Skip to main content

Advertisement

Log in

LINE-1 retrotransposition in human neuroblastoma cells is affected by oxidative stress

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Long interspersed element-1s (LINE-1 or L1s) are abundant retrotransposons that occur in mammalian genomes and that can cause insertional mutagenesis and genomic instability. L1 activity is generally repressed in most cells and tissues but has been found in some embryonic cells and, in particular, in neural progenitors. Moreover, L1 retrotransposition can be induced by several DNA-damaging agents. We have carried out experiments to verify whether L1 retrotransposition is affected by oxidative DNA damage, which plays a role in a range of human diseases, including cancer and inflammatory and neurodegenerative disease. To this purpose, BE(2)C neuroblastoma cells, which are thought to represent embryonic precursors of sympathetic neurons, have been treated with hydrogen peroxide and subjected to an in vitro retrotransposition assay involving an episomal L1RP element tagged with enhanced green fluorescent protein. Our results indicate that hydrogen peroxide treatment induces an increase in the retrotransposition of transiently transfected L1RP and an increase in the expression of endogenous L1 transcripts. An increase of γ-H2AX foci and changes in the mRNA levels of MRE11, RAD50, NBN and ERCC1 (all involved in DNA repair) have also been found. Thus, oxidative stress can cause L1 dysregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Babushok DV, Kazazian HH Jr (2007) Progress in understanding the biology of the human mutagen LINE-1. Hum Mutat 28:527–539

    Article  PubMed  CAS  Google Scholar 

  • Belancio VP, Roy-Engel AM, Deininger PL (2010) All y'all need to know 'bout retroelements in cancer. Semin Cancer Biol 20:200–210

    Article  PubMed  CAS  Google Scholar 

  • Belgnaoui SM, Gosden RG, Semmes OJ, Haoudi A (2006) Human LINE-1 retrotransposon induces DNA damage and apoptosis in cancer cells. Cancer Cell Int 2:6–13

    Google Scholar 

  • Biedler JL, Roffler-Tarlov S, Schachner M, Freedman LS (1978) Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res 8:3751–3757

    Google Scholar 

  • Coufal NG, Garcia-Perez JL, Peng GE, Yeo GW, Mu Y, Lovci MT, Morell M, O'Shea KS, Moran JV, Gage FH (2009) L1 retrotransposition in human neural progenitor cells. Nature 460:1127–1131

    Article  PubMed  CAS  Google Scholar 

  • De Felice C, Ciccoli L, Leoncini S, Signorini C, Rossi M, Vannuccini L, Guazzi G, Latini G, Comporti M, Valacchi G, Hayek J (2009) Systemic oxidative stress in classic Rett syndrome. Free Radic Biol Med 47:440–448

    Article  PubMed  Google Scholar 

  • Del Re B, Marcantonio P, Capri M, Giorgi G (2010) Evaluation of LINE-1 mobility in neuroblastoma cells by in vitro retrotransposition reporter assay: FACS analysis can detect only the tip of the iceberg of the inserted L1 elements. Exp Cell Res 316:3358–3367

    Article  PubMed  Google Scholar 

  • Farkash EA, Kao GD, Horman SR, Prak ET (2006) Gamma radiation increases endonuclease-dependent L1 retrotransposition in a cultured cell assay. Nucleic Acids Res 34:1196–1204

    Article  PubMed  CAS  Google Scholar 

  • Gasior SL, Wakeman TP, Xu B, Deininger PL (2006) The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol 357:1383–1393

    Article  PubMed  CAS  Google Scholar 

  • Gasior SL, Roy-Engel AM, Deininger PL (2008) ERCC1/XPF limits L1 retrotransposition. DNA Repair (Amst) 7:983–989

    Article  CAS  Google Scholar 

  • Huang CR, Schneider AM, Lu Y, Niranjan T, Shen P, Robinson MA, Steranka JP, Valle D, Civin CI, Wang T, Wheelan SJ, Ji H, Boeke JD, Burns KH (2010) Mobile interspersed repeats are major structural variants in the human genome. Cell 141:1171–1182

    Article  PubMed  CAS  Google Scholar 

  • Iskow RC, McCabe MT, Mills RE, Torene S, Pittard WS, Neuwald AF, Van Meir EG, Vertino PM, Devine SE (2010) Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 141:1253–1261

    Article  PubMed  CAS  Google Scholar 

  • Kale SP, Moore L, Deininger PL, Roy-Engel AM (2005) Heavy metals stimulate human LINE-1 retrotransposition. Int J Environ Res Public Health 2:14–23

    Article  PubMed  CAS  Google Scholar 

  • Kryston TB, Georgiev AB, Pissis P, Georgakilas AG (2011) Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res 711:193–201

    Article  PubMed  CAS  Google Scholar 

  • Lovsin N, Peterlin BM (2009) APOBEC3 proteins inhibit LINE-1 retrotransposition in the absence of ORF1p binding. Ann N Y Acad Sci 1178:268–275

    Article  PubMed  CAS  Google Scholar 

  • Lu KP, Hallberg LM, Ramos KS (2000) Benzo(a)pyrene activates L1Md retrotransposon and inhibits DNA repair in vascular smooth muscle cells. Mutat Res 454:35–44

    Article  PubMed  CAS  Google Scholar 

  • Marcantonio P, Del Re B, Franceschini A, Capri M, Lukas S, Bersani F, Giorgi G (2010) Synergic effect of retinoic acid and extremely low frequency magnetic field exposure on human neuroblastoma cell line BE(2)C. Bioelectromagnetics 31:425–433

    PubMed  CAS  Google Scholar 

  • Montoya-Durango DE, Liu Y, Teneng I, Kalbfleisch T, Lacy M, Steffen MC, Ramos KS (2009) Epigenetic control of mammalian LINE-1 retrotransposon by retinoblastoma proteins. Mutat Res 665:20–28

    Article  PubMed  CAS  Google Scholar 

  • Morrish TA, Gilbert N, Myers J, Vincent BJ, Stamato TD, Taccioli GE, Batzer MA, Moran JV (2002) DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat Genet 31:159–165

    Article  PubMed  CAS  Google Scholar 

  • Muotri AR, Chu VT, Marchetto MC, Deng W, Moran JV, Gage FH (2005) Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435:903–910

    Article  PubMed  CAS  Google Scholar 

  • Muotri AR, Zhao C, Marchetto MC, Gage FH (2009) Environmental influence on L1 retrotransposons in the adult hippocampus. Hippocampus 19:1002–1007

    Article  PubMed  CAS  Google Scholar 

  • Okudaira N, Iijima K, Koyama T, Minemoto Y, Kano S, Mimori A, Ishizaka Y (2010) Induction of long interspersed nucleotide element-1 (L1) retrotransposition by 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan photoproduct. Proc Natl Acad Sci USA 107:18487–18492

    Article  PubMed  CAS  Google Scholar 

  • Oricchio E, Sciamanna I, Beraldi R, Tolstonog GV, Schumann GG, Spadafora C (2007) Distinct roles for LINE-1 and HERV-K retroelements in cell proliferation, differentiation and tumor progression. Oncogene 26:4226–4233

    Article  PubMed  CAS  Google Scholar 

  • Ostertag EM, Prak ETL, DeBerardinis RJ, Moran JV, Kazazian HH Jr (2000) Determination of L1 retrotransposition kinetics in cultured cells. Nucleic Acids Res 28:1418–1423

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2003–2007

    Article  Google Scholar 

  • Rodrigo F, Schoneveld O, Georgakilas AG, Panayiotidis MI (2008) Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett 266:6–11

    Article  Google Scholar 

  • Roman-Gomez J, Jimenez-Velasco A, Agirre X, Cervantes F, Sanchez J, Garate L, Barrios M, Castillejo JA, Navarro G, Colomer D, Prosper F, Heiniger A, Torres A (2005) Promoter hypomethylation of the LINE-1 retrotransposable elements activates sense/antisense transcription and marks the progression of chronic myeloid leukemia. Oncogene 24:7213–7223

    Article  PubMed  CAS  Google Scholar 

  • Schneider AM, Duffield AS, Symer DE, Burns KH (2009) Roles of retrotransposons in benign and malignant hematologic disease. Cell Sci 6:121–145

    Google Scholar 

  • Schulz WA (2006) L1 retrotransposons in human cancers. J Biomed Biotechnol 2006:1–12

    Article  Google Scholar 

  • Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18:134–147

    Article  PubMed  CAS  Google Scholar 

  • Speir E (2000) Cytomegalovirus gene regulation by reactive oxygen species. Agents in atherosclerosis. Ann N Y Acad Sci USA 899:363–374

    Article  CAS  Google Scholar 

  • Stoycheva T, Pesheva M, Venkov P (2010) The role of reactive oxygen species in the induction of Ty1 retrotransposition in Saccharomyces cerevisiae. Yeast 27:259–267

    Article  PubMed  CAS  Google Scholar 

  • Yang N, Kazazian HH Jr (2006) L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat Struct Mol Biol 13:763–771

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brunella Del Re.

Additional information

This work was supported by the “Electromagnetic field effects on neuronal cells” PRIN-2007 program from the Italian MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca).

The authors declare no conflicts of interest and they alone are responsible for the content and writing of this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giorgi, G., Marcantonio, P. & Del Re, B. LINE-1 retrotransposition in human neuroblastoma cells is affected by oxidative stress. Cell Tissue Res 346, 383–391 (2011). https://doi.org/10.1007/s00441-011-1289-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-011-1289-0

Keywords

Navigation