Skip to main content
Log in

Hox genes and kidney development

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The adult mammalian kidney is generated by the differentiation and integration of several distinct cell types, including the nephrogenic mesenchyme, ureteric epithelium, stromal and endothelial cells. How and where these cell types are generated and what signals lead to their differentiation and integration into a functional organ system is a main focus of current studies. Herein, we review the formation of distinct cell types within the adult mammalian kidney; what is understood regarding their origin and the signaling pathways that lead to their formation and integration; morphogenetic changes the metanephric kidney undergoes during development; and what is known regarding the role of Hox genes in these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dressler GR (2006) The cellular basis of kidney development. Annu Rev Cell Dev Biol 22:509–529

    CAS  PubMed  Google Scholar 

  2. Mauch TJ, Yang G, Wright M, Smith D, Schoenwolf GC (2000) Signals from trunk paraxial mesoderm induce pronephros formation in chick intermediate mesoderm. Dev Biol 220:62–75

    CAS  PubMed  Google Scholar 

  3. Kuure S, Vuolteenaho R, Vainio S (2000) Kidney morphogenesis: cellular and molecular regulation. Mech Dev 92:31–45

    Article  CAS  PubMed  Google Scholar 

  4. Sainio K, Raatikainen-Ahokas A (1999) Mesonephric kidney–a stem cell factory? Int J Dev Biol 43:435–439

    CAS  PubMed  Google Scholar 

  5. Saxen L, Sariola H (1987) Early organogenesis of the kidney. Pediatr Nephrol 1:385–392

    CAS  PubMed  Google Scholar 

  6. Vainio S, Muller U (1997) Inductive tissue interactions, cell signaling, and the control of kidney organogenesis. Cell 90:975–978

    CAS  PubMed  Google Scholar 

  7. Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, Lee EJ, Huang SP, Saarma M, Hoffer BJ, Sariola H, Westphal H (1996) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382:73–76

    CAS  PubMed  Google Scholar 

  8. Hellmich HL, Kos L, Cho ES, Mahon KA, Zimmer A (1996) Embryonic expression of glial cell-line derived neurotrophic factor (GDNF) suggests multiple developmental roles in neural differentiation and epithelial-mesenchymal interactions. Mech Dev 54:95–105

    CAS  PubMed  Google Scholar 

  9. Moore MW, Klein RD, Farinas I, Sauer H, Armanini M, Phillips H, Reichardt LF, Ryan AM, Carver-Moore K, Rosenthal A (1996) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382:76–79

    Article  CAS  PubMed  Google Scholar 

  10. Sainio K, Suvanto P, Davies J, Wartiovaara J, Wartiovaara K, Saarma M, Arumae U, Meng X, Lindahl M, Pachnis V, Sariola H (1997) Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development 124:4077–4087

    CAS  PubMed  Google Scholar 

  11. Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382:70–73

    CAS  PubMed  Google Scholar 

  12. Cacalano G, Farinas I, Wang LC, Hagler K, Forgie A, Moore M, Armanini M, Phillips H, Ryan AM, Reichardt LF, Hynes M, Davies A, Rosenthal A (1998) GFRalpha1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron 21:53–62

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Costantini F, Shakya R (2006) GDNF/Ret signaling and the development of the kidney. BioEssays 28:117–127

    CAS  PubMed  Google Scholar 

  14. Enomoto H, Araki T, Jackman A, Heuckeroth RO, Snider WD, Johnson EM Jr, Milbrandt J (1998) GFR alpha1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron 21:317–324

    CAS  PubMed  Google Scholar 

  15. Pachnis V, Mankoo B, Costantini F (1993) Expression of the c-ret proto-oncogene during mouse embryogenesis. Development 119:1005–1017

    CAS  PubMed  Google Scholar 

  16. Schuchardt A, D'Agati V, Larsson-Blomberg L, Costantini F, Pachnis V (1994) Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367:380–383

    CAS  PubMed  Google Scholar 

  17. Schuchardt A, D'Agati V, Pachnis V, Costantini F (1996) Renal agenesis and hypodysplasia in ret-k- mutant mice result from defects in ureteric bud development. Development 122:1919–1929

    CAS  PubMed  Google Scholar 

  18. Brophy PD, Ostrom L, Lang KM, Dressler GR (2001) Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development 128:4747–4756

    CAS  PubMed  Google Scholar 

  19. Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R (1993) WT-1 is required for early kidney development. Cell 74:679–691

    CAS  PubMed  Google Scholar 

  20. Nishinakamura R, Matsumoto Y, Nakao K, Nakamura K, Sato A, Copeland NG, Gilbert DJ, Jenkins NA, Scully S, Lacey DL, Katsuki M, Asashima M, Yokota T (2001) Murine homolog of SALL1 is essential for ureteric bud invasion in kidney development. Development 128:3105–3115

    CAS  PubMed  Google Scholar 

  21. Torres M, Gomez-Pardo E, Dressler GR, Gruss P (1995) Pax-2 controls multiple steps of urogenital development. Development 121:4057–4065

    CAS  PubMed  Google Scholar 

  22. Wellik DM, Hawkes PJ, Capecchi MR (2002) Hox11 paralogous genes are essential for metanephric kidney induction. Genes Dev 16:1423–1432

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu PX, Adams J, Peters H, Brown MC, Heaney S, Maas R (1999) Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet 23:113–117

    CAS  PubMed  Google Scholar 

  24. Grieshammer U, Le M, Plump AS, Wang F, Tessier-Lavigne M, Martin GR (2004) SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell 6:709–717

    CAS  PubMed  Google Scholar 

  25. Kume T, Deng K, Hogan BL (2000) Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development 127:1387–1395

    CAS  PubMed  Google Scholar 

  26. Pepicelli CV, Kispert A, Rowitch DH, McMahon AP (1997) GDNF induces branching and increased cell proliferation in the ureter of the mouse. Dev Biol 192:193–198

    CAS  PubMed  Google Scholar 

  27. Vega QC, Worby CA, Lechner MS, Dixon JE, Dressler GR (1996) Glial cell line-derived neurotrophic factor activates the receptor tyrosine kinase RET and promotes kidney morphogenesis. Proc Natl Acad Sci USA 93:10657–10661

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Dudley AT, Godin RE, Robertson EJ (1999) Interaction between FGF and BMP signaling pathways regulates development of metanephric mesenchyme. Genes Dev 13:1601–1613

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dudley AT, Lyons KM, Robertson EJ (1995) A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev 9:2795–2807

    CAS  PubMed  Google Scholar 

  30. Luo G, Hofmann C, Bronckers AL, Sohocki M, Bradley A, Karsenty G (1995) BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev 9:2808–2820

    CAS  PubMed  Google Scholar 

  31. Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP (2005) Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell 9:283–292

    CAS  PubMed  Google Scholar 

  32. Schmidt-Ott KM, Barasch J (2008) WNT/beta-catenin signaling in nephron progenitors and their epithelial progeny. Kidney Int 74:1004–1008

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Self M, Lagutin OV, Bowling B, Hendrix J, Cai Y, Dressler GR, Oliver G (2006) Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J 25:5214–5228

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kispert A, Vainio S, McMahon AP (1998) Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 125:4225–4234

    CAS  PubMed  Google Scholar 

  35. Stark K, Vainio S, Vassileva G, McMahon AP (1994) Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372:679–683

    CAS  PubMed  Google Scholar 

  36. Cullen-McEwen LA, Caruana G, Bertram JF (2005) The where, what and why of the developing renal stroma. Nephron Exp Nephrol 99:e1–8

    PubMed  Google Scholar 

  37. Levinson R, Mendelsohn C (2003) Stromal progenitors are important for patterning epithelial and mesenchymal cell types in the embryonic kidney. Semin Cell Dev Biol 14:225–231

    PubMed  Google Scholar 

  38. Mendelsohn C, Batourina E, Fung S, Gilbert T, Dodd J (1999) Stromal cells mediate retinoid-dependent functions essential for renal development. Development 126:1139–1148

    CAS  PubMed  Google Scholar 

  39. Hatini V, Huh SO, Herzlinger D, Soares VC, Lai E (1996) Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev 10:1467–1478

    CAS  PubMed  Google Scholar 

  40. Levinson RS, Batourina E, Choi C, Vorontchikhina M, Kitajewski J, Mendelsohn CL (2005) Foxd1-dependent signals control cellularity in the renal capsule, a structure required for normal renal development. Development 132:529–539

    CAS  PubMed  Google Scholar 

  41. Cui S, Schwartz L, Quaggin SE (2003) Pod1 is required in stromal cells for glomerulogenesis. Dev Dyn 226:512–522

    CAS  PubMed  Google Scholar 

  42. Quaggin SE, Schwartz L, Cui S, Igarashi P, Deimling J, Post M, Rossant J (1999) The basic-helix-loop-helix protein pod1 is critically important for kidney and lung organogenesis. Development 126:5771–5783

    CAS  PubMed  Google Scholar 

  43. Patterson LT, Potter SS (2004) Atlas of Hox gene expression in the developing kidney. Dev Dyn 229:771–779

    CAS  PubMed  Google Scholar 

  44. Carpenter EM, Goddard JM, Davis AP, Nguyen TP, Capecchi MR (1997) Targeted disruption of Hoxd-10 affects mouse hindlimb development. Development 124:4505–4514

    CAS  PubMed  Google Scholar 

  45. Chisaka O, Musci TS, Capecchi MR (1992) Developmental defects of the ear, cranial nerves and hindbrain resulting from targeted disruption of the mouse homeobox gene Hox-1.6. Nature 355:516–520

    CAS  PubMed  Google Scholar 

  46. Goddard JM, Rossel M, Manley NR, Capecchi MR (1996) Mice with targeted disruption of Hoxb-1 fail to form the motor nucleus of the VIIth nerve. Development 122:3217–3228

    CAS  PubMed  Google Scholar 

  47. Rossel M, Capecchi MR (1999) Mice mutant for both Hoxa1 and Hoxb1 show extensive remodeling of the hindbrain and defects in craniofacial development. Development 126:5027–5040

    CAS  PubMed  Google Scholar 

  48. Gavalas A, Studer M, Lumsden A, Rijli FM, Krumlauf R, Chambon P (1998) Hoxa1 and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch. Development 125:1123–1136

    CAS  PubMed  Google Scholar 

  49. Studer M, Gavalas A, Marshall H, Ariza-McNaughton L, Rijli FM, Chambon P, Krumlauf R (1998) Genetic interactions between Hoxa1 and Hoxb1 reveal new roles in regulation of early hindbrain patterning. Development 125:1025–1036

    CAS  PubMed  Google Scholar 

  50. Wahba GM, Hostikka SL, Carpenter EM (2001) The paralogous Hox genes Hoxa10 and Hoxd10 interact to pattern the mouse hindlimb peripheral nervous system and skeleton. Dev Biol 231:87–102

    CAS  PubMed  Google Scholar 

  51. Condie BG, Capecchi MR (1994) Mice with targeted disruptions in the paralogous genes hoxa-3 and hoxd-3 reveal synergistic interactions. Nature 370:304–307

    CAS  PubMed  Google Scholar 

  52. Horan GS, Ramirez-Solis R, Featherstone MS, Wolgemuth DJ, Bradley A, Behringer RR (1995) Compound mutants for the paralogous hoxa-4, hoxb-4, and hoxd-4 genes show more complete homeotic transformations and a dose-dependent increase in the number of vertebrae transformed. Genes Dev 9:1667–1677

    CAS  PubMed  Google Scholar 

  53. McIntyre DC, Rakshit S, Yallowitz AR, Loken L, Jeannotte L, Capecchi MR, Wellik DM (2007) Hox patterning of the vertebrate rib cage. Development 134:2981–2989

    CAS  PubMed  Google Scholar 

  54. Chen F, Greer J, Capecchi MR (1998) Analysis of Hoxa7/Hoxb7 mutants suggests periodicity in the generation of the different sets of vertebrae. Mech Dev 77:49–57

    CAS  PubMed  Google Scholar 

  55. van den Akker E, Fromental-Ramain C, de Graaff W, Le Mouellic H, Brulet P, Chambon P, Deschamps J (2001) Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes. Development 128:1911–1921

    PubMed  Google Scholar 

  56. Wellik DM, Capecchi MR (2003) Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science 301:363–367

    CAS  PubMed  Google Scholar 

  57. Treanor JJ, Goodman L, de Sauvage F, Stone DM, Poulsen KT, Beck CD, Gray C, Armanini MP, Pollock RA, Hefti F, Phillips HS, Goddard A, Moore MW, Buj-Bello A, Davies AM, Asai N, Takahashi M, Vandlen R, Henderson CE, Rosenthal A (1996) Characterization of a multicomponent receptor for GDNF. Nature 382:80–83

    CAS  PubMed  Google Scholar 

  58. Trupp M, Arenas E, Fainzilber M, Nilsson AS, Sieber BA, Grigoriou M, Kilkenny C, Salazar-Grueso E, Pachnis V, Arumae U (1996) Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature 381:785–789

    CAS  PubMed  Google Scholar 

  59. Mugford JW, Sipila P, Kobayashi A, Behringer RR, McMahon AP (2008) Hoxd11 specifies a program of metanephric kidney development within the intermediate mesoderm of the mouse embryo. Dev Biol 319:396–405

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gong KQ, Yallowitz AR, Sun H, Dressler GR, Wellik DM (2007) A Hox-Eya-Pax Complex Regulates Early Kidney Developmental Gene Expression. Mol Cell Biol 21:7661–7668

    Google Scholar 

  61. Ekker SC, Young KE, von Kessler DP, Beachy PA (1991) Optimal DNA sequence recognition by the Ultrabithorax homeodomain of Drosophila. EMBO J 10:1179–1186

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Svingen T, Tonissen KF (2006) Hox transcription factors and their elusive mammalian gene targets. Heredity 97:88–96

    CAS  PubMed  Google Scholar 

  63. Moens CB, Selleri L (2006) Hox cofactors in vertebrate development. Dev Biol 291:193–206

    CAS  PubMed  Google Scholar 

  64. Di Giacomo G, Koss M, Capellini TD, Brendolan A, Popperl H, Selleri L (2006) Spatio-temporal expression of Pbx3 during mouse organogenesis. Gene Expr Patterns 6:747–757

    CAS  PubMed  Google Scholar 

  65. Hisa T, Spence SE, Rachel RA, Fujita M, Nakamura T, Ward JM, Devor-Henneman DE, Saiki Y, Kutsuna H, Tessarollo L, Jenkins NA, Copeland NG (2004) Hematopoietic, angiogenic and eye defects in Meis1 mutant animals. EMBO J 23:450–459

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Schnabel CA, Godin RE, Cleary ML (2003) Pbx1 regulates nephrogenesis and ureteric branching in the developing kidney. Dev Biol 254:262–276

    CAS  PubMed  Google Scholar 

  67. Schnabel CA, Selleri L, Jacobs Y, Warnke R, Cleary ML (2001) Expression of Pbx1b during mammalian organogenesis. Mech Dev 100:131–135

    CAS  PubMed  Google Scholar 

  68. Brodbeck S, Englert C (2004) Genetic determination of nephrogenesis: the Pax/Eya/Six gene network. Pediatr Nephrol 19:249–255

    PubMed  Google Scholar 

  69. Ohto H, Kamada S, Tago K, Tominaga SI, Ozaki H, Sato S, Kawakami K (1999) Cooperation of six and eya in activation of their target genes through nuclear translocation of Eya. Mol Cell Biol 19:6815–6824

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Pignoni F, Hu B, Zavitz KH, Xiao J, Garrity PA, Zipursky SL (1997) The eye-specification proteins So and Eya form a complex and regulate multiple steps in Drosophila eye development. Cell 91:881–891

    CAS  PubMed  Google Scholar 

  71. Rebay I, Silver SJ, Tootle TL (2005) New vision from Eyes absent: transcription factors as enzymes. Trends Genet 21:163–171

    CAS  PubMed  Google Scholar 

  72. Kutejova E, Engist B, Mallo M, Kanzler B, Bobola N (2005) Hoxa2 downregulates Six2 in the neural crest-derived mesenchyme. Development 132:469–478

    CAS  PubMed  Google Scholar 

  73. Kutejova E, Engist B, Self M, Oliver G, Kirilenko P, Bobola N (2008) Six2 functions redundantly immediately downstream of Hoxa2. Development 135:1463–1470

    CAS  PubMed  Google Scholar 

  74. Yallowitz AR, Gong KQ, Swinehart IT, Nelson LT, Wellik DM (2009) Non-homeodomain regions of Hox proteins mediate activation versus repression of Six2 via a single enhancer site in vivo. Dev Biol 335:156–165

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhao Y, Potter SS (2001) Functional specificity of the Hoxa13 homeobox. Development 128:3197–3207

    CAS  PubMed  Google Scholar 

  76. Davis AP, Witte DP, Hsieh-Li HM, Potter SS, Capecchi MR (1995) Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature 375:791–795

    CAS  PubMed  Google Scholar 

  77. Fromental-Ramain C, Warot X, Lakkaraju S, Favier B, Haack H, Birling C, Dierich A, Doll e P, Chambon P (1996) Specific and redundant functions of the paralogous Hoxa-9 and Hoxd-9 genes in forelimb and axial skeleton patterning. Development 122:461–472

    CAS  PubMed  Google Scholar 

  78. Fromental-Ramain C, Warot X, Messadecq N, LeMeur M, Dolle P, Chambon P (1996) Hoxa-13 and Hoxd-13 play a crucial role in the patterning of the limb autopod. Development 122:2997–3011

    CAS  PubMed  Google Scholar 

  79. Manley NR, Capecchi MR (1998) Hox group 3 paralogs regulate the development and migration of the thymus, thyroid, and parathyroid glands. Dev Biol 195:1–15

    CAS  PubMed  Google Scholar 

  80. Wellik DM (2007) Hox patterning of the vertebrate axial skeleton. Dev Dyn 236:2454–2463

    CAS  PubMed  Google Scholar 

  81. Wellik DM (2009) Hox genes and vertebrate axial pattern. Curr Top Dev Biol 88:257–278

    CAS  PubMed  Google Scholar 

  82. Preger-Ben Noon E, Barak H, Guttmann-Raviv N, Reshef R (2009) Interplay between activin and Hox genes determines the formation of the kidney morphogenetic field. Development 136:1995–2004

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Nelson LT, Rakshit S, Sun H, Wellik DM (2008) Generation and expression of a Hoxa11eGFP targeted allele in mice. Dev Dyn 237:3410–3416

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Izpisua-Belmonte JC, Tickle C, Dolle P, Wolpert L, Duboule D (1991) Expression of the homeobox Hox-4 genes and the specification of position in chick wing development. Nature 350:585–589

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deneen M. Wellik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wellik, D.M. Hox genes and kidney development. Pediatr Nephrol 26, 1559–1565 (2011). https://doi.org/10.1007/s00467-011-1902-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-011-1902-1

Keywords

Navigation