Skip to main content
Log in

Consistency of genome-wide associations across major ancestral groups

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

It is not well known whether genetic markers identified through genome-wide association studies (GWAS) confer similar or different risks across people of different ancestry. We screened a regularly updated catalog of all published GWAS curated at the NHGRI website for GWAS-identified associations that had reached genome-wide significance (p ≤ 5 × 10−8) in at least one major ancestry group (European, Asian, African) and for which replication data were available for comparison in at least two different major ancestry groups. These groups were compared for the correlation between and differences in risk allele frequencies and genetic effects’ estimates. Data on 108 eligible GWAS-identified associations with a total of 900 datasets (European, n = 624; Asian, n = 217; African, n = 60) were analyzed. Risk-allele frequencies were modestly correlated between ancestry groups, with >10% absolute differences in 75–89% of the three pairwise comparisons of ancestry groups. Genetic effect (odds ratio) point estimates between ancestry groups correlated modestly (pairwise comparisons’ correlation coefficients: 0.20–0.33) and point estimates of risks were opposite in direction or differed more than twofold in 57%, 79%, and 89% of the European versus Asian, European versus African, and Asian versus African comparisons, respectively. The modest correlations, differing risk estimates, and considerable between-association heterogeneity suggest that differential ancestral effects can be anticipated and genomic risk markers may need separate further evaluation in different ancestry groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CEU:

Utah residents with Northern and Western European ancestry from the CEPH collection

CHB:

Han Chinese in Beijing

CI:

Confidence interval

GWAS:

Genome-wide association study

GWS:

Genome-wide significance

IQR:

Inter-quartile range

JPT:

Japanese in Tokyo

LD:

Linkage disequilibrium

NCBI:

National Centre for Biotechnology Information

NHGRI:

National Human Genome Research Institute

OR:

Odds ratio

PMID:

PubMed identification number

ROR:

Relative odds ratio

SMD:

Standardized mean difference

SNP:

Single nucleotide polymorphism

YRI:

Yoruba in Ibadan

References

  • Adeyemo A, Rotimi C (2010) Genetic variants associated with complex human diseases show wide variation across multiple populations. Public Health Genomics 13:72–79

    Article  PubMed  CAS  Google Scholar 

  • Ashley EA, Butte AJ, Wheeler MT, Chen R, Klein TE, Dewey FE, Dudley JT, Ormond KE, Pavlovic A, Morgan AA et al (2010) Clinical assessment incorporating a personal genome. Lancet 375:1525–1535

    Article  PubMed  CAS  Google Scholar 

  • Bodmer W, Bonilla C (2008) Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet 40:695–701

    Article  PubMed  CAS  Google Scholar 

  • Bryc K, Auton A, Nelson MR, Oksenberg JR, Hauser SL, Williams S, Froment A, Bodo JM, Wambebe C, Tishkoff SA et al (2010) Genome-wide patterns of population structure and admixture in West Africans and African Americans. Proc Natl Acad Sci USA 107:786–791

    Article  PubMed  CAS  Google Scholar 

  • Burchard EG, Ziv E, Coyle N, Gomez SL, Tang H, Karter AJ, Mountain JL, Pérez-Stable EJ, Sheppard D, Risch N (2003) The importance of race and ethnic background in biomedical research and clinical practice. N Engl J Med 348:1170–1175

    Article  PubMed  Google Scholar 

  • Campbell CD, Ogburn EL, Lunetta KL, Lyon HN, Freedman ML, Groop LC, Altshuler D, Ardlie KG, Hirschhorn JN (2005) Demonstrating stratification in a European American population. Nat Genet 37:868–872

    Article  PubMed  CAS  Google Scholar 

  • Cappelleri JC, Ioannidis JP, Schmid CH, de Ferranti SD, Aubert M, Chalmers TC, Lau J (1996) Large trials vs meta-analysis of smaller trials: how do their results compare? JAMA 276:1332–1338

    Article  PubMed  CAS  Google Scholar 

  • Chinn S (2000) A simple method for converting an odds ratio to effect size for use in meta-analysis. Stat Med 19:3127–3131

    Article  PubMed  CAS  Google Scholar 

  • Cooper H, Hedges LV (eds) (1994) The handbook of research synthesis (Russell Sage 58. Foundation, New York)

  • DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Tr 7:177–188

    Article  CAS  Google Scholar 

  • Dhandapany PS, Sadayappan S, Xue Y, Powell GT, Rani DS, Nallari P, Rai TS, Khullar M, Soares P, Bahl A et al (2009) A common MYBPC3 (cardiac myosin binding protein C) variant associated with cardiomyopathies in South Asia. Nat Genet 41:187–191

    Article  PubMed  CAS  Google Scholar 

  • 1000 Genomes (2011) A deep catalog of human genetic variation. http://www.1000genomes.org/

  • Grant SF, Li M, Bradfield JP, Kim CE, Annaiah K, Santa E, Glessner JT, Casalunovo T, Frackelton EC, Otieno FG et al (2008) Association analysis of the FTO gene with obesity in children of Caucasian and African ancestry reveals a common tagging SNP. PLoS One 3:e1746

    Article  PubMed  Google Scholar 

  • Gulcher J, Stefansson K (2010) Genetic risk information for common diseases may indeed be already useful for prevention and early detection. Eur J Clin Invest 40:56–63

    Article  PubMed  CAS  Google Scholar 

  • Helgason A, Pálsson S, Thorleifsson G, Grant SF, Emilsson V, Gunnarsdottir S, Adeyemo A, Chen Y, Chen G, Reynisdottir I et al (2007) Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat Genet 39:218–225

    Article  PubMed  CAS  Google Scholar 

  • Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560

    Article  PubMed  Google Scholar 

  • Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 106:9362–9367

    Article  PubMed  CAS  Google Scholar 

  • Hindorff LA, Junkins HA, Hall PN, Mehta JP, Manolio TA (2011) A catalog of published genome-wide association studies. (Available at: http://www.genome.gov/gwastudies)

  • Ioannidis JP (2007) Non-replication and inconsistency in the genome-wide association setting. Hum Hered 64:203–213

    Article  PubMed  CAS  Google Scholar 

  • Ioannidis JP (2009a) Population-wide generalizability of genome-wide discovered associations. J Natl Cancer Inst 101:1297–1299

    Article  PubMed  Google Scholar 

  • Ioannidis JP (2009b) Personalized genetic prediction: too limited, too expensive, or too soon? Ann. Intern Med 150:139–141

    Google Scholar 

  • Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG (2001) Replication validity of genetic association studies. Nat Genet 29:306–309

    Article  PubMed  CAS  Google Scholar 

  • Ioannidis JP, Ntzani EE, Trikalinos TA (2004) ‘Racial’ differences in genetic effects for complex diseases. Nat Genet 36:1312–1318

    Article  PubMed  CAS  Google Scholar 

  • Ioannidis JP, Patsopoulos NA, Evangelou E (2007) Uncertainty in heterogeneity estimates in meta-analyses. BMJ 335:914–916

    Article  PubMed  Google Scholar 

  • Ioannidis JP, Thomas G, Daly MJ (2009) Validating, augmenting and refining genome-wide association signals. Nat Rev Genet 10:318–329

    Article  PubMed  CAS  Google Scholar 

  • Janssens AC, van Duijn CM (2008) Genome-based prediction of common diseases: advances and prospects. Hum Mol Genet 17:R166–R173

    Article  PubMed  CAS  Google Scholar 

  • Li H, Wu Y, Loos RJ, Hu FB, Liu Y, Wang J, Yu Z, Lin X (2008) Variants in the fat mass- and obesity-associated (FTO) gene are not associated with obesity in a Chinese Han population. Diabetes 57:264–268

    Article  PubMed  CAS  Google Scholar 

  • Manica A, Prugnolle F, Balloux F (2005) Geography is a better determinant of human genetic differentiation than ethnicity. Hum Genet 118:366–371

    Article  PubMed  Google Scholar 

  • Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22:719–748

    PubMed  CAS  Google Scholar 

  • McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, Hirschhorn JN (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9:356–369

    Article  PubMed  CAS  Google Scholar 

  • Moonesinghe R, Khoury MJ, Liu T, Ioannidis JP (2008) Required sample size and nonreplicability thresholds for heterogeneous genetic associations. Proc Natl Acad Sci USA 105:617–622

    Article  PubMed  CAS  Google Scholar 

  • Myers S, Bottolo L, Freeman C, McVean G, Donnelly P (2005) A fine-scale map of recombination rates and hotspots across the human genome. Science 310:321–324

    Article  PubMed  CAS  Google Scholar 

  • NCI-NHGRI Working Group on Replication in Association Studies, Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, Thomas G, Hirschhorn JN, Abecasis G, Altshuler D et al (2007) Replicating genotype-phenotype associations. Nature 447:655–660

    Article  PubMed  CAS  Google Scholar 

  • Need AC, Goldstein DB (2006) Genome-wide tagging for everyone. Nat Genet 38:1227–1228

    Article  PubMed  CAS  Google Scholar 

  • Ng MC, Park KS, Oh B, Tam CH, Cho YM, Shin HD, Lam VK, Ma RC, So WY, Cho YS et al (2008) Implication of genetic variants near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in type 2 diabetes and obesity in 6, 719 Asians. Diabetes 57:2226–2233

    Article  PubMed  CAS  Google Scholar 

  • Pereira TV, Patsopoulos NA, Salanti G, Ioannidis JP (2009) Discovery properties of genome-wide association signals from cumulatively combined data sets. Am J Epidemiol 170:1197–1206

    Article  PubMed  Google Scholar 

  • Ransohoff DF, Khoury MJ (2010) Personal genomics: information can be harmful. Eur J Clin Invest 40:64–68

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg NA, Huang L, Jewett EM, Szpiech ZA, Jankovic I, Boehnke M (2010) Genome-wide association studies in diverse populations. Nat Rev Genet 11:356–366

    Article  PubMed  CAS  Google Scholar 

  • Royal CD, Novembre J, Fullerton SM, Goldstein DB, Long JC, Bamshad MJ, Clark AG (2010) Inferring genetic ancestry: opportunities, challenges, and implications. Am J Hum Genet 86:661–673

    Article  PubMed  CAS  Google Scholar 

  • Spielman RS, Bastone LA, Burdick JT, Morley M, Ewens WJ, Cheung VG (2007) Common genetic variants account for differences in gene expression among ethnic groups. Nat Genet 39:226–231

    Article  PubMed  CAS  Google Scholar 

  • Tang H (2006) Confronting ethnicity-specific disease risk. Nat Genet 38:13–15

    Article  PubMed  CAS  Google Scholar 

  • Tang H, Quertermous T, Rodriguez B, Kardia SL, Zhu X, Brown A, Pankow JS, Province MA, Hunt SC, Boerwinkle E et al (2005) Genetic structure, self-identified race/ethnicity, and confounding in case-control association studies. Am J Hum Genet 76:268–275

    Article  PubMed  CAS  Google Scholar 

  • The International HapMap Project (2003) Nature 426:789–796

    Google Scholar 

  • Tian C, Gregersen PK, Seldin MF (2008) Accounting for ancestry: population substructure and genome-wide association studies. Hum Mol Genet 17:R143–R150

    Article  PubMed  CAS  Google Scholar 

  • Tishkoff SA, Reed FA, Friedlaender FR, Ehret C, Ranciaro A, Froment A, Hirbo JB, Awomoyi AA, Bodo JM, Doumbo O et al (2009) The genetic structure and history of Africans and African Americans. Science 324:1035–1044

    Article  PubMed  CAS  Google Scholar 

  • Voight BF, Kudaravalli S, Wen X, Pritchard JK (2006) A map of recent positive selection in the human genome. PLoS Biol 4:e72

    Article  PubMed  Google Scholar 

  • Waters KM, Stram DO, Hassanein MT, Le Marchand L, Wilkens LR, Maskarinec G, Monroe KR, Kolonel LN, Altshuler D, Henderson BE et al (2010) Consistent association of type 2 diabetes risk variants found in Europeans in diverse racial and ethnic groups. PLoS Genet 6:e1001078

    Article  PubMed  Google Scholar 

  • Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678

    Article  Google Scholar 

  • Yamada H, Penney KL, Takahashi H, Katoh T, Yamano Y, Yamakado M, Kimura T, Kuruma H, Kamata Y, Egawa S et al (2009) Replication of prostate cancer risk loci in a Japanese case-control association study. J Natl Cancer Inst 101:1330–1336

    Article  PubMed  CAS  Google Scholar 

  • Yang JJ, Burchard EG, Choudhry S, Johnson CC, Ownby DR, Favro D, Chen J, Akana M, Ha C, Kwok PY et al (2008) Differences in allergic sensitization by self-reported race and genetic ancestry. J Allergy Clin Immunol 122:820–827

    Article  PubMed  Google Scholar 

  • Yang Q, Flanders WD, Moonesinghe R, Ioannidis JP, Guessous I, Khoury MJ (2009) Using lifetime risk estimates in personal genomic profiles: estimation of uncertainty. Am J Hum Genet 85:786–800

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Duan S, Kistner EO, Bleibel WK, Huang RS, Clark TA, Chen TX, Schweitzer AC, Blume JE, Cox NJ et al (2008) Evaluation of genetic variation contributing to differences in gene expression between populations. Am J Hum Genet 82:631–640

    Article  PubMed  CAS  Google Scholar 

  • Zollner S, Pritchard JK (2007) Overcoming the winner’s curse: estimating penetrance parameters from case–control data. Am J Hum Genet 80:605–615

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest related to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. A. Ioannidis.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ntzani, E.E., Liberopoulos, G., Manolio, T.A. et al. Consistency of genome-wide associations across major ancestral groups. Hum Genet 131, 1057–1071 (2012). https://doi.org/10.1007/s00439-011-1124-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-011-1124-4

Keywords

Navigation