Skip to main content
Log in

Identification of a complex peptidergic neuroendocrine network in the hard tick, Rhipicephalus appendiculatus

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Neuropeptides are crucial regulators of development and various physiological functions but little is known about their identity, expression and function in vectors of pathogens causing serious diseases, such as ticks. Therefore, we have used antibodies against multiple insect and crustacean neuropeptides to reveal the presence of these bioactive molecules in peptidergic neurons and cells of the ixodid tick Rhipicephalus appendiculatus. These antibodies have detected 15 different immunoreactive compounds expressed in specific central and peripheral neurons associated with the synganglion. Most central neurons arborize in distinct areas of the neuropile or the putative neurohaemal periganglionic sheath of the synganglion. Several large identified neurons in the synganglion project multiple processes through peripheral nerves to form elaborate axonal arborizations on the surface of salivary glands or to terminate in the lateral segmental organs (LSO). Additional neuropeptide immunoreactivity has been observed in intrinsic secretory cells of the LSO. We have also identified two novel clusters of peripheral neurons embedded in the cheliceral and paraspiracular nerves. These neurons project branching axons into the synganglion and into the periphery. Our study has thus revealed a complex network of central and peripheral peptidergic neurons, putative neurohaemal and neuromodulatory structures and endocrine cells in the tick comparable with those found in insect and crustacean neuroendocrine systems. Strong specific staining with a large variety of antibodies also indicates that the tick nervous system and adjacent secretory organs are rich sources of diverse neuropeptides related to those identified in insects, crustaceans or even vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ali DW (1997) The aminergic and peptidergic innervation of insect salivary glands. J Exp Biol 200:1941–1949

    PubMed  CAS  Google Scholar 

  • Anastasi A, Erspamer V (1963) The isolation and amino acid sequence of eleidosin, the active endecapeptide of the posterior salivary glands of Eledone. Arch Biochem Biophys 101:56–65

    Article  PubMed  CAS  Google Scholar 

  • Balashov YS (1998) Iksodovyje kleshchi - parazity i perenoschiki infektsij (in English: Ixodid ticks – parasites and vectors of diseases). Nauka, Sankt-Peterburg

    Google Scholar 

  • Bendena WG, Donly BC, Tobe SS (1999) Allatostatins: a growing family of neuropeptides with structural and functional diversity. Ann NY Acad Sci 897:311–329

    Article  PubMed  CAS  Google Scholar 

  • Binnington KC (1978) Sequential changes in salivary gland structure during attachment and feeding of the catle tick, Boophilus microplus. Int J Parasitol 8:97–115

    Article  PubMed  CAS  Google Scholar 

  • Binnington KC (1981) Ultrastructural evidence for the endocrine nature of the lateral organs of the cattle tick, Boophilus microplus. Tissue Cell 13:475–490

    Article  PubMed  CAS  Google Scholar 

  • Binnington KC (1987) Histology and ultrastructure of the acarine synganglion. In: Gupta AP (ed) Arthropod brain. Its evolution, development, structure, and functions. Wiley, New York, pp 95–109

    Google Scholar 

  • Binnington KC, Tatchell RJ (1973) The nervous system and neurosecretory cells of Boophilus microplus (Acarina, Ixodidae). Z Wiss Zool 185:193–206

    Google Scholar 

  • Champagne DE, Ribeiro J (1994) Sialokinin I and II. Vasodilatory tachykinins from the yellow fever mosquito Aedes aegypti. Proc Natl Acad Sci USA 91:138–142

    Article  PubMed  CAS  Google Scholar 

  • Chang ES, Kaufman WR (2005) Endocrinology of Crustacea and Chelicerata. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science, vol 3. Elsevier Pergamon, Amsterdam-Tokyo, pp 805–842

    Google Scholar 

  • Chow YS, Wang CH (1974) Neurosecretory cells and their ultrastructures of Rhipicephalus sanguineus (Latreille) (Acarina, Ixodidae). Acta Arachnol 25:53–67

    Article  Google Scholar 

  • Chow YS, Lin SH, Wang CH (1972) An ultrastructural and electrophysiological study of the brain of the brown dog tick Rhipicephalus sanguineus (Latreille). Chin Biosci I:83–92

    Google Scholar 

  • Colombani J, Bianchini L, Layalle S, Pondeville E, Dauphin-Villemant C, Antoniewski C, Carre C, Noselli S, Leopold P (2005) Antagonistic actions of ecdysone and insulins determine final size in Drosophila. Science 310:667–670

    Article  PubMed  CAS  Google Scholar 

  • Coons LB, Alberti G (1999) The Acari-ticks. In: Harrison FW, Foelix R (eds) Microscopic anatomy of invertebrates, vol 8B. Chelicerate Arthropoda. Wiley-Liss, New York, pp 267–514

    Google Scholar 

  • Coons LB, Roshdy MA (1973) Fine structure of the salivary glands of unfed male Dermacentor variabilis (Say) (Ixodoidea: Ixodidae). J Parasitol 59:900–912

    Article  PubMed  CAS  Google Scholar 

  • Coons LB, Roshdy MA, Axtell RC (1974) Fine structure of the central nervous system of Dermacentor variabilis (Say), Amblyomma americanum (L.), and Argas arboreus Kaiser, Hoogstraal, and Kohls (Ixodoidea). J Parasitol 60:687–698

    Article  PubMed  CAS  Google Scholar 

  • Coons LB, Lessman CA, Ward MA, Berg RH, Lamoreaux WJ (1994) Evidence of a myoepithelial cell in tick salivary glands. Int J Parasitol 24:551–562

    Article  PubMed  CAS  Google Scholar 

  • Dai L, Žitňan D, Adams ME (2007) Strategic expression of ion transport peptide gene products in central and peripheral neurons of insects. J Comp Neurol 500:353–367

    Article  PubMed  CAS  Google Scholar 

  • Davis HH, Dotson EM, Oliver JH Jr (1994) Localization of insulin-like immunoreactivity in the synganglion of nymphal and adult Dermacentor variabilis (Acari: Ixodidae). Exp Appl Acarol 18:111–122

    Article  PubMed  CAS  Google Scholar 

  • Davis NT, Homberg U, Dircksen H, Levine RB, Hildebrand JG (1993) Crustacean cardioactive peptide-immunoreactive neurons in the hawkmoth Manduca sexta and changes in their immunoreactivity during postembryonic development. J Comp Neurol 338:612–627

    Article  PubMed  CAS  Google Scholar 

  • Davis NT, Veenstra JA, Feyereisen R, Hildebrand JG (1997) Allatostatin-like-immunoreactive neurons of the tobacco hornworm, Manduca sexta, and isolation and identification of a new neuropeptide related to cockroach allatostatins. J Comp Neurol 385:265–284

    Article  PubMed  CAS  Google Scholar 

  • Dircksen H, Heyn U (1998) Crustacean hyperglycemic hormone-like peptides in crab and locust peripheral intrinsic neurosecretory cells. Ann NY Acad Sci 839:392–394

    Article  CAS  Google Scholar 

  • Dircksen H, Böcking D, Heyn U, Mandel C, Chung JS, Baggerman G, Verhaert P, Daufeldt S, Plösch T, Jaros PP, Waelkens E, Keller R, Webster SG (2001) Crustacean hyperglycemic hormone (CHH)-like peptides and CHH-precursor related peptides from pericardial organ neurosecretory cells in the shore crab, Carcinus maenas, are putatively spliced and modified products of multiple genes. Biochem J 356:159–170

    Article  PubMed  CAS  Google Scholar 

  • Duve H, Johnsen AH, Sewell JC, Scott AG, Orchard I, Rehfeld JF, Thorpe A (1992) Isolation, structure, and activity of -Phe-Met-Arg-Phe-NH2 neuropeptides (designated calliFMRFamides) from the blowfly Calliphora vomitoria. Proc Natl Acad Sci USA 89:2326–2330

    Article  PubMed  CAS  Google Scholar 

  • El Shoura SM (1989) Ultrastructure of the lateral organs in larval Argas (Persicargas) arboreus (Ixodoidea: Argasidae). Exp Appl Acarol 7:231–237

    Article  Google Scholar 

  • Gäde G, Hoffmann KH (2005) Neuropeptides regulating development and reproduction in insects. Physiol Entomol 30:103–121

    Article  Google Scholar 

  • Grimmelikhuijzen CJP, Spencer AN (1984) FMRFamide immunoreactivity in the nervous system of the medusa Polyorchis penicillatus. J Comp Neurol 230:361–371

    Article  PubMed  CAS  Google Scholar 

  • Hill CA, Wikel SK (2005) The Ixodes scapularis genome project: an opportunity for advancing tick research. Trends Parasitol 21:151–153

    Article  PubMed  CAS  Google Scholar 

  • Holmes SP, He H, Chen AC, Ivie GV, Pietrantonio PV (2000) Cloning and transcriptional expression of a leucokinin-like peptide receptor from the southern cattle tick, Boophilus microplus (Acari: Ixodidae). Insect Mol Biol 9:457–465

    Article  PubMed  CAS  Google Scholar 

  • Holmes SP, Barhoumit R, Nachman RJ, Pietrantonio PV (2003) Functional analysis of a G protein-coupled receptor from the southern cattle tick Boophilus microplus (Acari: Ixodidae) identifies it as the first arthropod myokinin receptor. Insect Mol Biol 12:27–38

    Article  PubMed  CAS  Google Scholar 

  • Iwami M (2000) Bombyxin: an insect brain peptide that belongs to the insulin family. Zool Sci 17:1035–1044

    Article  PubMed  CAS  Google Scholar 

  • Kaufman WR (1983) The function of tick salivary glands. In: Harris KF (ed) Current topics in vector research. Praeger Scientific, New York, pp 215–247

    Google Scholar 

  • Kaufman WR, Sloley BD, Tatchell RJ, Zbitnew GL, Diefenbach TJ, Goldberg JI (1999) Quantification and cellular localization of dopamine in the salivary gland of the ixodid tick Amblyomma hebraeum. Exp Appl Acarol 23:251–265

    Article  CAS  Google Scholar 

  • Kim Y-J, Žitňan D, Cho K-H, Mizoguchi A, Schooley D, Adams ME (2006) Central peptidergic ensembles associated with organization of an innate behavior. Proc Natl Acad Sci USA 103:14211–14216

    Article  PubMed  CAS  Google Scholar 

  • Krolak JM, Ownby CL, Sauer JR (1982) Alveolar structure of salivary glands of the lone star tick, Amblyomma americanum (L.): unfed females. J Parasitol 68:61–82

    Article  PubMed  CAS  Google Scholar 

  • Lamoreaux WJ, Needham GR, Coons LB (1994) Fluid secretion by isolated tick salivary glands depends on an intact cytoskeleton. Int J Parasitol 24:563–567

    Article  PubMed  CAS  Google Scholar 

  • Lamoreaux WJ, Needham GR, Coons LB (2000) Evidence that dilation of isolated salivary ducts from the tick Dermacentor variabilis (Say) is mediated by nitric oxide. J Insect Physiol 46:959–964

    Article  PubMed  CAS  Google Scholar 

  • Lees K, Bowman AS (2007) Tick neurobiology: recent advances and the post-genomic era. Invert Neurosci 7:183–198

    Article  PubMed  Google Scholar 

  • Liang JG, Zhang J, Lai R, Rees HH (2005) An opioid peptide from synganglia of the tick, Amblyomma testindinarium. Peptides 26:603–606

    Article  PubMed  CAS  Google Scholar 

  • Lomas LO, Turner PC, Rees HH (1997) A novel neuropeptide-endocrine interaction controlling ecdysteroid production in ixodid ticks. Proc R Soc Lond [Biol] 264:589–596

    Article  CAS  Google Scholar 

  • Lu D, Lee KY, Horodyski FM, Witten JL (2002) Molecular characterization and cell-specific expression of a Manduca sexta FLRFamide gene. J Comp Neurol 446:377–396

    Article  PubMed  CAS  Google Scholar 

  • Marzouk AS, Mohamed FSA, Khalil GM (1985) Neurohemal-endocrine organs in the camel tick, Hyalomma dromedarii (Acari: Ixodoidea: Ixodidae). J Med Entomol 22:385–391

    Google Scholar 

  • Megaw MWJ (1977) The innervation of the salivary gland of the tick, Boophilus microplus. Cell Tissue Res 184:551–558

    Article  PubMed  CAS  Google Scholar 

  • Megaw MWJ, Beadle DJ (1979) Structure and function of the salivary glands of the tick Boophilus microplus Canestrini (Acarina: hodidae). Int J Insect Morphol Embryol 8:67–83

    Article  Google Scholar 

  • Mizoguchi A, Ishizaki H, Nagasawa H, Kataoka H, Isogai A, Tamura S, Suzuki A, Fujino M, Kitada C (1987) A monoclonal antibody against a synthetic fragment of bombyxin (4K-prothoracicotropic hormone) from the silkmoth, Bombyx mori; characterization and immunohistochemistry. Mol Cell Endocrinol 51:227–235

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi A, Oka T, Kataoka H, Nagasawa H, Suzuki A, Ishizaki H (1990) Immunohistochemical localization of prothoracicotropic hormone-producing neurosecretory cells in the brain of Bombyx mori. Dev Growth Differ 32:591–598

    Article  Google Scholar 

  • Nässel DR, Cantera R, Karlsson A (1992) Neurons in the cockroach nervous system reacting with antisera to the neuropeptide leucokinin I. J Comp Neurol 322:45–67

    Article  PubMed  Google Scholar 

  • Nässel DR, Shiga S, Mohrherr CJ, Rao KR (1993) Pigment-dispersing hormone-like peptide in the nervous system of the flies Phormia and Drosophila: immunocytochemistry and partial characterization. J Comp Neurol 331:183–198

    Article  PubMed  Google Scholar 

  • Neupert S, Predel R, Russell WK, Davies R, Pietrantonio PV, Nachman RJ (2005) Identification of tick periviscerokinin, the first neurohormone of Ixodidae: single cell analysis by means of MALDI-TOF/TOF mass spectrometry. Biochem Biophys Res Commun 338:1860–1864

    Article  PubMed  CAS  Google Scholar 

  • Obenchain FD (1974) Neurosecretory system of the American dog tick, Dermacentor variabilis (Acari: Ixodidae). I. Diversity of cell types. J Morphol 142:433–446

    Article  Google Scholar 

  • Obenchain FD, Oliver JH Jr (1975) Neurosecretory system of the American dog tick, Dermacentor variabilis (Acari: Ixodidae). II. Distribution of secretory cell types, axonal pathways and putative neurohemal-neuroendocrine associations; comparative histological and anatomical implications. J Morphol 145:269–294

    Article  PubMed  CAS  Google Scholar 

  • Obenchain FD, Oliver JH Jr (1976) Peripheral nervous system of the ticks, Amblyomma tuberculatum Marx and Argas radiatus Railliet (Acari: Ixodoidea). J Parasitol 62:811–817

    Article  PubMed  CAS  Google Scholar 

  • Panfilova IM (1978) Lateral”nye organy Ixodes persulcatus (Parasitiformes, Ixodidae) (in English: lateral organs in Ixodes persulcatus (Parasitiformes, Ixodidae). Zool Zh 57:190–196

    Google Scholar 

  • Park JH, Helfrich-Förster C, Lee G, Liu L, Rosbash M, Hall JC (2000) Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc Natl Acad Sci USA 97:3608–3613

    Article  PubMed  CAS  Google Scholar 

  • Persson MG, Eklund MB, Dircksen H, Muren JE, Nässel DR (2001) Pigment-dispersing factor in the locust abdominal ganglia may have roles as circulating neurohormone and central neuromodulator. J Neurobiol 48:19–41

    Article  PubMed  CAS  Google Scholar 

  • Pound MJ, Oliver JH Jr (1982) Synganglial and neurosecretory morphology of female Ornithodoros parkeri (Cooley) (Acari: Argasidae). J Morphol 173:159–177

    Article  Google Scholar 

  • Prullage JB, Pound JM, Meola SM (1992) Synganglial morphology and neurosecretory centers of adult Amblyomma americanum (L.) (Acari: Ixodidae). J Med Entomol 29:1023–1034

    PubMed  CAS  Google Scholar 

  • Rees HH (2004) Hormonal control of tick development and reproduction. Parasitology 129:S127–S143

    Article  PubMed  CAS  Google Scholar 

  • Roller L, Tanaka Y, Tanaka S (2003) Corazonin and corazonin-like substances in the central nervous system of the pterygote and apterygote insects. Cell Tissue Res 312:393–406

    Article  PubMed  CAS  Google Scholar 

  • Roller L, Yamanaka N, Watanabe K, Daubnerová I, Žitňan D, Kataoka H, Tanaka Y (2008) The unique evolution of neuropeptide genes in the silkworm Bombyx mori. Insect Biochem Mol Biol (in press)

  • Roshdy MA, Shoukrey NM, Coons LB (1973) The subgenus Persicargas (Ixodoidea: Argasidae: Argas). 17. A neurohemal organ in A. (P.) arboreus Kaiser, Hoogstraal and Kohls. J Parasitol 59:530–544

    Article  Google Scholar 

  • Saito Y (1960) Studies on ixodid ticks. Part IV. The internal anatomy in each stage of Haemaphysalis flava Neuman, 1897. Acta Med Biol 8:189–239

    Google Scholar 

  • Schoofs L, Vanden Broeck J, De Loof A (1993) The myotropic peptides of Locusta migratoria: structures, distribution, functions and receptors. Insect Biochem Mol Biol 23:859–881

    Article  PubMed  CAS  Google Scholar 

  • Šimo L, Park Y (2008) Genomics and proteomics of neuropeptides in the black-legged tick Ixodes scapularis. Second Annual Arthropod Genomics Symposium, April 10–13, 2008, Kansas City

  • Slovák M, Labuda M, Marley SE (2002) Mass laboratory rearing of Dermacentor reticulatus ticks (Acarina, Ixodidae). Biologia (Bratislava) 57:261–266

    Google Scholar 

  • Sonenshine DE (1991) Biology of ticks, vol 1. Oxford University Press, New York Oxford

    Google Scholar 

  • Stangier J, Hilbich C, Dircksen H, Keller R (1988) Distribution of a novel cardioactive neuropeptide (CCAP) in the nervous system of the shore crab Carcinus maenas. Peptides 4:795–800

    Article  Google Scholar 

  • Stay B, Chan KK, Woodhead AP (1992) Allatostatin-immunoreactive neurons projecting to the corpora allata of adult Diploptera punctata. Cell Tissue Res 270:15–23

    Article  PubMed  CAS  Google Scholar 

  • Szlendak E, Oliver JH Jr (1992) Anatomy of synganglia, including their neurosecretory regions, in unfed, virgin female Ixodes scapularis Say (Acari: Ixodidae). J Morphol 213:349–364

    Article  PubMed  CAS  Google Scholar 

  • Taneja-Bageshwar S, Strey A, Zubrzak P, Pietrantonio PV, Nachman RJ (2006) Comparative structure-activity analysis of insect kinin core analogs on recombinant kinin receptors from southern cattle tick Boophilus microplus (Acari: Ixodidae) and mosquito Aedes aegypti (Diptera: Culicidae). Arch Insect Biochem Physiol 62:128–140

    Article  PubMed  CAS  Google Scholar 

  • White K, Hurteau T, Punsal P (1986) Neuropeptide FMRFamide-like immunoreactivity in Drosophila. Wilhem Roux’s Arch 142:131–182

    Google Scholar 

  • Yamanaka N, Žitňan D, Kim Y-J, Adams ME, Hua Y-J, Suzuki Y, Suzuki M, Suzuki A, Satake H, Mizoguchi A, Asaoka K, Tanaka Y, Kataoka H (2006) Regulation of insect steroid hormone biosynthesis by innervating peptidergic neurons. Proc Natl Acad Sci USA 103:8622–8627

    Article  PubMed  CAS  Google Scholar 

  • Zhu XX, Oliver JH Jr (1991) Immunocytochemical localization of an insulin like substance in the synganglion of the tick Ornithodoros parkeri (Acari: Argasidae). Exp Appl Acarol 13:153–159

    Article  PubMed  CAS  Google Scholar 

  • Zhu XX, Oliver JH Jr (2001) Cockroach allatostatin-like immunoreactivity in the synganglion of the American dog tick Dermacentor variabilis (Acari: Ixodidae). Exp Appl Acarol 25:1005–1013

    Article  PubMed  CAS  Google Scholar 

  • Zhu XX, Zhang WY, Oliver JH Jr (1995) Immunocytochemical mapping of FMRFamide-like peptides in the argasid tick Ornithodoros parkeri and the ixodid tick Dermacentor variabilis. Exp Appl Acarol 19:1–9

    Article  PubMed  CAS  Google Scholar 

  • Žitňan D, Adams ME (2005) Neuroendocrine regulation of insect ecdysis. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science, vol 3. Elsevier Pergamon, Amsterdam-Tokyo, pp 1–60

    Google Scholar 

  • Žitňan D, Sehnal F, Bryant P (1993) Neurons producing specific neuropeptides in the central nervous system of normal and pupariation-delayed Drosophila. Dev Biol 155:682–693

    Google Scholar 

  • Žitňan D, Kingan TG, Kramer SJ, Beckage NE (1995) Accumulation of neuropeptides in the cerebral neurosecretory system of Manduca sexta larvae parasitized by the braconid wasp Cotesia congregata. J Comp Neurol 356:83–100

    Article  PubMed  Google Scholar 

  • Žitňan D, Ross LS, Žitňanová I, Hermesman JL, Gill SS, Adams MA (1999) Steroid induction of a peptide hormone gene leads to orchestration of a defined behavioral sequence. Neuron 23:523–535

    Article  PubMed  Google Scholar 

  • Žitňan D, Hollar L, Spalovská I, Takáč P, Žitňanová I, Gill SS, Adams ME (2002) Molecular cloning and function of ecdysis-triggering hormones in the silkworm Bombyx mori. J Exp Biol 205:3459–3473

    PubMed  Google Scholar 

  • Žitňanová I, Adams ME, Žitňan D (2001) Dual ecdysteroid action on the epitracheal glands and central nervous system preceding ecdysis of Manduca sexta. J Exp Biol 204:3483–3495

    PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Drs. M.E. Adams, H. Dircksen, C.J.P. Grimmelikhuijzen, D. Kodrík, A. Mizoguchi, D.R. Nässel, L. Schoofs and Y. Tanaka for providing antibodies to AKH, corazonin, bombyxin, PTTH, ITP, MIP, BMS, leucokinin, tachykinin and PDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dušan Žitňan.

Additional information

This work was supported by Slovak grant agencies: Agentúra na podporu výskumu a vývoja (APVV-51-039105) and Vedecká grantová agentúra (VEGA 2-6090-26 and 2/6155/26).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šimo, L., Slovák, M., Park, Y. et al. Identification of a complex peptidergic neuroendocrine network in the hard tick, Rhipicephalus appendiculatus . Cell Tissue Res 335, 639–655 (2009). https://doi.org/10.1007/s00441-008-0731-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-008-0731-4

Keywords

Navigation