Skip to main content
Log in

Environmental and genetic control of insect abundance and herbivory along a forest elevational gradient

  • Plant-Animal interactions - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Environmental conditions and plant genotype may influence insect herbivory along elevational gradients. Plant damage would decrease with elevation as temperature declines to suboptimal levels for insects. However, host plants at higher elevations may exhibit traits that either reduce or enhance leaf quality to insects, with uncertain net effects on herbivory. We examined folivory, insect abundance and leaf traits along six replicated elevational ranges in Nothofagus pumilio forests of the northern Patagonian Andes, Argentina. We also conducted a reciprocal transplant experiment between low- and high-elevation sites to test the extent of environmental and plant genetic control on insect abundance and folivory. We found that insect abundance, leaf size and specific leaf area decreased, whereas foliar phosphorous content increased, from low-, through mid- to high-elevation sites. Path analysis indicated that changes in both insect abundance and leaf traits were important in reducing folivory with increasing elevation and decreasing mean temperature. At both planting sites, plants from a low-elevation origin experienced higher damage and supported greater insect loads than plants from a high-elevation origin. The differences in leaf damage between sites were twofold larger than those between plant origins, suggesting that local environment was more important than host genotype in explaining folivory patterns. Different folivore guilds exhibited qualitatively similar responses to elevation. Our results suggest an increase in insect folivory on high-elevation N. pumilio forests under future climate warming scenarios. However, in the short-term, folivory increases might be smaller than expected from insect abundance only because at high elevations herbivores would encounter more resistant tree genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ackerly DD, Reich PB (1999) Convergence and correlations among leaf size and function in seed plants: a comparative test using independent contrasts. Am J Bot 86:1272–1281

    Article  PubMed  CAS  Google Scholar 

  • Agrawal AA (2007) Macroevolution of plant defense strategies. Trends Ecol Evol 22:104–109

    Article  Google Scholar 

  • Aizen MA, Patterson WA III (1995) Leaf phenology and herbivory along a temperature gradient: a spatial test of the phenological window hypothesis. J Veg Sci 6:543–550

    Article  Google Scholar 

  • Alonso C (1999) Variation in herbivory by Yponomeuta mahalebella on its host plant Prunus mahaleb along an elevational gradient. Ecol Entomol 24:371–379

    Article  Google Scholar 

  • Andrew NR, Hughes L (2007) Potential host colonization by insect herbivores in a warmer climate: a transplant experiment. Global Change Biol 13:1539–1549

    Article  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biol 8:1–16

    Article  Google Scholar 

  • Barrera MD, Frangi JL, Richter LL, Perdomo MH, Pinedo LB (2000) Structural and functional changes in Nothofagus pumilio forests along an altitudinal gradient in Tierra del Fuego, Argentina. J Veg Sci 11:179–188

    Article  Google Scholar 

  • Barros VR, Cordon VH, Moyano CL, Mendez RJ, Forquera JC, Pizzio O (1983) Internal report. Cartas de precipitación de la zona oeste de las provincias de Río Negro y Neuquén. Fac. Cs. Agr. Universidad Nacional del Comahue, Rio Negro, Argentina

    Google Scholar 

  • Basset Y (1992) Host specificity of arboreal and free-living insect herbivores in rain forests. Biol J Linn Soc 47:115–133

    Article  Google Scholar 

  • Brenes-Arguedas T, Coley PD, Kursar TA (2009) Pests vs. drought as determinants of plant distribution along a tropical rainfall gradient. Ecology 90:1751–1761

    Article  PubMed  Google Scholar 

  • Brown VK, Lawton JH, Grubb PJ (1991) Herbivory and the evolution of leaf size and shape. Philos Trans R Soc Lond B 333:265–272 discussion

    Article  Google Scholar 

  • Chapin FS, Oechel WC (1983) Photosynthesis, respiration, and phosphate absorption by Carex aquatilis ecotypes along latitudinal and local environmental gradients. Ecology 64:743–751

    Article  CAS  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon WT, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 847–940

    Google Scholar 

  • Coley PD (1987) Interspecific variation in plant anti-herbivore properties: the role of habitat quality and rate of disturbance. New Phytol 106:251–263

    Article  Google Scholar 

  • Coley PD, Barone JA (1996) Herbivory and plant defenses in tropical forests. Annu Rev Ecol Syst 27:305–335

    Article  Google Scholar 

  • Coley PD, Bateman ML, Kursar TA (2006) The effects of plant quality on caterpillar growth and defense against natural enemies. Oikos 115:219–228

    Article  Google Scholar 

  • Coughenour MB (1985) Graminoid responses to grazing by large herbivores: adaptations, exaptations, and interacting processes. Ann Mo Bot Gard 72:852–863

    Article  Google Scholar 

  • Currano ED, Wilf P, Wing SL, Labandeira CC, Lovelock EC, Royer DL (2008) Sharply increased insect herbivory during the Paleocene–Eocene thermal maximum. Proc Natl Acad Sci USA 105:1960–1964

    Article  PubMed  CAS  Google Scholar 

  • Daniels LD, Veblen TT (2004) Spatiotemporal influences of climate on altitudinal treeline in northern Patagonia. Ecology 85:1284–1296

    Article  Google Scholar 

  • Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA 105:6668–6672

    Article  PubMed  CAS  Google Scholar 

  • Diemer M (1996) The incidence of herbivory in high-elevation populations of Ranunculus glacialis: a re-evaluation of stress-tolerance in alpine environments. Oikos 75:486–492

    Article  Google Scholar 

  • Erelli MC, Ayres MP, Eaton GK (1998) Altitudinal patterns in host suitability for forest insects. Oecologia 117:133–142

    Article  Google Scholar 

  • Fine PVA, Mesones I, Coley PD (2004) Herbivores promote habitat specialization by trees in Amazonian forests. Science 305:663–665

    Article  PubMed  CAS  Google Scholar 

  • Folgarait PJ, Davidson DW (1994) Antiherbivore defenses of myrmecophytic Cecropia under different light regimes. Oikos 71:305–320

    Article  Google Scholar 

  • Galen C (1990) Limits to the distributions of alpine tundra plants: herbivores and the alpine skypilot, Polemonium viscosum. Oikos 59:355–358

    Article  Google Scholar 

  • Garibaldi LA, Kitzberger T, Mazía CN, Chaneton EJ (2010) Nutrient supply and bird predation additively control insect herbivory and tree growth in two contrasting forest habitats. Oikos 119:337–349

    Article  Google Scholar 

  • González ME, Donoso CZ, Ovalle P, Martínez-Pastur G (2006) Nothofagus pumilio (Poep. et Endl) Krasser. Lenga, roble blanco, leñar, roble de Tierra del Fuego. In: Donoso CZ (ed) Las especies arbóreas de los bosques templados de Chile y Argentina. Autoecología. M. Cuneo Ediciones, Valdivia, pp 486–500

    Google Scholar 

  • Hagen SB, Jepsen JU, Ims RA, Yoccoz NG (2007) Shifting altitudinal distribution of outbreak zones of winter moth Operophtera brumata in sub-arctic birch forest: a response to recent climate warming? Ecography 30:299–307

    Google Scholar 

  • Heinemann K, Kitzberger T, Veblen TT (2000) Influences of gap microheterogeneity on the regeneration of Nothofagus pumilio in a xeric old-growth forest of northwestern Patagonia, Argentina. Can J For Res 30:25–31

    Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335

    Article  Google Scholar 

  • Herrera CM, Bazaga P (2008) Adding a third dimension to the edge of a species’ range: altitude and genetic structuring in mountainous landscapes. Heredity 100:275–285

    Article  PubMed  CAS  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hodkinson ID (1997) Progressive restriction of host plant exploitation along a climatic gradient: the willow psyllid Cacopsylla groenlandica in Greenland. Ecol Entomol 22:47–54

    Article  Google Scholar 

  • Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev Camb Philos Soc 80:489–513

    Article  PubMed  Google Scholar 

  • Huberty AF, Denno RF (2004) Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology 85:1383–1398

    Article  Google Scholar 

  • Kagata H, Ohgushi T (2001) Clutch size adjustment of a leaf-mining moth (Lyonetiidae: Lepidoptera) in response to resource availability. Ann Entomol Soc Am 95:213–217

    Article  Google Scholar 

  • Kelly CA (1998) Effects of variable life history and insect herbivores on reproduction in Solidago macrophylla (Asteraceae) on an elevational gradient. Am Midl Nat 139:243–254

    Article  Google Scholar 

  • Kitzberger T, Raffaele E, Heinemann K, Mazzarino MJ (2005) Effects of fire severity in a north Patagonian subalpine forest. J Veg Sci 16:5–12

    Article  Google Scholar 

  • Koptur S (1985) Alternative defenses against herbivores in Inga (Fabaceae: Mimosoideae) over an elevational gradient. Ecology 66:1639–1650

    Article  Google Scholar 

  • Körner C (1989) The nutritional status of plants from high altitudes. Oecologia 81:379–391

    Google Scholar 

  • Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574

    Article  PubMed  Google Scholar 

  • Kursar TA, Coley PD (2003) Convergence in defense syndromes of young leaves in tropical rainforests. Biochem Syst Ecol 31:929–949

    Article  CAS  Google Scholar 

  • Low C, Wood SN, Nisbet RG (2009) The effects of group size, leaf size, and density on the performance of a leaf-mining moth. J Anim Ecol 78:152–160

    Article  PubMed  Google Scholar 

  • Marquis RJ, Lill JT, Piccinni A (2002) Effect of plant architecture on colonization and damage by leaftying caterpillars of Quercus alba. Oikos 99:531–537

    Article  Google Scholar 

  • Mazía CM, Kitzberger T, Chaneton EJ (2004) Interannual changes in folivory and bird insectivory along a natural productivity gradient in northern Patagonian forests. Ecography 27:29–40

    Article  Google Scholar 

  • Mazía CM, Chaneton EJ, Kitzberger T, Garibaldi LA (2009) Variable strength of top-down effects in Nothofagus forests: bird predation and insect herbivory during an ENSO event. Aust Ecol 34:359–367

    Google Scholar 

  • McQuillan PB (1993) Nothofagus (Fagaceae) and its invertebrate fauna—an overview and preliminary synthesis. Biol J Linn Soc 49:317–354

    Article  Google Scholar 

  • Mermoz M, Kitzberger T, Veblen TT (2005) Landscape influences on occurrence and spread of wildfires in Patagonian forests and shrublands. Ecology 86:2705–2715

    Article  Google Scholar 

  • Moles AT, Westoby M (2000) Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? Oikos 90:517–524

    Article  Google Scholar 

  • Mopper S, Simberloff D (1995) Differential herbivory in an oak population: the role of plant phenology and insect performance. Ecology 76:1233–1241

    Article  Google Scholar 

  • Novotny V, Basset Y (2005) Host specificity of insect herbivores in tropical forests. Proc R Soc Lond B 272:1083–1090

    Article  Google Scholar 

  • Ohsawa T, Ide Y (2008) Global patterns of genetic variation in plant species along vertical and horizontal gradients on mountains. Glob Ecol Biogeogr 17:152–163

    Article  Google Scholar 

  • Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (2007) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Pennings SC, Ho C, Salgado CS, Więski K, Davé N, Kunza AE, Wason EL (2009) Latitudinal variation in herbivore pressure in Atlantic Coast salt marshes. Ecology 90:183–195

    Article  PubMed  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, the R Core team (2009) nlme: linear and nonlinear mixed effects models. R package version 3:1–96

    Google Scholar 

  • Premoli AC (2003) Isozyme polymorphisms provide evidence of clinal variation with elevation in Nothofagus pumilio. J Hered 94:218–226

    Article  PubMed  CAS  Google Scholar 

  • Premoli AC (2004) Variación en Nothofagus pumilio (Poepp. et Ende.) Krasser (Lenga). In: Donoso CA, Premoli AC, Gallo L, Iliniza R (eds) Variación intraespecífica en las especies arbóreas de los bosques templados de Chile y Argentina. Editorial Universitaria, Santiago de Chile, pp 145–171

    Google Scholar 

  • Premoli AC, Brewer CA (2007) Environmental vs. genetically driven variation in ecophysiological traits of Nothofagus pumilio from contrasting elevations. Aust J Bot 55:585–591

    Article  Google Scholar 

  • Premoli AC, Raffaele E, Mathiasen P (2007) Morphological and phenological differences in Nothofagus pumilio from contrasting elevations: evidence from a common garden. Aust Ecol 32:515–523

    Article  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org

  • Rush VE (1993) Altitudinal variation in the phenology of Nothofagus pumilio in Argentina. Rev Chil His Nat 66:131–141

    Google Scholar 

  • Scheidel U, Röhl S, Bruelheide H (2003) Altitudinal gradients of generalist and specialist herbivory on three montane Asteraceae. Acta Oecol 24:275–283

    Article  Google Scholar 

  • Shipley B (2000) Cause and correlation in biology: a user’s guide to path analysis structural equations and causal inference. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sinclair RJ, Hughes L (2010) Leaf miners: the hidden herbivores. Aust Ecol 35:300–313

    Article  Google Scholar 

  • Spagarino C, Martínez Pastur G, Peri PL (2001) Changes in Nothofagus pumilio forest biodiversity during the forest management cycle-1-Insects. Biodiv Conserv 10:2077–2092

    Article  Google Scholar 

  • Srur AM, Villalba R, Villagra PE, Hertel D (2008) Influencias de las variaciones en el clima y en la concentración de CO2 sobre el crecimiento de Nothofagus pumilio en la Patagonia. Rev Chil His Nat 81:239–256

    Google Scholar 

  • Stamp N (2003) Out of the quagmire of plant defense hypotheses. Q Rev Biol 78:23–55

    Article  PubMed  Google Scholar 

  • Suzuki S (1998) Leaf phenology, seasonal changes in leaf quality and herbivory pattern of Sanguisorba tenuifolia at different altitudes. Oecologia 117:169–176

    Article  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

    Article  PubMed  Google Scholar 

  • Veblen TT, Donoso C, Kitzberger T, Rebertus AJ (1996) Ecology of southern Chilean and Argentinean Nothofagus forest. In: Veblen TT, Hill RS, Read J (eds) The ecology and biogeography of Nothofagus forests. Yale University Press, London, pp 293–353

    Google Scholar 

  • Whittaker JB, Tribe NP (1996) An altitudinal transect as an indicator of responses of spittlebug (Auchenorrhyncha: Cercopidae) to climate change. Eur J Entomol 93:319–324

    Google Scholar 

  • Wilf P (2008) Insect-damaged fossil leaves record food web response to ancient climate change and extinction. New Phytol 178:486–502

    Article  PubMed  CAS  Google Scholar 

  • Williams IS (1999) Slow-growth, high-mortality—a general hypothesis, or is it? Ecol Entomol 24:490–495

    Article  Google Scholar 

  • Zuur AF, Ieon EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R, 1st edn. Springer, New York

    Book  Google Scholar 

  • Zvereva EL, Kozlov MV (2006) Consequences of simultaneous elevation of carbon dioxide and temperature for plant–herbivore interactions: a metaanalysis. Global Change Biol 12:27–41

    Article  Google Scholar 

Download references

Acknowledgments

We thank Andrea Premoli and Paula Mathiasen for allowing us to use the reciprocal transplant experiment and for their thoughtful comments on a previous draft of the manuscript. We are also grateful to Adriana Ruggiero, Claudio Ziperovich, Juan Karlanian, Mariana Dondo, Teresa del Val, Soledad Díaz and Victoria Werenkraut for help at various stages. Alexandra Klein and two anonymous reviewers provided valuable comments on the manuscript. This study was funded by Agencia Nacional de Promoción Científica y Tecnológica (BID 1728 OC-AR PICT Redes 331 and 284).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas A. Garibaldi.

Additional information

Communicated by Christian Wirth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 6.15 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garibaldi, L.A., Kitzberger, T. & Chaneton, E.J. Environmental and genetic control of insect abundance and herbivory along a forest elevational gradient. Oecologia 167, 117–129 (2011). https://doi.org/10.1007/s00442-011-1978-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-011-1978-0

Keywords

Navigation