Skip to main content
Log in

Agave tequilana MADS genes show novel expression patterns in meristems, developing bulbils and floral organs

  • Original Article
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

Agave tequilana is a monocarpic perennial species that flowers after 5–8 years of vegetative growth signaling the end of the plant’s life cycle. When fertilization is unsuccessful, vegetative bulbils are induced on the umbels of the inflorescence near the bracteoles from newly formed meristems. Although the regulation of inflorescence and flower development has been described in detail for monocarpic annuals and polycarpic species, little is known at the molecular level for these processes in monocarpic perennials, and few studies have been carried out on bulbils. Histological samples revealed the early induction of umbel meristems soon after the initiation of the vegetative to inflorescence transition in A. tequilana. To identify candidate genes involved in the regulation of floral induction, a search for MADS-box transcription factor ESTs was conducted using an A. tequilana transcriptome database. Seven different MIKC MADS genes classified into 6 different types were identified based on previously characterized A. thaliana and O. sativa MADS genes and sequences from non-grass monocotyledons. Quantitative real-time PCR analysis of the seven candidate MADS genes in vegetative, inflorescence, bulbil and floral tissues uncovered novel patterns of expression for some of the genes in comparison with orthologous genes characterized in other species. In situ hybridization studies using two different genes showed expression in specific tissues of vegetative meristems and floral buds. Distinct MADS gene regulatory patterns in A. tequilana may be related to the specific reproductive strategies employed by this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abraham-Juarez MJ, Martinez-Hernandez A, Leyva-Gonzalez MA, Herrera-Estrella L, Simpson J (2010) Class I KNOX genes are associated with organogenesis during bulbil formation in Agave tequilana. J Exp Bot 61:4055–4067

    Article  PubMed  CAS  Google Scholar 

  • Adamczyk BJ, Fernandez DE (2009) MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Physiol 149:1713–1723

    Article  PubMed  CAS  Google Scholar 

  • Adamczyk BJ, Lehti-Shiu MD, Fernandez DE (2007) The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis. Plant J 50:1007–1019

    Article  PubMed  CAS  Google Scholar 

  • Albani MC, Coupland G (2010) Comparative analysis of flowering in annual and perennial plants. In: Timmermans MCP (ed) Plant development. Elsevier, Amsterdam, pp 323–348

    Chapter  Google Scholar 

  • Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, Vergara-Silva F, Yanofsky MF (2000a) MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J 24:457–466

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Buylla ER, Pelaz S, Liljegren SJ, Gold SE, Burgeff C, Ditta GS, de Pouplana LR, Martinez-Castilla L, Yanofsky MF (2000b) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci USA 97:5328–5333

    Article  PubMed  CAS  Google Scholar 

  • Amasino R (2009) Floral induction and monocarpic versus polycarpic life histories. Genome Biol 10:228

    Article  PubMed  Google Scholar 

  • Angenent GC, Colombo L (1996) Molecular control of ovule development. Trends Plant Sci 1:228–232

    Google Scholar 

  • Arora R, Agarwal P, Ray S, Singh AK, Singh VP, Tyagi AK, Kapoor S (2007) MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8:242

    Article  PubMed  Google Scholar 

  • Bartlett ME, Specht CD (2010) Evidence for the involvement of Globosa-like gene duplications and expression divergence in the evolution of floral morphology in the Zingiberales. New Phytol 187:521–541

    Article  PubMed  CAS  Google Scholar 

  • Becker A, Theissen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29:464–489

    Article  PubMed  CAS  Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1–20

    PubMed  CAS  Google Scholar 

  • Chang YY, Chiu YF, Wu JW, Yang CH (2009) Four orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS Box genes show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis thaliana. Plant Cell Physiol 50:1425–1438

    Article  PubMed  CAS  Google Scholar 

  • Chang YY, Kao NH, Li JY, Hsu WH, Liang YL, Wu JW, Yang CH (2010) Characterization of the possible roles for B class MADS box genes in regulation of perianth formation in orchid. Plant Physiol 152:837–853

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Guo B, Hexige S, Zhang T, Shen D, Ming F (2007) SQUA-like genes in the orchid Phalaenopsis are expressed in both vegetative and reproductive tissues. Planta 226:369–380

    Article  PubMed  CAS  Google Scholar 

  • Chen MK, Lin IC, Yang CH (2008) Functional analysis of three lily (Lilium longiflorum) APETALA1-like MADS box genes in regulating floral transition and formation. Plant Cell Physiol 49:704–717

    Article  PubMed  CAS  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  PubMed  CAS  Google Scholar 

  • Colombo L, Franken J, Koetje E, van Went J, Dons HJ, Angenent GC, van Tunen AJ (1995) The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7:1859–1868

    Article  PubMed  CAS  Google Scholar 

  • Colombo M, Masiero S, Vanzulli S, Lardelli P, Kater MM, Colombo L (2008) AGL23, a type I MADS-box gene that controls female gametophyte and embryo development in Arabidopsis. Plant J 54:1037–1048

    Article  PubMed  CAS  Google Scholar 

  • Cui R, Han J, Zhao S, Su K, Wu F, Du X, Xu Q, Chong K, Theissen G, Meng Z (2010) Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). Plant J 61:767–781

    Article  PubMed  CAS  Google Scholar 

  • Czechowski T, Bari RP, Stitt M, Scheible WR, Udvardi MK (2004) Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. Plant J 38:366–379

    Google Scholar 

  • De Bodt S, Raes J, Florquin K, Rombauts S, Rouze P, Theissen G, Van de Peer Y (2003) Genomewide structural annotation and evolutionary analysis of the type I MADS-box genes in plants. J Mol Evol 56:573–586

    Article  PubMed  Google Scholar 

  • Egea-Cortines M, Saedler H, Sommer H (1999) Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J 18:5370–5379

    Article  PubMed  CAS  Google Scholar 

  • Escobar-Guzmán R, Zamudio-hernández F, Gil-Vega K, Simpson J (2008) Seed production and gametophyte formation in Agave tequilana and Agave americana. Botany 86:1343–1353

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence-limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fornara F, Gregis V, Pelucchi N, Colombo L, Kater M (2008) The rice StMADS11-like genes OsMADS22 and OsMADS47 cause floral reversions in Arabidopsis without complementing the svp and agl24 mutants. J Exp Bot 59:2181–2190

    Article  PubMed  CAS  Google Scholar 

  • Gao XC, Liang WQ, Yin CS, Ji SM, Wang HM, Su XA, Guo CC, Kong HZ, Xue HW, Zhang DB (2010) The SEPALLATA-Like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiol 153:728–740

    Article  PubMed  CAS  Google Scholar 

  • Gentry HS (1982) Agaves of Continental North America. University of Arizona Press, Tucson

    Google Scholar 

  • Hartmann U, Hohmann S, Nettesheim K, Wisman E, Saedler H, Huijser P (2000) Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J 21:351–360

    Article  PubMed  CAS  Google Scholar 

  • He C, Tian Y, Saedler R, Efremova N, Riss S, Khan MR, Yephremov A, Saedler H (2010a) The MADS-domain protein MPF1 of Physalis floridana controls plant architecture, seed development and flowering time. Planta 231:767–777

    Article  PubMed  CAS  Google Scholar 

  • He QL, Cui SJ, Gu JL, Zhang H, Wang MX, Zhou Y, Zhang LA, Huang MR (2010b) Analysis of floral transcription factors from Lycoris longituba. Genomics 96:119–127

    Article  PubMed  CAS  Google Scholar 

  • Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525–529

    Article  PubMed  CAS  Google Scholar 

  • Hsu HF, Hsieh WP, Chen MK, Chang YY, Yang CH (2010) C/D Class MADS Box Genes from two monocots, orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum), exhibit different effects on floral transition and formation in Arabidopsis thaliana. Plant Cell Physiol 51:1029–1045

    Article  PubMed  CAS  Google Scholar 

  • Jeon JS, Jang S, Lee S, Nam J, Kim C, Lee SH, Chung YY, Kim SR, Lee YH, Cho YG, An G (2000a) leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell 12:871–884

    Article  PubMed  CAS  Google Scholar 

  • Jeon JS, Lee S, Jung KH, Yang WS, Yi GH, Oh BG, An GH (2000b) Production of transgenic rice plants showing reduced heading date and plant height by ectopic expression of rice MADS-box genes. Mol Breeding 6:581–592

    Article  CAS  Google Scholar 

  • Kane NA, Danyluk J, Tardif G, Ouellet F, Laliberte JF, Limin AE, Fowler DB, Sarhan F (2005) TaVRT-2, a member of the StMADS-11 clade of flowering repressors, is regulated by vernalization and photoperiod in wheat. Plant Physiol 138:2354–2363

    Article  PubMed  CAS  Google Scholar 

  • Kanno A, Saeki H, Kameya T, Saedler H, Theissen G (2003) Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Plant Mol Biol 52:831–841

    Article  PubMed  CAS  Google Scholar 

  • Kanno A, Nakada M, Akita Y, Hirai M (2007) Class B gene expression and the modified ABC model in nongrass monocots. Sci World J 7:268–279

    Article  CAS  Google Scholar 

  • Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol 537:39–64

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann K, Melzer R, Theissen G (2005) MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347:183–198

    Article  PubMed  CAS  Google Scholar 

  • Kofuji R, Sumikawa N, Yamasaki M, Kondo K, Ueda K, Ito M, Hasebe M (2003) Evolution and divergence of the MADS-box gene family based on genome-wide expression analyses. Mol Biol Evol 20:1963–1977

    Article  PubMed  CAS  Google Scholar 

  • Kohler C, Hennig L, Spillane C, Pien S, Gruissem W, Grossniklaus U (2003) The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Gene Dev 17:1540–1553

    Article  PubMed  Google Scholar 

  • Koo SC, Bracko O, Park MS, Schwab R, Chun HJ, Park KM, Seo JS, Grbic V, Balasubramanian S, Schmid M, Godard F, Yun DJ, Lee SY, Cho MJ, Weigel D, Kim MC (2010) Control of lateral organ development and flowering time by the Arabidopsis thaliana MADS-box Gene AGAMOUS-LIKE6. Plant J 62:807–816

    Article  PubMed  CAS  Google Scholar 

  • Krizek BA, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6:688–698

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH (2007) Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev 21:397–402

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Woo YM, Ryu SI, Shin YD, Kim WT, Park KY, Lee IJ, An G (2008) Further characterization of a rice AGL12 group MADS-box gene, OsMADS26. Plant Physiol 147:156–168

    Article  PubMed  CAS  Google Scholar 

  • Lin EP, Peng HZ, Jin QY, Deng MJ, Li T, Xiao XC, Hua XQ, Wang KH, Bian HW, Han N, Zhu MY (2009) Identification and characterization of two Bamboo (Phyllostachys praecox) AP1/SQUA-like MADS-box genes during floral transition. Planta 231:109–120

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Castilla LP, Alvarez-Buylla ER (2003) Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny. P Natl Acad Sci USA 100:13407–13412

    Article  CAS  Google Scholar 

  • Martinez-Hernández A, Mena-Espino ME, Herrera-Estrella AH, Martínez-Hernández P (2010) Construcción de Bibliotecas de ADNc y análisis de expresión génica por RT-PCR en agaves. Revista Latinoanericana de Quimica 38:21–42

    Google Scholar 

  • Masiero S, Li MA, Will I, Hartmann U, Saedler H, Huijser P, Schwarz-Sommer Z, Sommer H (2004) INCOMPOSITA: a MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum. Development 131:5981–5990

    Article  PubMed  CAS  Google Scholar 

  • Masiero S, Colombo L, Grini PE, Schnittger A, Kater MM (2011) The emerging importance of type I MADS box transcription factors for plant reproduction. Plant Cell 23:865–872

    Article  PubMed  CAS  Google Scholar 

  • Melzer R, Theissen G (2009) Reconstitution of ‘floral quartets’ in vitro involving class B and class E floral homeotic proteins. Nucleic Acids Res 37:2723–2736

    Article  PubMed  CAS  Google Scholar 

  • Melzer R, Verelst W, Theissen G (2009) The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in ‘floral quartet’-like complexes in vitro. Nucleic Acids Res 37:144–157

    Article  PubMed  CAS  Google Scholar 

  • Michaels SD, Bezerra IC, Amasino RM (2004) FRIGIDA-related genes are required for the winter-annual habit in Arabidopsis. Proc Natl Acad Sci USA 101:3281–3285

    Article  PubMed  CAS  Google Scholar 

  • Michaels SD, Himelblau E, Kim SY, Schomburg FM, Amasino RM (2005) Integration of flowering signals in winter-annual Arabidopsis. Plant Physiol 137:149–156

    Article  PubMed  CAS  Google Scholar 

  • Mondragon-Palomino M, Theissen G (2011) Conserved differential expression of paralogous DEFICIENS- and GLOBOSA-like MADS-box genes in the flowers of Orchidaceae: refining the “orchid code”. Plant J 66:1008–1019

    Article  PubMed  CAS  Google Scholar 

  • Mondragon-Palomino M, Hiese L, Harter A, Koch MA, Theissen G (2009) Positive selection and ancient duplications in the evolution of class B floral homeotic genes of orchids and grasses. BMC Evol Biol 9:81

    Article  PubMed  Google Scholar 

  • Nakamura T, Fukuda T, Nakano M, Hasebe M, Kameya T, Kanno A (2005) The modified ABC model explains the development of the petaloid perianth of Agapanthus praecox ssp orientalis (Agapanthaceae) flowers. Plant Mol Biol 58:435–445

    Article  PubMed  CAS  Google Scholar 

  • Nakano M, Umehara H, Hara Y, Makino M, Igarashi M, Nakada M, Nakamura T, Hoshino Y, Kanno A (2007) Flower form alteration by genetic transformation with the class B MADS-box genes of Agapanthus praecox spp. orientalis in transgenic dicot and monocot plants. Mol Breeding 20:425–429

    Article  CAS  Google Scholar 

  • Nawy T, Lee JY, Colinas J, Wang JY, Thongrod SC, Malamy JE, Birnbaum K, Benfey PN (2005) Transcriptional profile of the Arabidopsis root quiescent center. Plant Cell 17:1908–1925

    Article  PubMed  CAS  Google Scholar 

  • Ng M, Yanofsky MF (2001) Function and evolution of the plant MADS-box gene family. Nat Rev Genet 2:186–195

    Article  PubMed  CAS  Google Scholar 

  • Parenicova L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15:1538–1551

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Ishikawa Y, Ochiai T, Kanno A, Kameya T (2004) Two GLOBOSA-like genes are expressed in second and third whorls of homochlamydeous flowers in Asparagus officinalis L. Plant Cell Physiol 45:325–332

    Article  PubMed  Google Scholar 

  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203

    Article  PubMed  CAS  Google Scholar 

  • Pelucchi N, Fornara F, Favalli C, Masiero S, Lago C, Pe ME, Colombo L, Kater MM (2002) Comparative analysis of rice MADS-box genes expressed during flower development. Sex Plant Reprod 15:113–122

    Article  CAS  Google Scholar 

  • Petersen K, Didion T, Andersen CH, Nielsen KK (2004) MADS-box genes from perennial ryegrass differentially expressed during transition from vegetative to reproductive growth. J Plant Physiol 161:439–447

    Article  PubMed  CAS  Google Scholar 

  • Petersen K, Kolmos E, Folling M, Salchert K, Storgaard M, Jensen CS, Didion T, Nielsen KK (2006) Two MADS-box genes from perennial ryegrass are regulated by vernalization and involved in the floral transition. Physiol Plantarum 126:268–278

    Article  CAS  Google Scholar 

  • Portereiko MF, Lloyd A, Steffen JG, Punwani JA, Otsuga D, Drews GN (2006) AGL80 is required for central cell and endosperm development in Arabidopsis. Plant Cell 18:1862–1872

    Article  PubMed  CAS  Google Scholar 

  • Prasad K, Sriram P, Kumar CS, Kushalappa K, Vijayraghavan U (2001) Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals. Dev Genes Evol 211:281–290

    Article  PubMed  CAS  Google Scholar 

  • Prasad K, Parameswaran S, Vijayraghavan U (2005) OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs. Plant J 43:915–928

    Article  PubMed  CAS  Google Scholar 

  • Ruokolainen S, Ng YP, Broholm SK, Albert VA, Elomaa P, Teeri TH (2010) Characterization of SQUAMOSA-like genes in Gerbera hybrida, including one involved in reproductive transition. BMC Plant Biol 10:128

    Article  PubMed  Google Scholar 

  • Samach A, Kohalmi SE, Motte P, Datla R, Haughn GW (1997) Divergence of function and regulation of class B floral organ identity genes. Plant Cell 9:559–570

    Article  PubMed  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Skipper M, Johansen LB, Pedersen KB, Frederiksen S, Johansen BB (2006) Cloning and transcription analysis of an AGAMOUS- and SEEDSTICK ortholog in the orchid Dendrobium thyrsiflorum (Reichb. f.). Gene 366:266–274

    Article  PubMed  CAS  Google Scholar 

  • Song IJ, Nakamura T, Fukuda T, Yokoyama J, Ito T, Ichikawa H, Horikawa Y, Kameya T, Kanno A (2006) Spatiotemporal expression of duplicate AGAMOUS orthologues during floral development in Phalaenopsis. Dev Genes Evol 216:301–313

    Article  PubMed  CAS  Google Scholar 

  • Steffen JG, Kang IH, Portereiko MF, Lloyd A, Drews GN (2008) AGL61 interacts with AGL80 and is required for central cell development in Arabidopsis. Plant Physiol 148:259–268

    Article  PubMed  CAS  Google Scholar 

  • Szarek SR, Holmesley GE (1996) Physiological activity in persistent bulbils of Agave vilmoriniana (Agavaceae). Am J Bot 83:903–909

    Article  Google Scholar 

  • Szarek SR, Driscoll B, Shohet C, Priebe S (1996) Bulbil production in Agave (Agavaceae) and related genera. Southwest Nat 41:465–469

    Google Scholar 

  • Tapia-Lopez R, Garcia-Ponce B, Dubrovsky JG, Garay-Arroyo A, Perez-Ruiz RV, Kim SH, Acevedo F, Pelaz S, Alvarez-Buylla ER (2008) An AGAMOUS-related MADS-box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis. Plant Physiol 146:1182–1192

    Article  PubMed  CAS  Google Scholar 

  • Tian B, Chen YY, Yan YX, Li DZ (2005) Isolation and ectopic expression of a bamboo MADS-box gene. Chinese Sci Bull 50:217–224

    CAS  Google Scholar 

  • Tian B, Chen YY, Li DZ, Yan YX (2006) Cloning and characterization of a bamboo LEAFY HULL STERILE1 homologous gene. DNA Seq 17:143–151

    Article  PubMed  CAS  Google Scholar 

  • Tsai WC, Kuoh CS, Chuang MH, Chen WH, Chen HH (2004) Four DEF-Like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant Cell Physiol 45:831–844

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela A (2003) El agave tequilero: su cultivo e industria de México. Mundiprensa Editores, México

    Google Scholar 

  • Valenzuela A (2011) A new agenda for blue agave landraces: food, energy and tequila. GCB Bioenergy 3:15–24

    Article  Google Scholar 

  • Vandenbussche M, Theissen G, Van de Peer Y, Gerats T (2003) Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations. Nucleic Acids Res 31:4401–4409

    Article  PubMed  CAS  Google Scholar 

  • VanTunen AJ (1996) Molecular control of floral organogenesis in higher plants: the ABCD model. Neth J Zool 46:91–96

    Article  Google Scholar 

  • Verelst W, Saedler H, Munster T (2007a) MIKC* MADS-protein complexes bind motifs enriched in the proximal region of late pollen-specific Arabidopsis promoters. Plant Physiol 143:447–460

    Article  PubMed  CAS  Google Scholar 

  • Verelst W, Twell D, de Folter S, Immink R, Saedler H, Munster T (2007b) MADS-complexes regulate transcriptome dynamics during pollen maturation. Genome Biol 8(11):R239

    Article  Google Scholar 

  • Wang CN, Moller M, Cronk QCB (2004) Altered expression of GFLO, the Gesneriaceae homologue of FLORICAULA/LEAFY, is associated with the transition to bulbil formation in Titanotrichum oldhamii. Dev Genes Evol 214:122–127

    Article  PubMed  CAS  Google Scholar 

  • Wang SY, Lee PF, Lee YI, Hsiao YY, Chen YY, Pan ZJ, Liu ZJ, Tsai WC (2011) Duplicated C-Class MADS-Box genes reveal distinct roles in Gynostemium development in Cymbidium ensifolium (Orchidaceae). Plant Cell Physiol 52:563–577

    Article  PubMed  CAS  Google Scholar 

  • Yoo SK, Lee JS, Ahn JH (2006) Overexpression of AGAMOUS-LIKE 28 (AGL28) promotes flowering by upregulating expression of floral promoters within the autonomous pathway. Biochem Biophys Res Commun 348:929–936

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Goh CJ (2000) Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition. Plant Physiol 123:1325–1336

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Xu YF, Tan EL, Kumar PP (2002) AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals. Proc Natl Acad Sci USA 99:16336–16341

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Many thanks go to local Agave growers (especially Dr. Javier Arroyo Solis) who generously provided plants for sampling. We are also grateful to Flor Zamudio-Hernández and Enrique Ibarra-Laclette for carrying out the qRT-PCR analysis, to Aurora Verver y Vargas for help with the histological studies, to Dr. Luis Delaye for help with sequence analysis and to Dr. Aída Martínez-Hernández for help in generating the transcriptome data. Thanks also to Drs. Stefan de Folter and Nayelli Marsch-Martinez for helpful discussions and to Drs. Stefan de Folter and Luis Herrera-Estrella for critical reading of the manuscript. We would also like to thank the anonymous reviewers for helpful and pertinent suggestions. The research was supported by Fondos Mixtos GTO-04-C02-143 from Guanajuato State, Mexico and SCDS and MJAJ are indebted to CONACyT, Mexico for doctoral fellowships 171609 and 191408.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to June Simpson.

Additional information

Communicated by Thomas Dresselhaus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

497_2011_176_MOESM1_ESM.tif

Supplementary Fig. 1. MIKC structure of proteins encoded by A. tequilana MADS ESTs. Different colors indicate the typical M, I, K and C domains. Supplementary material 1 (TIFF 169 kb)

497_2011_176_MOESM2_ESM.tif

Supplementary Fig. 2. Quantitative real-time PCR analysis of two control genes, polyubiquitin (PU) and ubiquitin11 (UBQ11), was used to analyze AtqMADS gene expression. Plant tissues analyzed included immature, sinking 1 m, tepal, anther, pistil and ovary, leaf, and bulbil stages B0, B2 and B4. Supplementary material 2 (TIFF 80 kb)

497_2011_176_MOESM3_ESM.doc

Supplementary Table 1. Putative A. tequilana MADS-box cDNA sequences are listed by name, gi and GenBank accession numbers (JF699268-JF699275); accession numbers for MADS-box sequences from other species used for comparison are also listed. Supplementary material 3 (DOC 110 kb)

497_2011_176_MOESM4_ESM.doc

Supplementary Table 2. Specific primers used for quantitative real-time PCR analysis. Supplementary material 4 (DOC 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delgado Sandoval, S.C., Abraham Juárez, M.J. & Simpson, J. Agave tequilana MADS genes show novel expression patterns in meristems, developing bulbils and floral organs. Sex Plant Reprod 25, 11–26 (2012). https://doi.org/10.1007/s00497-011-0176-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-011-0176-x

Keywords

Navigation