–615

    Article  PubMed  CAS  Google Scholar 

  • Takekuni K, Ikeda W, Fujito T, Morimoto K, Takeuchi M, Monden M, Takai Y (2003) Direct binding of cell polarity protein PAR-3 to cell–cell adhesion molecule nectin at neuroepithelial cells of developing mouse. J Biol Chem 278(8):5497–5500

    Article  PubMed  CAS  Google Scholar 

  • Wallis DE, Roessler E, Hehr U, Nanni L, Wiltshire T, Richieri-Costa A, Gillessen-Kaesbach G, Zackai EH, Rommens J, Muenke M (1999) Mutations in the homeodomain of the human SIX3 gene cause holoprosencephaly. Nat Genet 22(2):196–198

    Article  PubMed  CAS  Google Scholar 

  • White TW, Goodenough DA, Paul DL (1998) Targeted ablation of connexin50 in mice results in microphthalmia and zonular pulverulent cataracts. J Cell Biol 143:815–825

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Overbeek PA, Reneker LA (2002) Systematic analysis of E-, N- and P-cadherin expression in mouse eye development. Exp Eye Res 74(6):753–760

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the subject and his relatives for participating in the Developmental Genome Anatomy Project and Heather Ferguson, Chantal Kelly and Shahrin Ahsan for assistance as study coordinators. This work was supported by NIH grants 5R01EY10123-15 (RLM), 5R01HD060050-02 (RLM), 5P01GM061354-07 (CCM, RLM, JFG, BJQ), R01EY021505 (SAL), R01EY12995 (MLR), and T35-EY07151 (QTD). All experiments comply with the current laws of the countries (US, Israel and Japan) in which they were performed.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Maas.

Additional information

S. A. Lachke and A. W. Higgins contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental data include five figures and one table and can be found with this article online.

Supplemental Fig. 1. Nek7 hypomorphic mutant mice do not exhibit lens defects. (A) Reverse Transcriptase (RT)-PCR analysis of E12.5 mouse embryonic ocular tissue from wild type (+/+), heterozygous (±), and homozygous (-/-) littermates for the Sanger Nek7 gene trap allele demonstrates that the gene trap generates a hypomorphic Nek7 allele. (B) Quantitative RT-PCR analysis of E12.5 mouse embryonic ocular tissue from wild type (+/+), heterozygous (±), and homozygous (-/-) littermates for the Sanger Nek7 gene trap allele confirms that the gene trap generates a hypomorphic Nek7 allele. (C-E) Staining for β-galactosidase activity in (C) wild type (WT), (D) heterozygous (Nek7 ±), and (E) homozygous (Nek7-/-) for the Sanger Nek7 gene trap allele that contains a knock-in LacZ transgene allele. (F–H) Staining for β-galactosidase activity in mouse Nek7-/- embryos homozygous for the Sanger Nek7 gene trap allele at (F) E10.5, (G) E11.5, and (H) E12.5 demonstrates increased LacZ transgene expression in the eye as development occurs. Lens abnormality or cataract was not detected in Nek7-/- hypomorphic mice at embryonic (above) and adult stages (data not shown), or in Nek7 nullizygotes.

Supplemental Fig. 2. Nek7 null mutant mice do not exhibit lens defects at post-natal data 5 (P5). (A) H&E stained section of P5 wild type eye. (B) H&E stained section of P5 Nek7-/- mutant eye demonstrates the absence of an obvious lens or ocular defect. Abbr.: Co, cornea; Le, lens; Rt, retina.

Supplemental Fig. 3. Nectin 3 is expressed in the developing lens and prospective ciliary epithelia. (A) Immunofluorescence microscopy (IFM) of E14.5 mouse eye demonstrates Nectin 3 expression (red) in the AEL. (A’) High magnification of boxed region in (A). Polarized staining of Nectin 3 in the AEL is indicated by arrow. (B) IFM of E13.5 mouse embryos demonstrates Nectin 3 expression in the presumptive ciliary epithelium. PE, Pigment epithelium. (B’) High magnification of boxed region in (B). Nectin-3 staining indicated by arrow. (C) IFM of E14.5 mouse embryos demonstrates Nectin 3 expression in the presumptive ciliary epithelium. NPE, Non-pigmented epithelium. (C’) High magnification of boxed region in (C). Polarized staining of Nectin 3 in NPE is indicated by arrow. (D) IFM of E18.5 mouse embryos at E18.5 demonstrates expression of Nectin 3 in the presumptive ciliary epithelium. (D’) High magnification of boxed region in (D). Polarized Nectin 3 expression in NPE is indicated by arrow. Other abbr.: AEL, Anterior epithelium of the lens; FC, Fiber cells. Scale bars: (A) 15 μm, (A’) 8 μm, (B) 16 μm, (B’) 6 μm, (C) 10 μm, (C’) 7 μm, (D) 15 μm, (D’) 10 μm.

Supplemental Fig. 4. The ari mutation maps to the Pvrl3 locus and affects Pvrl3 expression in the prospective ciliary epithelia. (A) Genetic intervals between ari and the closest polymorphic markers were determined by examining the phenotype in recombinant backcross animals out of a total of 656 backcross progeny. Mice used to draw the conclusion that ari is located between D16Mit126 and D16Mit61 are summarized in Supplementary Table 1. (B) Physical distance encompassing the ari genetic interval according to mouse genome databases. The physical interval where ari lies is approximately 2.3 Mb. The Pvrl3 gene is approximately 109 kb. The distance between D16Mit126 and the 5’ end of Pvrl3 is 415 kb, and the distance between D16Mit61 and the 3’ end of Pvrl3 is 1.8 Mb. (C) Hematoxylin-stained section demonstrates morphology and (D) section in situ analysis on ocular region of wild type littermate mouse demonstrates normal Pvrl3 expression (arrow) in E15.5 presumptive ciliary epithelia. (C’) Hematoxylin-stained section demonstrates morphology and (D’) section in situ analysis on ocular region of an E15.5 ari mouse mutant demonstrates background levels of Pvrl3 expression (asterisk) in the presumptive ciliary epithelium. The retina region is outlined by dashed line. Abbr.: npe, non pigment epithelium; pe, pigment epithelium; r, retina.

Supplemental Fig. 5. Chromosome 3 breakpoint separates five putative long-distance regulatory elements upstream of PVRL3. (A) Schematic representation of human chromosome 3 with red box showing region highlighted in (B). (B) Chromatin Immunoprecipitation followed by DNA sequencing (ChIP-seq) analysis in eight human cell lines identifies several loci (green boxes) that display Histone 3 lysine 4 mono-methylation (H3K4Me1) and histone 3 lysine 4 acetylation (H3K27Ac) of the chromosome 3 genomic region upstream of PVRL3 and the chromosomal 3 breakpoint (dashed red line) which is separated from the PVRL3 transcription unit by patient DGAP113’s translocation. However, no significant signal for tri-methylated Histone 3 lysine 4 (H3KMe3) in this genomic region is observed, also compatible with the presence of long-range regulatory elements. In constrast, significant tri-methylated Histone 3 lysine 4 (H3KMe3) signals (blue boxes) are observed only near the PVRL3 and DPPA4 transcription start sites, indicative of promoter-driven regulatory elements.

Supplemental Table 1 Summary of the genetic backcross analysis performed to map the ari mutation. Abbr.: C: Cataract; H: Heterozygous for the microsatellite polymorphism (FVB/N and C57BL/6); N: Normal eye; F: Homozygous for the FVB/N polymorphism. Microsatellite polymorphisms are arranged left to right in a centromeric to telomeric orientation on mouse chromosome 16. Note: Mice used to draw the conclusion that ari is located between D16Mit126 and D16Mit61 are summarized in red letters. Mouse (“Animal”) 598 demonstrates that the mutation must be telomeric to D16Mit126. Mouse 694 demonstrates that the mutation must be telomeric to D16Mit59. Mouse 143 demonstrates that the mutation must be telomeric to D16Mit84. Mouse 272 demonstrates that the mutation must be centromeric to D16Mit61. Mouse 611 demonstrates that the mutation must be telomeric to D16Mit84. Mouse 695 demonstrates that the mutation must be telomeric to D16Mit126.

Supplementary material 1 (PPT 8326 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lachke, S.A., Higgins, A.W., Inagaki, M. et al. The cell adhesion gene PVRL3 is associated with congenital ocular defects. Hum Genet 131, 235–250 (2012). https://doi.org/10.1007/s00439-011-1064-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-011-1064-z

Keywords

Navigation