Skip to main content

Advertisement

Log in

Trait-based community assembly of understory palms along a soil nutrient gradient in a lower montane tropical forest

  • Community ecology - Methods Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Two opposing niche processes have been shown to shape the relationship between ecological traits and species distribution patterns: habitat filtering and competitive exclusion. Habitat filtering is expected to select for similar traits among coexisting species that share similar habitat conditions, whereas competitive exclusion is expected to limit the ecological similarity of coexisting species leading to trait differentiation. Here, we explore how functional traits vary among 19 understory palm species that differ in their distribution across a gradient of soil resource availability in lower montane forest in western Panama. We found evidence that habitat filtering influences species distribution patterns and shifts community-wide and intraspecific trait values. Differences in trait values among sites were more strongly related to soil nutrient availability than to variation in light or rainfall. Soil nutrient availability explained a significant amount of variation in site mean trait values for 4 of 15 functional traits. Site mean values of leaf nitrogen and phosphorus increased 37 and 64%, respectively, leaf carbon:nitrogen decreased 38%, and specific leaf area increased 29% with increasing soil nutrient availability. For Geonoma cuneata, the only species occurring at all sites, leaf phosphorus increased 34% and nitrogen:phosphorus decreased 42% with increasing soil nutrients. In addition to among-site variation, most morphological and leaf nutrient traits differed among coexisting species within sites, suggesting these traits may be important for niche differentiation. Hence, a combination of habitat filtering due to turnover in species composition and intraspecific variation along a soil nutrient gradient and site-specific niche differentiation among co-occurring species influences understory palm community structure in this lower montane forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackerly DD, Cornwell WK (2007) A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecol Lett 10:135–145

    Article  PubMed  CAS  Google Scholar 

  • Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    Article  CAS  Google Scholar 

  • Andersen K (2009) An experimental assessment of soil-based habitat partitioning in understory palms. PhD dissertation, University of Illinois, Urbana

  • Andersen KM, Dalling JW, Turner BL (2010a) Soil-based habitat partitioning in understory palms in lower montane forests. J Biogeogr 37:278–289

    Article  Google Scholar 

  • Andersen KM, Corre MD, Turner BL, Dalling JW (2010b) Plant–soil associations in a lower montane tropical forest: physiological acclimation and herbivore-mediated responses to nitrogen addition. Funct Ecol 24:1171–1180

    Article  Google Scholar 

  • Ashton IW, Miller AE, Bowman WD, Suding KN (2010) Niche complementarity due to plasticity in resource use: plant partitioning of chemical n forms. Ecology 91:3252–3260

    Article  PubMed  Google Scholar 

  • Baltzer JL, Thomas SC (2010) A second dimension to the leaf economics spectrum predicts edaphic habitat association in a tropical forest. PLoS ONE 5:e13163

    Article  Google Scholar 

  • Baltzer JL, Thomas SC, Nilus R, Burslem D (2005) Edaphic specialization in tropical trees: physiological correlates and responses to reciprocal transplantation. Ecology 86:3063–3077

    Article  Google Scholar 

  • Baraloto C, Paine CET, Patino S, Bonal D, Herault B, Chave J (2010) Functional trait variation and sampling strategies in species-rich plant communities. Funct Ecol 24:208–216

    Article  Google Scholar 

  • Bazzaz FA (1991) Habitat selection in plants. Am Nat 137:S116–S130

    Article  Google Scholar 

  • Cavelier J, Solis D, Jaramillo MA (1996) Fog interception in montane forest across the Central Cordillera of Panama. J Trop Ecol 12:357–369

    Article  Google Scholar 

  • Cavender-Bares J, Kitajima K, Bazzaz FA (2004) Multiple trait associations in relation to habitat differentiation among 17 Floridian oak species. Ecol Monogr 74:635–662

    Article  Google Scholar 

  • Cernusak LA, Winter K, Aranda J, Turner BL, Marshall JD (2007) Transpiration efficiency of a tropical pioneer tree (Ficus insipida) in relation to soil fertility. J Exp Bot 58:3549–3566

    Article  PubMed  CAS  Google Scholar 

  • Chapin FS (1980) The mineral-nutrition of wild plants. Annu Rev Ecol Syst 11:233–260

    Article  CAS  Google Scholar 

  • Chapin FS, Autumn K, Pugnaire F (1993) Evolution of suites of traits in response to environmental-stress. Am Nat 142:S78–S92

    Article  Google Scholar 

  • Coley PD, Bryant JP, Chapin FS (1985) Resource availability and plant antiherbivore defense. Science 230:895–899

    Article  PubMed  CAS  Google Scholar 

  • Cornwell WK, Ackerly DD (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monogr 79:109–126

    Article  Google Scholar 

  • Cornwell WK, Ackerly DD (2010) A link between plant traits and abundance: evidence from coastal California woody plants. J Ecol 98:814–821

    Article  Google Scholar 

  • Corre MD, Veldkamp E, Arnold J, Wright SJ (2010) Impact of elevated N input on soil N cycling and losses in old-growth lowland and montane forests in Panama. Ecology 91:1715–1729

    Article  PubMed  Google Scholar 

  • Craine JM, Tilman D, Wedin D, Reich P, Tjoelker M, Knops J (2002) Functional traits, productivity and effects on nitrogen cycling of 33 grassland species. Funct Ecol 16:563–574

    Article  Google Scholar 

  • Cunningham SA, Summerhayes B, Westoby M (1999) Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecol Monogr 69:569–588

    Article  Google Scholar 

  • de Nevers G, Grayum MH (1998) Notes on Geonoma in Mesoamerica. Principes 42:94–103

    Google Scholar 

  • Diaz S, Cabido M (1997) Plant functional types and ecosystem function in relation to global change. J Veg Sci 8:463–474

    Google Scholar 

  • Diaz S, Cabido M, Casanoves F (1998) Plant functional traits and environmental filters at a regional scale. J Veg Sci 9:113–122

    Article  Google Scholar 

  • Doumenge C, Gilmour D, Perez M, Blockhus J (1995) Tropical montane cloud forests. Conservation status and management issues. In: Hamilton L, Juvik J, Scatena F (eds) Tropical montane cloud forests. Springer, New York, pp 24–37

    Google Scholar 

  • Engelbrecht BMJ, Comita LS, Condit R, Kursar TA, Tyree MT, Turner BL, Hubbell SP (2007) Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447:80–82

    Article  PubMed  CAS  Google Scholar 

  • Falster DS, Westoby M (2005) Alternative height strategies among 45 dicot rain forest species from tropical Queensland, Australia. J Ecol 93:521–535

    Article  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  CAS  Google Scholar 

  • Farris-Lopez K, Denslow JS, Moser B, Passmore H (2004) Influence of a common palm, Oenocarpus mapora, on seedling establishment in a tropical moist forest in panama. J Trop Ecol 20:429–438

    Article  Google Scholar 

  • Fine PVA, Mesones I, Coley PD (2004) Herbivores promote habitat specialization by trees in Amazonian forests. Science 305:663–665

    Article  PubMed  CAS  Google Scholar 

  • Fine PVA, Miller ZJ, Mesones I, Irazuzta S, Appel HM, Stevens MHH, Saaksjarvi I, Schultz LC, Coley PD (2006) The growth-defense trade-off and habitat specialization by plants in Amazonian forests. Ecology 87:S150–S162

    Article  PubMed  Google Scholar 

  • Foster P (2001) The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Sci Rev 55:73–106

    Article  Google Scholar 

  • Harms KE, Powers JS, Montgomery RA (2004) Variation in small sapling density, understory cover, and resource availability in four neotropical forests. Biotropica 36:40–51

    Google Scholar 

  • Henderson A (2005) A multivariate study of Calyptrogyne (Palmae). Syst Bot 30:60–83

    Article  Google Scholar 

  • Henderson A (2011) A revision of Geonoma (arecaceae). Phytotaxa 17:1–271

    Google Scholar 

  • Henderson A, Galeano G, Bernal R (1995) Field guide to the palms of the Americas. Princeton University Press, Princeton

    Google Scholar 

  • Hodel DR (1995) Three new species of Chamaedorea from Panama. Principes 39:14–20

    Google Scholar 

  • Hogberg P (1997) Tansley review No 95. 15N natural abundance in soil–plant systems. New Phytol 137:179–203

    Article  Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Houlton BZ, Sigman DM, Schuur EAG, Hedin LO (2007) A climate-driven switch in plant nitrogen acquisition within tropical forest communities. Proc Natl Acad Sci USA 104:8902–8906

    Article  PubMed  CAS  Google Scholar 

  • Hulshof CM, Swenson NG (2010) Variation in leaf functional trait values within and across individuals and species: an example from a Costa Rican dry forest. Funct Ecol 24:217–223

    Article  Google Scholar 

  • Jung V, Violle C, Mondy C, Hoffmann L, Muller S (2010) Intraspecific variability and trait-based community assembly. J Ecol 98:1134–1140

    Article  Google Scholar 

  • Keddy PA (1992) Assembly and response rules: two goals for predictive community ecology. J Veg Sci 3:157–164

    Article  Google Scholar 

  • Kraft NJB, Valencia R, Ackerly DD (2008) Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322:580–582

    Article  PubMed  CAS  Google Scholar 

  • Lambers H, Chapin FS, Pons TL (1998) Plant physiological ecology. Springer, New York

    Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556

    Article  Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185

    Article  PubMed  Google Scholar 

  • McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Fry B, Giblin AE, Kielland K, Kwiatkowski BL, Laundre JA, Murray G (2002) Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415:68–71

    Article  PubMed  CAS  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  • Ordoñez JC, Van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009) A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob Ecol Biogeogr 18:137–149

    Article  Google Scholar 

  • Palmiotto PA, Davies SJ, Vogt KA, Ashton MS, Vogt DJ, Ashton PS (2004) Soil-related habitat specialization in dipterocarp rain forest tree species in Borneo. J Ecol 92:609–623

    Article  Google Scholar 

  • Paoli GD (2006) Divergent leaf traits among congeneric tropical trees with contrasting habitat associations on Borneo. J Trop Ecol 22:397–408

    Article  Google Scholar 

  • Poorter L (1999) Growth responses of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits. Funct Ecol 13:396–410

    Article  Google Scholar 

  • Poorter L, Bongers F (2006) Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87:1733–1743

    Article  PubMed  Google Scholar 

  • Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398:611–615

    Article  CAS  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003) The evolution of plant functional variation: traits, spectra, and strategies. Int J Plant Sci 164:S143–S164

    Article  Google Scholar 

  • Sandel B, Goldstein LB, Kraft NJB, Okie JG, Shuldman MI, Ackerly DD, Cleland EE, Suding KN (2010) Contrasting trait responses in plant communities to experimental and geographic variation in precipitation. New Phytol 188:565–575

    Article  PubMed  Google Scholar 

  • Savolainen V, Anstett MC, Lexer C, Hutton I, Clarkson JJ, Norup MV, Powell MP, Springate D, Salamin N, Baker WJ (2006) Sympatric speciation in palms on an oceanic island. Nature 441:210–213

    Article  PubMed  CAS  Google Scholar 

  • Stubbs WJ, Wilson JB (2004) Evidence for limiting similarity in a sand dune community. J Ecol 92:557–567

    Article  Google Scholar 

  • Svenning JC (2001) On the role of microenvironmental heterogeneity in the ecology and diversification of neotropical rain-forest palms (Arecaceae). Bot Rev 67:1–53

    Article  Google Scholar 

  • Vormisto J, Svenning JC, Hall P, Balslev H (2004) Diversity and dominance in palm (Arecaceae) communities in terra firme forests in the western Amazon basin. J Ecol 92:577–588

    Article  Google Scholar 

  • Wang YH, Augspurger C (2004) Dwarf palms and cyclanths strongly reduce neotropical seedling recruitment. Oikos 107:619–633

    Article  Google Scholar 

  • Wedin DA, Tilman D (1990) Species effects on nitrogen cycling: a test with perennial grasses. Oecologia 84:433–441

    Google Scholar 

  • Weiher E, Clarke GDP, Keddy PA (1998) Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos 81:309–322

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M (2001) Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct Ecol 15:423–434

    Article  Google Scholar 

  • Wright IJ, Westoby M, Reich PB (2002) Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. J Ecol 90:534–543

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Smithsonian Tropical Research Institute, the National Science Foundation (DEB 0608198), and the University of Illinois at Urbana-Champaign for financial support. We are grateful to Edevelio “Bady” Garcia for field and Tania Romero and Dayana Agudo for laboratory assistance. We thank C. Augspurger, C. Baldeck, L. Cernusak, A. Corrales, J. Dawson, M. Dietz, K. Heineman, B. Steidinger and three anonymous reviewers for providing comments on earlier versions of this manuscript and V. Jung for advice on null models. This study complies with laws of the Government of Panama.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly M. Andersen.

Additional information

Communicated by Fernando Valladares.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 96 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, K.M., Endara, M.J., Turner, B.L. et al. Trait-based community assembly of understory palms along a soil nutrient gradient in a lower montane tropical forest. Oecologia 168, 519–531 (2012). https://doi.org/10.1007/s00442-011-2112-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-011-2112-z

Keywords

Navigation