Skip to main content

Advertisement

Log in

The blood-brain barrier of the chick glycogen body (corpus gelatinosum) and its functional implications

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Among recent vertebrates only birds possess a glycogen body (corpus gelatinosum), located in the rhomboidal sinus of the lumbosacral region of the spinal cord and separated from the neural tissue proper. Because of the specific topographical situation of this circumventricular organ, the structure of its vascular system is of special interest with respect to the still unsolved functional problems. The existence of a blood-brain barrier is demonstrated by the exclusion of intravascularly injected tracer (horseradish peroxidase), and immunocytochemical demonstration of glucose transporter-1 as a functional marker and of neurothelin, occludin and ZO-1 as structural markers. Alkaline phosphatase and γ-glutamyltransferase activities, two enzyme reactions frequently used for demonstration of an established blood-brain barrier in vitro, were localized histochemically on the plasmalemma of glycogen body cells and were absent from the endothelium. In addition, local enlargements of the intercellular space were observed by transmission and scanning electron microscopy. In accordance with the concept of a third circulation the cerebrospinal fluid may be the vehicle for distributing substances originating in the glycogen body to the CNS, while the vascular endothelium maintains the internal milieu by virtue of its dynamic barrier functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2a–c.
Fig. 3a–c.
Fig. 4.
Fig. 5a–d.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  • Albert Z, Orlowski M, Rzucidlo Z, Orlowski J (1966) Studies on γ-glutamyl transpeptidase activity and its histochemical localization in the central nervous system of man and different animal species. Acta Histochem 25:312–320

    CAS  PubMed  Google Scholar 

  • Benzo CA, DeGennaro LD, Stearns SB (1975) Glycogen metabolism in the developing chick glycogen body: functional significance of the direct oxidative pathway. J Exp Zool 193:161–166

    CAS  PubMed  Google Scholar 

  • Birnbaum MJ, Haspel HC, Rosen OM (1986) Cloning and characterization of a cDNA encoding the rat brain glucose-transporter protein. Proc Natl Acad Sci U S A 83:5784–5788

    CAS  PubMed  Google Scholar 

  • Bolz S, Farrell CL, Dietz K, Wolburg H (1996) Subcellular distribution of glucose transporter (GLUT-1) during development of the blood-brain-barrier in rats. Cell Tissue Res 284:355–365

    Article  CAS  PubMed  Google Scholar 

  • Buschiazzio HO, Bosch R, Mordujovich de Buschazzio P, Rodriquez RR (1964) The effect of hormones on the glycogen body of birds. Proc Sec Intern Congr Endocrinol London 1964, part 1. Excerpta Medica Foundation, Amsterdam, pp 162–166

  • Chomczinski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    CAS  PubMed  Google Scholar 

  • De Bault LE, Cancilla PA (1980) γ-Glutamyltranspeptidase in isolated brain endothelial cells: induction by glial cells in vitro. Science 207:653–655

    CAS  PubMed  Google Scholar 

  • DeGennaro LD (1962) The incorporation and storage of glucose C-14 by the chick glycogen body. Am Zool 2:515

    Google Scholar 

  • DeGennaro LD (1982) The glycogen body. In: Farner DS, King JR, Parkes KC (eds) Avian biology VI, Academic Press, pp 341–371

  • DeGennaro LD, Benzo CA (1978) Ultrastructural characterization of the accessory lobes of Lachi (Hofmann's nuclei) in the nerve cord of the chick. II. Scanning and transmission electron microscopy with observations on the glycogen body. J Exp Zool 206:229–240

    CAS  PubMed  Google Scholar 

  • DeGennaro LD, Benzo CA (1987) Development of the glycogen body of the Japanese quail, Coturnix japonica. I. Light microscopy of early development. J Morphol 194:209–217

    CAS  PubMed  Google Scholar 

  • Dezza MA, Rodriguez RR, Buschiazzo HO (1970) Pyruvic and lactic acid levels in glycogen body incubations. Life Sci 9:387–395

    Article  CAS  PubMed  Google Scholar 

  • Farrell CL, Pardridge WM (1991) Blood brain barrier glucose transporter is asymmetrically distributed on brain capillary endothelial luminal and abluminal plasma membranes: an electron microscopic immunogold study. Proc Natl Acad Sci U S A 88:5779–5783

    CAS  PubMed  Google Scholar 

  • Farrell CL, Yang J, Pardridge WM (1992) GLUT1 glucose transporter is present within apical and basolateral membranes of brain epithelial interfaces and in microvasculature endothelial barriers with and without tight junctions. J Histochem Cytochem 40:193–199

    CAS  PubMed  Google Scholar 

  • Fink AS, Hefferan PH, Howell RR (1975) Enzymatic and biochemical characterization of the avian glycogen body. Comp Biochem Physiol 50B:525–530

    Google Scholar 

  • Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita Sh (1993) Occludin: a novel integral membrane protein localizing at tight junctions. Cell Biol 123:1777–1788

    CAS  PubMed  Google Scholar 

  • Giaume C, Tabernero A, Medina JM (1997) Metabolic trafficking through astrocytic gap junctions. Glia 21:114–123

    CAS  PubMed  Google Scholar 

  • Glenner GG, Folck JE, McMillan PJ (1962) Histochemical demonstration of γ-glutamyl transferase-like activity. J Histochem Cytochem 10:481–489

    CAS  Google Scholar 

  • Hartwig HG (1993) The central nervous system of birds: a study of functional morphology. In: Farner DS, King JR, Parkes KC (eds) Avian biology IX, Academic Press, pp 1–119

  • Hazelwood RL, Barksdale BK (1970) Failure of chicken insulin to alter polysaccharide levels of the avian glycogen body. Comp Biochem Physiol 36:823–827

    Article  CAS  Google Scholar 

  • Hazelwood RL, Lorenz FW (1959) Effects of fasting and insulin on carbohydrate metabolism of the domestic fowl. Am J Physiol 197:47–51

    CAS  Google Scholar 

  • Hazelwood RL, Hazelwood BS, McNary WF (1962) Possible hypophysial control over glycogenesis in the avian glycogen body. Endocrinology 71:334–336

    CAS  Google Scholar 

  • Hazelwood RL, Hazelwood BS, Olsson CA (1963) Comparative glycogenesis in the liver and glycogen body of the chick. Proc Exp Biol Med 113:407–411

    CAS  Google Scholar 

  • Hirase T, Staddon JM, Saitou M, Ando-Akatsuka Y, Itoh M, Furuse M, Fujimoto K, Tsukita S, Rubin LL (1997) Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci 110:1603–1613

    CAS  PubMed  Google Scholar 

  • Houska J, Marvan F, Sova Z, Machalek E (1969) Der Einfluss des Hungerns auf den Glykogengehalt des Glykogenkörpers und der Leber von Küken. Zbl Vet Med Reihe A 16:549–556

    CAS  Google Scholar 

  • Jankaskova B, Stastny F, Lisy V, Pearce B, Murphy S (1987) Effect of inhibitors of gamma glutamyl transpeptidase on the uptake of glutamate and aspartate into cultured astroglial cells from the glycogen body. Int J Dev Neurosci 3:19–22

    Google Scholar 

  • Kasanicki MA, Jessen KR, Baldwin SA, Boyle JM, Davies A, Gardiner RM (1989) Immunocytochemical localization of the glucose-transport protein in mammalian brain capillaries. Histochem J 21:47–51

    CAS  PubMed  Google Scholar 

  • Kinne RK (1997) Endothelial and epithelial cells: general principles and selective vectorial transport. Int J Microcirc Clin Exp 17:223–230

    CAS  PubMed  Google Scholar 

  • Kopp SM, Miller AM (1991) Histochemical quantitation of γ-glutamyl transferase in human leukemia cell lines. J Histochem Cytochem 39:165–169

    PubMed  Google Scholar 

  • Lawrenson JG, Reid AR, Finn TM, Orte C, Allt G (1999) Cerebral and pial microvessels: differential expression of gamma-glutamyl transpeptidase and alkaline phosphatase. Anat Embryol (Berl) 199:29–34

    Google Scholar 

  • Lee K, Makino S, Imagawa T, Kim M, Uehara M (2001) Effects of adrenergic agonists on glycogenolysis in primary cultures of glycogen body cells and telencephalon astrocytes of the chick. Poultry Sci 80:1736–1742

    CAS  Google Scholar 

  • Lob G (1967) Untersuchungen am Huhn über die Blutgefäße von Rückenmark und Corpus gelatinosum (studies on the chicken on the blood vessels of the spinal cord and of the corpus gelatinosum). Gegenbaurs Morph Jahrb 110:316–358

    CAS  Google Scholar 

  • Lojda Z, Gossrau R, Schiebler TH (1979) Enzyme histochemistry. Springer, Berlin, Heidelberg, New York

  • Maser M, Trimble JJ III (1977) Rapid chemical dehydration of biologic samples for scanning electron microscopy using 2, 2-dimethoxypropane. J Histochem Cytochem 25:247–251

    CAS  PubMed  Google Scholar 

  • Meyer J, Mischeck U, Veyhl M, Henzel K, Galla HJ (1990) Blood-brain barrier characteristic enzymatic properties in cultured brain capillary endothelial cells. Brain Res 514:305–309

    Article  CAS  PubMed  Google Scholar 

  • Milhorat TH (1975) Formation and flow of the cerebrospinal fluid. In: Knigge KM, Scott DE, Kobayashi H, Ishii S (eds) Brain-endocrine interactions II. The ventricular system in neuroendocrine mechanisms. Karger, Basel, pp 270–281

  • Möller W (1978) Circumventricular organs in cell culture. Adv Anat Embryol Cell Biol 54.1:5–95

    Google Scholar 

  • Möller W (1989) Immuncytochemische Zelltypisierung des Glykogenkörpers der Vögel. Anat Anz Suppl 164:979–980

    Google Scholar 

  • Möller W, Möller G (1994) Chemical dehydration for rapid paraffin embedding. Biotech Histochem 69:289–290

    PubMed  Google Scholar 

  • Mooradian AD, Chung HC, Shah GN (1997) GLUT-1 expression in the cerebra of patients with Alzheimer's disease. Neurobiol Aging 18:469–474

    Article  CAS  PubMed  Google Scholar 

  • Muller JJ, Jacks TJ (1975) Rapid chemical dehydration of samples for electron microscopic examinations. J Histochem Cytochem 23:107–110

    CAS  PubMed  Google Scholar 

  • Murray GI, Burke MD, Ewen SWB (1987) γ-Glutamyl transpeptidase demonstrated in tissue sections embedded in glycol methacrylate resin. Histochem J 19:476–482

    CAS  PubMed  Google Scholar 

  • Nico B, Cardelli P, Fiori A, Riccetelli L, Giglio RM, Strom R, Sassoe-Pognetto M, Cantino D, Bertossi M, Ribatti D, Roncali L (1997) Developmental study of ultrastructural and biochemical changes in isolated chick brain microvessels. Microvasc Res 53:79–91

    Article  CAS  PubMed  Google Scholar 

  • Orlowski M, Sessa G, Green JP (1974) Gamma-glutamyl transpeptidase in brain capillaries: possible site of a blood-brain barrier for amino acids. Science 184:66–68

    CAS  PubMed  Google Scholar 

  • Pardridge WM, Boado RJ, Farrell CR (1990) Brain-type glucose transporter (GLUT-1) is selectively localized to the blood-brain barrier. J Biol Chem 265:18035–18040

    CAS  PubMed  Google Scholar 

  • Paul E (1972) Experimentell-morphologische Studien am Glykogenkörper des Lumbalmarks und an anderen glykogenreichen zirkumventrikulären Strukturen. Anat Anz (Suppl) 130:357–361

    Google Scholar 

  • Paul E (1973) Histologische und quantitative Studien am lumbalen Glykogenkörper der Vögel. Z Zellforsch 145:89–101

    CAS  Google Scholar 

  • Pessacq TP (1969) Quelques aspects de la vascularisation du corps glycogénique de la moelle épinière des oiseaux. Acta Anat 72:33–37

    CAS  Google Scholar 

  • Risau W, Hallmann R, Albrecht U (1986) Differentiation-dependent expression of proteins in brain endothelium during development of the blood-brain barrier. Dev Biol 117:537–545

    CAS  PubMed  Google Scholar 

  • Rosenberg J, Necker R (2002) Ultrastructural characterization of the accessory lobes of Lachi in the lumbosacral spinal cord of the pigeon with special reference to intrinsic mechanoreceptors. J Comp Neurol 447:274–285

    Article  PubMed  Google Scholar 

  • Rutenburg AM, Kim H, Fischbein JW, Hanker JS, Wasserkrug HL, Seligman AM (1969) Histochemical and ultrastructural demonstration of γ-glutamyl transpeptidase activity. J Histochem Cytochem 17:517–526

    CAS  PubMed  Google Scholar 

  • Schlosshauer B, Herzog KH (1990) Neurothelin: an inducible cell surface glycoprotein of blood brain barrier-specific endothelial cells and distinct neurons. J Cell Biol 110:1261–1274

    PubMed  Google Scholar 

  • Smith HM, Geiger SR (1961) Another hypothesis of the function of the glycogen body of birds. J Elisha Mitchell Sci Soc 77:289–293

    CAS  Google Scholar 

  • Snedecor JG, Henrikson RC (1959) Effects of hormones on the glycogen content of the chick glycogen body. Anat Rec 134:641

    Google Scholar 

  • Snedecor JG, Ghareeb GE, King DB (1961) In vitro studies of the chick glycogen body. Am Zool 1:470

    Google Scholar 

  • Snedecor JG, King DB, Henrikson RC (1963) Studies on the chick glycogen body: effects of hormones on normal glycogen turnover. Gen Comp Endcrinol 3:176–183

    CAS  Google Scholar 

  • Stastny F, Lisy V, Sedlacek J, Hajkova B (1988) The effect of cortisol on gamma-glutamyl transpeptidase activity in the glycogen body and lumbosacral segments of developing chick spinal cord. Physiologia Bohemoslovaca 37:131–134

    PubMed  Google Scholar 

  • Stewart PA, Wiley MJ (1981) Structural and histochemical features of the avian blood-brain barrier. J Comp Neurol 202:157–167

    CAS  PubMed  Google Scholar 

  • Szepsenwol J (1953) Effect of various diets on the glycogen body of the chick. Fed Proc 12:141

    Google Scholar 

  • Szepsenwol J, Michalski JV (1951) Glycogenolysis in the liver and glycogen body of the chicken after death. Am J Anat 165:624–627

    CAS  Google Scholar 

  • Wagstaff P, Kang HY, Mylott D, Robins PJ, White MK (1995) Characterisation of the avian GLUT1 glucose transporter: differential regulation of GLUT1 and GLUT3 in chicken embryo fibroblasts. Mol Biol Cell 6:1575–1589

    CAS  PubMed  Google Scholar 

  • Wakai S, Hirokawa N (1978) Development of the blood-brain barrier to horseradish peroxidase in the chick embryo. Cell Tissue Res 195:195–203

    PubMed  Google Scholar 

  • Welsch U, Wächtler K (1969) Zum Feinbau des Glykogenkörpers der Taube. Z Zellforsch 97:160–168

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. B. Schlosshauer, Tübingen, Germany, for kindly supplying the monoclonal neurothelin antibody, and Dr. M. Furuse, Kyoto, Japan, for supplying the monoclonal antibodies OC1 and OC2. The skillful technical assistance of G. Möller, E. Richter, S. Wiegand, K. Michael, G. Magdowski and G. Kripp is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm Möller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Möller, W., Kummer, W. The blood-brain barrier of the chick glycogen body (corpus gelatinosum) and its functional implications. Cell Tissue Res 313, 71–80 (2003). https://doi.org/10.1007/s00441-003-0742-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-003-0742-0

Keywords

Navigation