Skip to main content
Log in

Freezing tolerance of ectomycorrhizal fungi in pure culture

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The ability to survive freezing and thawing is a key factor for the existence of life forms in large parts of the world. However, little is known about the freezing tolerance of mycorrhizal fungi and their role in the freezing tolerance of mycorrhizas. Threshold temperatures for the survival of these fungi have not been assessed experimentally. We grew isolates of Suillus luteus, Suillus variegatus, Laccaria laccata, and Hebeloma sp. in liquid culture at room temperature. Subsequently, we exposed samples to a series of temperatures between +5°C and −48°C. Relative electrolyte leakage (REL) and re-growth measurements were used to assess the damage. The REL test indicated that the lethal temperature for 50% of samples (LT50) was between −8.3°C and −13.5°C. However, in the re-growth experiment, all isolates resumed growth after exposure to −8°C and higher temperatures. As many as 64% of L. laccata samples but only 11% in S. variegatus survived −48°C. There was no growth of Hebeloma and S. luteus after exposure to −48°C, but part of their samples survived −30°C. The fungi tolerated lower temperatures than was expected on the basis of earlier studies on fine roots of ectomycorrhizal trees. The most likely freezing tolerance mechanism here is tolerance to apoplastic freezing and the concomitant intracellular dehydration with consequent concentrating of cryoprotectant substances in cells. Studying the properties of fungi in isolation promotes the understanding of the role of the different partners of the mycorrhizal symbiosis in the freezing tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bigras F, Dumais D (2005) Root-freezing damage in the containerized nursery: impact on plantation sites—a review. New For 30:167–184 doi:10.1007/s11056-005-4423-6

    Article  Google Scholar 

  • Corbery Y, Le Tacon F (1997) Storage of ectomycorrhizal fungi by freezing. Ann Sci For 54:211–217 doi:10.1051/forest:19970208

    Article  Google Scholar 

  • Crowe JH (2007) Trehalose as a “chemical chaperone”: facts and fantasy. Adv Exp Med Biol 594:143–158 doi:10.1007/978-0-387-39975-1_13

    Article  PubMed  Google Scholar 

  • France RC, Cline ML, Reid CPP (1979) Recovery of ectomycorrhizal fungi after exposure to subfreezing temperatures. Can J Bot 57:1845–1848 doi:10.1139/b79-231

    Article  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36 doi:10.1111/j.1469-8137.2007.02191.x

    Article  CAS  PubMed  Google Scholar 

  • Heinonen-Tanski H, Holopainen T (1991) Maintenance of ectomycorrhizal fungi. Methods Microbiol 23:413–422 doi:10.1016/S0580-9517(08)70188-0

    Article  Google Scholar 

  • Karlsson PS, Nordell KO (1996) Effects of soil temperature on the nitrogen economy and growth of mountain birch seedlings near its presumed low temperature distribution limit. Ecoscience 3:183–189

    Article  Google Scholar 

  • Laiho O, Mikola P (1964) Studies on the effect of some eradicants on mycorrhizal development in forest nurseries. Acta For Fenn 77:1–34

    Article  Google Scholar 

  • Lindström A, Nyström C (1987) Seasonal variation in root hardiness in container-grown Scots pine, Norway spruce, and lodgepole pine seedlings. Can J Res 8:787–793 doi:10.1139/x87-126

    Article  Google Scholar 

  • Makkonen K, Helmisaari H-S (2001) Fine-root biomass and production in Scots pine stands in relation to stand age. Tree Physiol 21:193–198

    Article  CAS  PubMed  Google Scholar 

  • Mason PA (1980) Aseptic synthesis of sheathing (ecto-) mycorrhizas. In: Ingram DS, Helgeson JP (eds) Tissue culture methods for plant pathologists. Blackwell Scientific, Oxford, pp 173–178

    Google Scholar 

  • Moser M (1958) Der Einfluss tiefer Temperaturen auf das Wachstum und die Lebenstätigkeir höherer Pilze mit speziell Berücksichtung von Mycorrhizapilzen. Sydowia 12:386–399

    Google Scholar 

  • Niederer M, Pankow W, Wiemken A (1992) Seasonal changes of soluble carbohydrates in mycorrhizas of Norway spruce and changes induced by exposure to frost and desiccation. Eur J Forest Pathol 22:291–299 doi:10.1111/j.1439-0329.1992.tb00796.x

    Article  Google Scholar 

  • Nylund J-E (1987) The ectomycorrhizal infection zone and its relation to acid polysaccharides of cortical cell walls. New Phytol 106:505–516

    Article  Google Scholar 

  • Quamme HA (1995) Deep supercooling in buds of woody plants. In: Lee RE Jr, Warren ja GJ, Gusta LV (eds) Biological ice nucleation and its applications. The American Phytopathological Society, Minnesota

    Google Scholar 

  • Radoglou K, Cabral R, Repo T, Hasanagas N, Sutinen M-L, Waisel Y (2007) Appraisal of root leakage as a method for estimation of root viability. Plant Biosyst 141(3):443–459 doi:10.1080/11263500701626143

    Article  Google Scholar 

  • Räisänen M, Repo T, Lehto T (2007) Cold acclimation was partially impaired in boron deficient Norway spruce seedlings. Plant Soil 292:271–282 doi:10.1007/s11104-007-9223-7

    Article  Google Scholar 

  • Repo T, Lappi J (1989) Estimation of standard error of impedance-estimated frost resistance. Scand J For Res 4:67–74

    Article  Google Scholar 

  • Sutinen M-L, Ritari A, Holappa T, Kujala K (1998) Seasonal changes in soil temperature and in the frost hardiness of Scots pine (Pinus sylvestris) roots under subarctic conditions. Can J Res 28:946–950 doi:10.1139/cjfr-28-6-946

    Article  Google Scholar 

  • Szyrmer W, Zawadzki I (1997) Biogenic and anthropogenic sources of ice-forming nuclei: a review. Bull Am Meteorol Soc 78:209–228 doi:10.1175/1520-0477(1997)078<0209:BAASOI>2.0.CO;2

    Article  Google Scholar 

  • Tibbett M, Sanders FE, Cairney JWG (2002) Low-temperature induced changes in trehalose, mannitol and arabitol associated with enhanced tolerance to freezing in ectomycorrhizal basidiomycetes (Hebeloma spp.). Mycorrhiza 12:249–255 doi:10.1007/s00572-002-0183-8

    Article  CAS  PubMed  Google Scholar 

  • Unestam T, Sun YP (1995) Extramatrical structures of hydrophobic and hydrophilic ectomycorrhizal fungi. Mycorrhiza 5:301–311 doi:10.1007/BF00207402

    Article  Google Scholar 

  • Wallander H, Nilsson LO, Hagerberg D, Bååth E (2001) Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytol 151:753–760 doi:10.1046/j.0028-646x.2001.00199.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Markus Eskelinen for help in the laboratory. The Erasmus student exchange programme made it possible for Arlena Brosinsky to participate in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarja Lehto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehto, T., Brosinsky, A., Heinonen-Tanski, H. et al. Freezing tolerance of ectomycorrhizal fungi in pure culture. Mycorrhiza 18, 385–392 (2008). https://doi.org/10.1007/s00572-008-0190-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-008-0190-5

Keywords

Navigation