Skip to main content

Advertisement

Log in

Histone methylation during neural development

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Post-translational modification of histone proteins, such as the methylation of lysine and arginine residues, influences the higher order of chromatin and leads to gene activation or silencing. Histone methyltransferases or demethylases actively add or remove various methylation marks in a cell-type-specific and context-dependent way. They are therefore important players in regulating the transcriptional program of a cell. Some control of the various cellular programs is necessary during the differentiation of stem cells along a specific lineage, when differentiation to alternative lineages needs to be suppressed. One example is the development of neurons from neural stem cells during neurogenesis. Neurogenesis is a highly organized process that requires the proper coordination of survival, proliferation, differentiation and migration signals. This holds true for both embryonic and neural stem cells that give rise to the various cell types of the central nervous system. The control of embryonic and neural stem cell self-renewal and differentiation is achieved by both extrinsic and intrinsic signals that regulate gene expression precisely. Recent advances in neuroscience support the importance of epigenetic modifications, such as the methylation and acetylation of histones, as an important intrinsic mechanism for the regulation of central nervous system development. This review summarizes our current knowledge of histone methylation processes during neural development and provides insights into the function of histone methylation enzymes and their role during central nervous system development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

5hmC:

5-Hydroxymethylcytosine

CNS:

Central nervous system

COMPASS:

Complex of proteins associated with Set1

DOT1L:

Disruptor of telomeric silencing 1-like

ESC:

Embryonic stem cells

EZH2:

Enhancer of zeste homolog 2

H3:

Histone 3

H3K4 (same scheme for other modifications):

Histone 3 lysine 4

H4R3me2a/s:

Histone 4 arginine 3 asymmetric/symmetric dimethylation

HDAC:

Histone deacetylase

K:

Lysine

KDM:

Histone lysine demethylase

KMT:

Histone lysine methyltransferase

KO:

Knockout

JARID:

Jumonji/ARID domain

JHDM:

JmjC domain-containing histone demethylase

JmjC:

Jumonji C

me:

Methylation

me1/2/3:

Mono- /di- /trimethylation

MLL:

Mixed-lineage leukemia

NSC:

Neural stem cells

NTD:

Neural tube defects

PRC1:

Polycomb repressive complex 1

PRC2:

Polycomb repressive complex 2

R:

Arginine

RE:

Neuron-restrictive silencer element

REST:

RE1-silencing transcription factor

RNAPII:

RNA polymerase II

SAH:

S-adenosyl-homocysteine

SAM:

S-adenosyl-L-methionine

SET:

Su(var)3-9, Enhancer of Zeste, Trithorax

TSS:

Transcription start site

Trx:

Trithorax

Trr:

Trithorax-related

References

  • Adegbola A, Gao H, Sommer S, Browning M (2008) A novel mutation in JARID1C/SMCX in a patient with autism spectrum disorder (ASD). Am J Med Genet A 146A:505–511. doi:10.1002/ajmg.a.32142

    Article  CAS  PubMed  Google Scholar 

  • Albert M, Schmitz SU, Kooistra SM, Malatesta M, Morales Torres C, Rekling JC, Johansen JV, Abarrategui I, Helin K (2013) The histone demethylase Jarid1b ensures faithful mouse development by protecting developmental genes from aberrant H3K4me3. PLoS Genet 9:e1003461. doi:10.1371/journal.pgen.1003461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Azuara V, Perry P, Sauer S, Spivakov M, Jørgensen HF, John RM, Gouti M, Casanova M, Warnes G, Merkenschlager M, Fisher AG (2006) Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8:532–538. doi:10.1038/ncb1403

    Article  CAS  PubMed  Google Scholar 

  • Barrand S, Andersen IS, Collas P (2010) Promoter-exon relationship of H3 lysine 9, 27, 36 and 79 methylation on pluripotency-associated genes. Biochem Biophys Res Commun 401:611–617. doi:10.1016/j.bbrc.2010.09.116

    Article  CAS  PubMed  Google Scholar 

  • Barry ER, Krueger W, Jakuba CM, Veilleux E, Ambrosi DJ, Nelson CE, Rasmussen TP (2009) ES cell cycle progression and differentiation require the action of the histone methyltransferase Dot1L. Stem Cells Dayt Ohio 27:1538–1547. doi:10.1002/stem.86

    Article  CAS  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326. doi:10.1016/j.cell.2006.02.041

    Article  CAS  PubMed  Google Scholar 

  • Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128:669–681. doi:10.1016/j.cell.2007.01.033

    Article  CAS  PubMed  Google Scholar 

  • Bower C, D’Antoine H, Stanley FJ (2009) Neural tube defects in Australia: trends in encephaloceles and other neural tube defects before and after promotion of folic acid supplementation and voluntary food fortification. Birt Defects Res A Clin Mol Teratol 85:269–273. doi:10.1002/bdra.20536

    Article  CAS  Google Scholar 

  • Burgold T, Spreafico F, De Santa F, Totaro MG, Prosperini E, Natoli G, Testa G (2008) The Histone H3 Lysine 27-Specific Demethylase Jmjd3 Is Required for Neural Commitment. PLoS One 3:e3034. doi:10.1371/journal.pone.0003034

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Büttner N, Johnsen SA, Kügler S, Vogel T (2010) Af9/Mllt3 interferes with Tbr1 expression through epigenetic modification of histone H3K79 during development of the cerebral cortex. Proc Natl Acad Sci U S A 107:7042–7047. doi:10.1073/pnas.0912041107

    Article  PubMed Central  PubMed  Google Scholar 

  • Cao R, Zhang Y (2004) The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev 14:155–164. doi:10.1016/j.gde.2004.02.001

    Article  CAS  PubMed  Google Scholar 

  • Chang B, Chen Y, Zhao Y, Bruick RK (2007) JMJD6 is a histone arginine demethylase. Science 318:444–447. doi:10.1126/science.1145801

    Article  CAS  PubMed  Google Scholar 

  • Cheung I, Shulha HP, Jiang Y, Matevossian A, Wang J, Weng Z, Akbarian S (2010) Developmental regulation and individual differences of neuronal H3K4me3 epigenomes in the prefrontal cortex. Proc Natl Acad Sci 107:8824–8829. doi:10.1073/pnas.1001702107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chittka A (2010) Dynamic Distribution of Histone H4 Arginine 3 Methylation Marks in the Developing Murine Cortex. PLoS One 5:e13807. doi:10.1371/journal.pone.0013807

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chittka A, Nitarska J, Grazini U, Richardson WD (2012) Transcription Factor Positive Regulatory Domain 4 (PRDM4) Recruits Protein Arginine Methyltransferase 5 (PRMT5) to Mediate Histone Arginine Methylation and Control Neural Stem Cell Proliferation and Differentiation. J Biol Chem 287:42995–43006. doi:10.1074/jbc.M112.392746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DeCarlo D, Hadden MK (2012) Oncoepigenomics: Making histone lysine methylation count. Eur J Med Chem 56:179–194. doi:10.1016/j.ejmech.2012.08.010

    Article  CAS  PubMed  Google Scholar 

  • De Vos D, Frederiks F, Terweij M, van Welsem T, Verzijlbergen KF, Iachina E, de Graaf EL, Altelaar AFM, Oudgenoeg G, Heck AJR, Krijgsveld J, Bakker BM, van Leeuwen F (2011) Progressive methylation of ageing histones by Dot1 functions as a timer. EMBO Rep 12:956–962. doi:10.1038/embor.2011.131

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dey BK, Stalker L, Schnerch A, Bhatia M, Taylor-Papidimitriou J, Wynder C (2008) The Histone Demethylase KDM5b/JARID1b Plays a Role in Cell Fate Decisions by Blocking Terminal Differentiation. Mol Cell Biol 28:5312–5327. doi:10.1128/MCB.00128-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Di Meglio T, Kratochwil CF, Vilain N, Loche A, Vitobello A, Yonehara K, Hrycaj SM, Roska B, Peters AHFM, Eichmann A, Wellik D, Ducret S, Rijli FM (2013) Ezh2 Orchestrates Topographic Migration and Connectivity of Mouse Precerebellar Neurons. Science 339:204–207. doi:10.1126/science.1229326

    Article  PubMed  CAS  Google Scholar 

  • Dou Y, Milne TA, Ruthenburg AJ, Lee S, Lee JW, Verdine GL, Allis CD, Roeder RG (2006) Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat Struct Mol Biol 13:713–719. doi:10.1038/nsmb1128

    Article  CAS  PubMed  Google Scholar 

  • Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, Zhang X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein BE (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473:43–49. doi:10.1038/nature09906

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fontebasso AM, Schwartzentruber J, Khuong-Quang D-A, Liu X-Y, Sturm D, Korshunov A, Jones DTW, Witt H, Kool M, Albrecht S, Fleming A, Hadjadj D, Busche S, Lepage P, Montpetit A, Staffa A, Gerges N, Zakrzewska M, Zakrzewski K, Liberski PP, Hauser P, Garami M, Klekner A, Bognar L, Zadeh G, Faury D, Pfister SM, Jabado N, Majewski J (2013) Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas. Acta Neuropathol (Berl) 125:659–669. doi:10.1007/s00401-013-1095-8

    Article  CAS  Google Scholar 

  • Fukuda T, Tokunaga A, Sakamoto R, Yoshida N (2011) Fbxl10/Kdm2b deficiency accelerates neural progenitor cell death and leads to exencephaly. Mol Cell Neurosci 46:614–624. doi:10.1016/j.mcn.2011.01.001

    Article  CAS  PubMed  Google Scholar 

  • Gibson WT, Hood RL, Zhan SH, Bulman DE, Fejes AP, Moore R, Mungall AJ, Eydoux P, Babul-Hirji R, An J, Marra MA, Chitayat D, Boycott KM, Weaver DD, Jones SJM (2012) Mutations in EZH2 Cause Weaver Syndrome. Am J Hum Genet 90:110–118. doi:10.1016/j.ajhg.2011.11.018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Golebiewska A, Atkinson SP, Lako M, Armstrong L (2009) Epigenetic landscaping during hESC differentiation to neural cells. Stem Cells Dayt Ohio 27:1298–1308. doi:10.1002/stem.59

    Article  CAS  Google Scholar 

  • Gupta S, Kim SY, Artis S, Molfese DL, Schumacher A, Sweatt JD, Paylor RE, Lubin FD (2010) Histone methylation regulates memory formation. J Neurosci Off J Soc Neurosci 30:3589–3599. doi:10.1523/JNEUROSCI.3732-09.2010

    Article  CAS  Google Scholar 

  • Hahn MA, Qiu R, Wu X, Li AX, Zhang H, Wang J, Jui J, Jin S-G, Jiang Y, Pfeifer GP, Lu Q (2013) Dynamics of 5-hydroxymethylcytosine and chromatin marks in Mammalian neurogenesis. Cell Rep 3:291–300. doi:10.1016/j.celrep.2013.01.011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He J, Shen L, Wan M, Taranova O, Wu H, Zhang Y (2013) Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes. Nat Cell Biol 15:373–384. doi:10.1038/ncb2702

    Article  CAS  PubMed  Google Scholar 

  • Henriquez B, Bustos FJ, Aguilar R, Becerra A, Simon F, Montecino M, van Zundert B (2013) Ezh1 and Ezh2 differentially regulate PSD-95 gene transcription in developing hippocampal neurons. Mol Cell Neurosci. doi:10.1016/j.mcn.2013.07.012

    PubMed  Google Scholar 

  • Herz H-M, Mohan M, Garruss AS, Liang K, Takahashi Y-H, Mickey K, Voets O, Verrijzer CP, Shilatifard A (2012) Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4. Genes Dev 26:2604–2620. doi:10.1101/gad.201327.112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirabayashi Y, Gotoh Y (2010) Epigenetic control of neural precursor cell fate during development. Nat Rev Neurosci 11:377–388. doi:10.1038/nrn2810

    Article  CAS  PubMed  Google Scholar 

  • Hirabayashi Y, Suzki N, Tsuboi M, Endo TA, Toyoda T, Shinga J, Koseki H, Vidal M, Gotoh Y (2009) Polycomb Limits the Neurogenic Competence of Neural Precursor Cells to Promote Astrogenic Fate Transition. Neuron 63:600–613. doi:10.1016/j.neuron.2009.08.021

    Article  CAS  PubMed  Google Scholar 

  • Huang S (2005) Methylation of histone H4 by arginine methyltransferase PRMT1 is essential in vivo for many subsequent histone modifications. Genes Dev 19:1885–1893. doi:10.1101/gad.1333905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang X, Dixit VM (2011) Cross talk between ubiquitination and demethylation. Mol Cell Biol 31:3682–3683. doi:10.1128/MCB.06001-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ichi S, Costa FF, Bischof JM, Nakazaki H, Shen Y-W, Boshnjaku V, Sharma S, Mania-Farnell B, McLone DG, Tomita T, Soares MB, Mayanil CSK (2010) Folic Acid Remodels Chromatin on Hes1 and Neurog2 Promoters during Caudal Neural Tube Development. J Biol Chem 285:36922–36932. doi:10.1074/jbc.M110.126714

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iwase S, Lan F, Bayliss P, de la Torre-Ubieta L, Huarte M, Qi HH, Whetstine JR, Bonni A, Roberts TM, Shi Y (2007) The X-Linked Mental Retardation Gene SMCX/JARID1C Defines a Family of Histone H3 Lysine 4 Demethylases. Cell 128:1077–1088. doi:10.1016/j.cell.2007.02.017

    Article  CAS  PubMed  Google Scholar 

  • Jepsen K, Solum D, Zhou T, McEvilly RJ, Kim H-J, Glass CK, Hermanson O, Rosenfeld MG (2007) SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron. Nature 450:415–419. doi:10.1038/nature06270

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Shukla A, Wang X, Chen W, Bernstein BE, Roeder RG (2011) Role for Dpy-30 in ES Cell-Fate Specification by Regulation of H3K4 Methylation within Bivalent Domains. Cell 144:513–525. doi:10.1016/j.cell.2011.01.020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones B, Su H, Bhat A, Lei H, Bajko J, Hevi S, Baltus GA, Kadam S, Zhai H, Valdez R, Gonzalo S, Zhang Y, Li E, Chen T (2008) The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet 4:e1000190. doi:10.1371/journal.pgen.1000190

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jones WD, Dafou D, McEntagart M, Woollard WJ, Elmslie FV, Holder-Espinasse M, Irving M, Saggar AK, Smithson S, Trembath RC, Deshpande C, Simpson MA (2012) De Novo Mutations in MLL Cause Wiedemann-Steiner Syndrome. Am J Hum Genet 91:358–364. doi:10.1016/j.ajhg.2012.06.008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karpiuk O, Najafova Z, Kramer F, Hennion M, Galonska C, König A, Snaidero N, Vogel T, Shchebet A, Begus-Nahrmann Y, Kassem M, Simons M, Shcherbata H, Beissbarth T, Johnsen SA (2012) The histone H2B monoubiquitination regulatory pathway is required for differentiation of multipotent stem cells. Mol Cell 46:705–713. doi:10.1016/j.molcel.2012.05.022

    Article  CAS  PubMed  Google Scholar 

  • Kerimoglu C, Agis-Balboa RC, Kranz A, Stilling R, Bahari-Javan S, Benito-Garagorri E, Halder R, Burkhardt S, Stewart AF, Fischer A (2013) Histone-Methyltransferase MLL2 (KMT2B) Is Required for Memory Formation in Mice. J Neurosci 33:3452–3464. doi:10.1523/JNEUROSCI.3356-12.2013

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Hake SB, Roeder RG (2005) The human homolog of yeast BRE1 functions as a transcriptional coactivator through direct activator interactions. Mol Cell 20:759–770. doi:10.1016/j.molcel.2005.11.012

    Article  CAS  PubMed  Google Scholar 

  • Kim S-K, Jung I, Lee H, Kang K, Kim M, Jeong K, Kwon CS, Han Y-M, Kim YS, Kim D, Lee D (2012) Human histone H3K79 methyltransferase DOT1L protein [corrected] binds actively transcribing RNA polymerase II to regulate gene expression. J Biol Chem 287:39698–39709. doi:10.1074/jbc.M112.384057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kleefstra T, Brunner HG, Amiel J, Oudakker AR, Nillesen WM, Magee A, Geneviève D, Cormier-Daire V, Van Esch H, Fryns J-P (2006) Loss-of-Function Mutations in <i> Euchromatin Histone Methyl Transferase 1</i > (<i > EHMT1</i>) Cause the 9q34 Subtelomeric Deletion Syndrome. Am J Hum Genet 79:370–377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kleefstra T, Kramer JM, Neveling K, Willemsen MH, Koemans TS, Vissers LELM, Wissink-Lindhout W, Fenckova M, van den Akker WMR, Kasri NN, Nillesen WM, Prescott T, Clark RD, Devriendt K, van Reeuwijk J, de Brouwer APM, Gilissen C, Zhou H, Brunner HG, Veltman JA, Schenck A, van Bokhoven H (2012) Disruption of an EHMT1-Associated Chromatin-Modification Module Causes Intellectual Disability. Am J Hum Genet 91:73–82. doi:10.1016/j.ajhg.2012.05.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klose RJ, Kallin EM, Zhang Y (2006) JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet 7:715–727. doi:10.1038/nrg1945

    Article  CAS  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705. doi:10.1016/j.cell.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  • Laible G, Wolf A, Dorn R, Reuter G, Nislow C, Lebersorger A, Popkin D, Pillus L, Jenuwein T (1997) Mammalian homologues of the Polycomb-group gene Enhancer of zeste mediate gene silencing in Drosophila heterochromatin and at S. cerevisiae telomeres. EMBO J 16:3219–3232. doi:10.1093/emboj/16.11.3219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laumonnier F (2005) Mutations in PHF8 are associated with X linked mental retardation and cleft lip/cleft palate. J Med Genet 42:780–786. doi:10.1136/jmg.2004.029439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee BM, Mahadevan LC (2009) Stability of histone modifications across mammalian genomes: implications for “epigenetic” marking. J Cell Biochem 108:22–34. doi:10.1002/jcb.22250

    Article  CAS  PubMed  Google Scholar 

  • Lee ER, Murdoch FE, Fritsch MK (2007a) High histone acetylation and decreased polycomb repressive complex 2 member levels regulate gene specific transcriptional changes during early embryonic stem cell differentiation induced by retinoic acid. Stem Cells Dayt Ohio 25:2191–2199. doi:10.1634/stemcells.2007-0203

    Article  CAS  Google Scholar 

  • Lee MG, Villa R, Trojer P, Norman J, Yan K-P, Reinberg D, Di Croce L, Shiekhattar R (2007b) Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318:447–450. doi:10.1126/science.1149042

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Roeder RG, Lee JW (2009) Roles of histone H3-lysine 4 methyltransferase complexes in NR-mediated gene transcription. Prog Mol Biol Transl Sci 87:343–382. doi:10.1016/S1877-1173(09)87010-5

    Article  CAS  PubMed  Google Scholar 

  • Li X, Hu X, Patel B, Zhou Z, Liang S, Ybarra R, Qiu Y, Felsenfeld G, Bungert J, Huang S (2010) H4R3 methylation facilitates beta-globin transcription by regulating histone acetyltransferase binding and H3 acetylation. Blood 115:2028–2037. doi:10.1182/blood-2009-07-236059

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lim DA, Huang Y-C, Swigut T, Mirick AL, Garcia-Verdugo JM, Wysocka J, Ernst P, Alvarez-Buylla A (2009) Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature 458:529–533. doi:10.1038/nature07726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lubitz S, Glaser S, Schaft J, Stewart AF, Anastassiadis K (2007) Increased apoptosis and skewed differentiation in mouse embryonic stem cells lacking the histone methyltransferase Mll2. Mol Biol Cell 18:2356–2366. doi:10.1091/mbc.E06-11-1060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260. doi:10.1038/38444

    Article  CAS  PubMed  Google Scholar 

  • Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6:838–849. doi:10.1038/nrm1761

    Article  CAS  PubMed  Google Scholar 

  • McGinty RK, Kim J, Chatterjee C, Roeder RG, Muir TW (2008) Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation. Nature 453:812–816. doi:10.1038/nature06906

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meaney MJ, Ferguson-Smith AC (2010) Epigenetic regulation of the neural transcriptome: the meaning of the marks. Nat Neurosci 13:1313–1318. doi:10.1038/nn1110-1313

    Article  CAS  PubMed  Google Scholar 

  • Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim T-K, Koche RP, Lee W, Mendenhall E, O’Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560. doi:10.1038/nature06008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller T, Krogan NJ, Dover J, Erdjument-Bromage H, Tempst P, Johnston M, Greenblatt JF, Shilatifard A (2001) COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc Natl Acad Sci U S A 98:12902–12907. doi:10.1073/pnas.231473398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mohan M, Herz H-M, Takahashi Y-H, Lin C, Lai KC, Zhang Y, Washburn MP, Florens L, Shilatifard A (2010) Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-containing complex (DotCom). Genes Dev 24:574–589. doi:10.1101/gad.1898410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mohan M, Herz H-M, Smith ER, Zhang Y, Jackson J, Washburn MP, Florens L, Eissenberg JC, Shilatifard A (2011) The COMPASS family of H3K4 methylases in Drosophila. Mol Cell Biol 31:4310–4318. doi:10.1128/MCB.06092-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mohn F, Weber M, Rebhan M, Roloff TC, Richter J, Stadler MB, Bibel M, Schübeler D (2008) Lineage-Specific Polycomb Targets and De Novo DNA Methylation Define Restriction and Potential of Neuronal Progenitors. Mol Cell 30:755–766. doi:10.1016/j.molcel.2008.05.007

    Article  CAS  PubMed  Google Scholar 

  • Mulinare J, Cordero JF, Erickson JD, Berry RJ (1988) Periconceptional use of multivitamins and the occurrence of neural tube defects. JAMA, J Am Med Assoc 260:3141–3145

    Article  CAS  Google Scholar 

  • Neale BM, Kou Y, Liu L, Ma’ayan A, Samocha KE, Sabo A, Lin C-F, Stevens C, Wang L-S, Makarov V, Polak P, Yoon S, Maguire J, Crawford EL, Campbell NG, Geller ET, Valladares O, Schafer C, Liu H, Zhao T, Cai G, Lihm J, Dannenfelser R, Jabado O, Peralta Z, Nagaswamy U, Muzny D, Reid JG, Newsham I, Wu Y, Lewis L, Han Y, Voight BF, Lim E, Rossin E, Kirby A, Flannick J, Fromer M, Shakir K, Fennell T, Garimella K, Banks E, Poplin R, Gabriel S, DePristo M, Wimbish JR, Boone BE, Levy SE, Betancur C, Sunyaev S, Boerwinkle E, Buxbaum JD, Cook EH Jr, Devlin B, Gibbs RA, Roeder K, Schellenberg GD, Sutcliffe JS, Daly MJ (2012) Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485:242–245. doi:10.1038/nature11011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, Beck AE, Tabor HK, Cooper GM, Mefford HC, Lee C, Turner EH, Smith JD, Rieder MJ, Yoshiura K, Matsumoto N, Ohta T, Niikawa N, Nickerson DA, Bamshad MJ, Shendure J (2010) Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 42:790–793. doi:10.1038/ng.646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Niwa H (2007) How is pluripotency determined and maintained? Dev Camb Engl 134:635–646. doi:10.1242/dev.02787

    CAS  Google Scholar 

  • O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, Levy R, Ko A, Lee C, Smith JD, Turner EH, Stanaway IB, Vernot B, Malig M, Baker C, Reilly B, Akey JM, Borenstein E, Rieder MJ, Nickerson DA, Bernier R, Shendure J, Eichler EE (2012) Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485:246–250. doi:10.1038/nature10989

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ooga M, Inoue A, Kageyama S, Akiyama T, Nagata M, Aoki F (2008) Changes in H3K79 methylation during preimplantation development in mice. Biol Reprod 78:413–424. doi:10.1095/biolreprod.107.063453

    Article  CAS  PubMed  Google Scholar 

  • Outchkourov NS, Muiño JM, Kaufmann K, van Ijcken WFJ, Koerkamp MJG, van Leenen D, de Graaf P, Holstege FCP, Grosveld FG, Timmers HTM (2013) Balancing of Histone H3K4 Methylation States by the Kdm5c/SMCX Histone Demethylase Modulates Promoter and Enhancer Function. Cell Rep 3:1071–1079. doi:10.1016/j.celrep.2013.02.030

    Article  CAS  PubMed  Google Scholar 

  • Pasini D, Hansen KH, Christensen J, Agger K, Cloos PAC, Helin K (2008) Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and Polycomb-Repressive Complex 2. Genes Dev 22:1345–1355. doi:10.1101/gad.470008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pereira JD, Sansom SN, Smith J, Dobenecker M-W, Tarakhovsky A, Livesey FJ (2010) Ezh2, the histone methyltransferase of PRC2, regulates the balance between self-renewal and differentiation in the cerebral cortex. Proc Natl Acad Sci U S A 107:15957–15962. doi:10.1073/pnas.1002530107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peters AHFM, Mermoud JE, O’Carroll D, Pagani M, Schweizer D, Brockdorff N, Jenuwein T (2002) Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. Nat Genet 30:77–80. doi:10.1038/ng789

    Article  CAS  PubMed  Google Scholar 

  • Rai K, Jafri IF, Chidester S, James SR, Karpf AR, Cairns BR, Jones DA (2009) Dnmt3 and G9a Cooperate for Tissue-specific Development in Zebrafish. J Biol Chem 285:4110–4121. doi:10.1074/jbc.M109.073676

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Roopra A, Qazi R, Schoenike B, Daley TJ, Morrison JF (2004) Localized domains of G9a-mediated histone methylation are required for silencing of neuronal genes. Mol Cell 14:727–738

    Article  CAS  PubMed  Google Scholar 

  • Sanders SL, Portoso M, Mata J, Bähler J, Allshire RC, Kouzarides T (2004) Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 119:603–614. doi:10.1016/j.cell.2004.11.009

    Article  CAS  PubMed  Google Scholar 

  • Schmitz SU, Albert M, Malatesta M, Morey L, Johansen JV, Bak M, Tommerup N, Abarrategui I, Helin K (2011) Jarid1b targets genes regulating development and is involved in neural differentiation. EMBO J 30:4586–4600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schübeler D, MacAlpine DM, Scalzo D, Wirbelauer C, Kooperberg C, van Leeuwen F, Gottschling DE, O’Neill LP, Turner BM, Delrow J, Bell SP, Groudine M (2004) The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev 18:1263–1271. doi:10.1101/gad.1198204

    Article  PubMed Central  PubMed  Google Scholar 

  • Schulze JM, Jackson J, Nakanishi S, Gardner JM, Hentrich T, Haug J, Johnston M, Jaspersen SL, Kobor MS, Shilatifard A (2009) Linking cell cycle to histone modifications: SBF and H2B monoubiquitination machinery and cell-cycle regulation of H3K79 dimethylation. Mol Cell 35:626–641. doi:10.1016/j.molcel.2009.07.017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shanower GA, Muller M, Blanton JL, Honti V, Gyurkovics H, Schedl P (2005) Characterization of the grappa gene, the Drosophila histone H3 lysine 79 methyltransferase. Genetics 169:173–184. doi:10.1534/genetics.104.033191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sher F, Boddeke E, Copray S (2011) Ezh2 expression in astrocytes induces their dedifferentiation toward neural stem cells. Cell Reprogramming 13:1–6. doi:10.1089/cell.2010.0052

    Article  CAS  Google Scholar 

  • Sher F, Boddeke E, Olah M, Copray S (2012) Dynamic Changes in Ezh2 Gene Occupancy Underlie Its Involvement in Neural Stem Cell Self-Renewal and Differentiation towards Oligodendrocytes. PLoS One 7:e40399. doi:10.1371/journal.pone.0040399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sher F, Rößler R, Brouwer N, Balasubramaniyan V, Boddeke E, Copray S (2008) Differentiation of neural stem cells into oligodendrocytes: involvement of the polycomb group protein Ezh2. Stem Cells 26:2875–2883

    Article  CAS  PubMed  Google Scholar 

  • Shulha HP, Cheung I, Guo Y, Akbarian S, Weng Z (2013) Coordinated Cell Type–Specific Epigenetic Remodeling in Prefrontal Cortex Begins before Birth and Continues into Early Adulthood. PLoS Genet 9:e1003433. doi:10.1371/journal.pgen.1003433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smithells RW, Sheppard S, Schorah CJ, Seller MJ, Nevin NC, Harris R, Read AP, Fielding DW, Walker S (1981) Vitamin supplementation and neural tube defects. Lancet 2:1425

    Article  CAS  PubMed  Google Scholar 

  • Song M-R, Ghosh A (2004) FGF2-induced chromatin remodeling regulates CNTF-mediated gene expression and astrocyte differentiation. Nat Neurosci 7:229–235. doi:10.1038/nn1192

    Article  PubMed  CAS  Google Scholar 

  • Spyropoulou A, Piperi C, Adamopoulos C, Papavassiliou AG (2012) Deregulated Chromatin Remodeling in the Pathobiology of Brain Tumors. NeuroMolecular Med 15:1–24. doi:10.1007/s12017-012-8205-y

    Article  CAS  Google Scholar 

  • Steger DJ, Lefterova MI, Ying L, Stonestrom AJ, Schupp M, Zhuo D, Vakoc AL, Kim J-E, Chen J, Lazar MA, Blobel GA, Vakoc CR (2008) DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol Cell Biol 28:2825–2839. doi:10.1128/MCB.02076-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun G, Alzayady K, Stewart R, Ye P, Yang S, Li W, Shi Y (2010) Histone Demethylase LSD1 Regulates Neural Stem Cell Proliferation. Mol Cell Biol 30:1997–2005. doi:10.1128/MCB.01116-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tahiliani M, Mei P, Fang R, Leonor T, Rutenberg M, Shimizu F, Li J, Rao A, Shi Y (2007) The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation. Nature 447:601–605. doi:10.1038/nature05823

    Article  CAS  PubMed  Google Scholar 

  • Tan S-L, Nishi M, Ohtsuka T, Matsui T, Takemoto K, Kamio-Miura A, Aburatani H, Shinkai Y, Kageyama R (2012) Essential roles of the histone methyltransferase ESET in the epigenetic control of neural progenitor cells during development. Development 139:3806–3816. doi:10.1242/dev.082198

    Article  CAS  PubMed  Google Scholar 

  • Tatton-Brown K, Hanks S, Ruark E, Zachariou A, Duarte SDV, Ramsay E, Snape K, Murray A, Perdeaux ER, Seal S (2011) Germline mutations in the oncogene EZH2 cause Weaver syndrome and increased human height. Oncotarget 2:1127–1133

    PubMed Central  PubMed  Google Scholar 

  • Tatum D, Li S (2011) Evidence that the histone methyltransferase Dot1 mediates global genomic repair by methylating histone H3 on lysine 79. J Biol Chem 286:17530–17535. doi:10.1074/jbc.M111.241570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsukada Y, Ishitani T, Nakayama KI (2010) KDM7 is a dual demethylase for histone H3 Lys 9 and Lys 27 and functions in brain development. Genes Dev 24:432–437. doi:10.1101/gad.1864410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Leeuwen F, Gafken PR, Gottschling DE (2002) Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109:745–756

    Article  PubMed  Google Scholar 

  • Vogel T, Stoykova A, Gruss P (2006) Differential expression of polycomb repression complex 1 (PRC1) members in the developing mouse brain reveals multiple complexes. Dev Dyn 235:2574–2585. doi:10.3758/BF03194004

  • Wagner EJ, Carpenter PB (2012) Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol 13:115–126. doi:10.1038/nrm3274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang P, Lin C, Smith ER, Guo H, Sanderson BW, Wu M, Gogol M, Alexander T, Seidel C, Wiedemann LM, Ge K, Krumlauf R, Shilatifard A (2009) Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II. Mol Cell Biol 29:6074–6085. doi:10.1128/MCB.00924-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu X, Hoang S, Mayo MW, Bekiranov S (2010) Application of machine learning methods to histone methylation ChIP-Seq data reveals H4R3me2 globally represses gene expression. BMC Bioinformatics 11:396. doi:10.1186/1471-2105-11-396

    PubMed Central  PubMed  Google Scholar 

  • Yang L, Lin C, Jin C, Yang JC, Tanasa B, Li W, Merkurjev D, Ohgi KA, Meng D, Zhang J, Evans CP, Rosenfeld MG (2013) lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature 500:598–602. doi:10.1038/nature12451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Q, Xue P, Li H, Bao Y, Wu L, Chang S, Niu B, Yang F, Zhang T (2013) Histone modification mapping in human brain reveals aberrant expression of histone H3 lysine 79 dimethylation in neural tube defects. Neurobiol Dis 54:404–413. doi:10.1016/j.nbd.2013.01.014

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wen H, Shi X (2011) Lysine methylation: beyond histones. Acta Biochim Biophys Sin 44:14–27. doi:10.1093/abbs/gmr100

    Article  CAS  Google Scholar 

  • Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15:2343–2360. doi:10.1101/gad.927301

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Rank G, Tan YT, Li H, Moritz RL, Simpson RJ, Cerruti L, Curtis DJ, Patel DJ, Allis CD, Cunningham JM, Jane SM (2009) PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat Struct Mol Biol 16:304–311. doi:10.1038/nsmb.1568

    Article  CAS  PubMed  Google Scholar 

  • Zhou VW, Goren A, Bernstein BE (2011) Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 12:7–18. doi:10.1038/nrg2905

    Article  PubMed  CAS  Google Scholar 

  • Zhu B, Zheng Y, Pham A-D, Mandal SS, Erdjument-Bromage H, Tempst P, Reinberg D (2005) Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation. Mol Cell 20:601–611. doi:10.1016/j.molcel.2005.09.025

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors thank P.P. Bovio and S.C. Weise for graphical assistance, Dr. C.J. Hindley for language editing and the reviewers and editors for critical comments and fruitful discussions that have helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Hacker.

Additional information

The authors are grateful to the grantholder, Prof. T. Vogel and the SFB992 Medical Epigenetics “MEDEP” (Deutsche Forschungsgemeinschaft) for funding our research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roidl, D., Hacker, C. Histone methylation during neural development. Cell Tissue Res 356, 539–552 (2014). https://doi.org/10.1007/s00441-014-1842-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1842-8

Key words

Navigation