Skip to main content
Log in

Fossil evidence of eupolypod ferns in the mid-Cretaceous of Myanmar

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Divergence time estimates based on DNA sequence variation of extant species suggest that eupolypod ferns were diverse already in the Cretaceous; however, fossil evidence to support this assumption remains exceedingly rare. Holttumopteris burmensis gen. et sp. nov., a fertile fern foliage fragment preserved in a piece of Albian–Cenomanian Burmese amber from Myanmar, is characterized by divided fertile leaves with catadromous, free lateral veins. Sporangia possess a vertical annulus interrupted by the sporangium stalk and contain monolete spores with a lophate perine. The sporangia occur clustered in discrete sori overarched by a laterally attached, reniform indusium. Reconstruction of ancestral character states suggests affinities of Holttumopteris to the Thelypteridaceae; however, several taxonomically relevant characters are not preserved. This discovery is nevertheless important because H. burmensis represents the first unequivocal fossil of a representative of the eupolypods from the middle Cretaceous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Almeida TE, Hennequin S, Schneider H, Smith AR, Batista JAN, Ramalho AJ, Proite K, Salino A (2016) Towards a phylogenetic generic classification of Thelypteridaceae: additional sampling suggests alterations of neotropical taxa and further study of paleotropical genera. Molec Phylogen Evol 94:688–700. doi:10.1016/j.ympev.2015.09.009

    Article  Google Scholar 

  • Arcila D, Pyron RA, Tyler JC, Orti G, Betancur-R R (2015) An evaluation of fossil tip-dating versus node-age calibrations in tetraodontiform fishes (Teleostei: Percomorphaceae). Molec Phylogen Evol 82:131–145. doi:10.1016/j.ympev.2014.10.011

    Article  Google Scholar 

  • Baele G, Lemey P, Bedford T, Rambaut A, Suchard MA, Alekseyenko AV (2012) Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Molec Biol Evol 29:2157–2167. doi:10.1093/molbev/mss084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benton MJ (2010) The origins of modern biodiversity on land. Philos Trans Roy Soc London B Biol Sci 365:3667–3679. doi:10.1098/rstb.2010.0269

    Article  Google Scholar 

  • Cruickshank RD, Ko K (2003) Geology of an amber locality in the Hukawng valley, Northern Myanmar. J Asian Earth Sci 21:441–445. doi:10.1016/S1367-9120(02)00044-5

    Article  Google Scholar 

  • Ding HH, Chao YS, Callado JR, Dong SY (2014) Phylogeny and character evolution of the fern genus Tectaria (Tectariaceae) in the Old World inferred from chloroplast DNA sequences. Molec Phylogen Evol 80:66–78. doi:10.1016/j.ympev.2014.06.004

    Article  CAS  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214. doi:10.1186/1471-2148-7-214

    Article  PubMed  PubMed Central  Google Scholar 

  • Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88. doi:10.1371/journal.pbio.0040088

    Article  PubMed  PubMed Central  Google Scholar 

  • Grimaldi DA, Engel MS, Nascimbene PC (2002) Fossiliferous Cretaceous amber from Myanmar (Burma): its rediscovery, biotic diversity, and paleontological significance. Amer Mus Novit 3361:1–71

    Article  Google Scholar 

  • Hall TA (1999) BioEdit, a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • He LJ, Zhang X-C (2012) Exploring generic delimitations within the fern family Thelypteridaceae. Molec Phylogen Evol 65:757–764. doi:10.1016/j.ympev.2012.07.021

    Article  Google Scholar 

  • Hoen P (1999) Glossary of pollen and spore terminology, 2nd edn. Laboratory of Palaeobotany and Palynology, Utrecht. Available at: http://www.pollen.mtu.edu/glos-gtx/glos-int.htm. Accessed 1 Mar 2017

  • Holttum RE (1969) Studies in the family Thelypteridaceae. the genera Phegopteris, Pseudophegopteris and Macrothelypteris. Blumea 17:5–32

    Google Scholar 

  • Holttum RE (1971) Studies in the family Thelypteridaceae III. A new system of genera in the Old World. Blumea 19:17–52

    Google Scholar 

  • Holttum RE (1972) Studies in the family Thelypteridaceae IV. The genus Pronephrium Presl. Blumea 20:105–126

    Google Scholar 

  • Holttum RE (1973) Studies in the family Thelypteridaceae V. The genus Pneumatopteris Nakai. Blumea 21:293–325

    Google Scholar 

  • Holttum RE (1975) Studies in the family Thelypteridaceae VIII. The genera Mesophlebion and Plesioneuron. Blumea 22:223–250

    Google Scholar 

  • Holttum RE (1976a) Studies in the family Thelypteridaceae X. The genus Coryphopteris. Blumea 23:18–47

    Google Scholar 

  • Holttum RE (1976b) The genus Christella Léveillé, sect. Christella. Studies in the family Thelypteridaceae XI. Kew Bull 31:293–339

    Article  Google Scholar 

  • Holttum RE (1977) Studies in the family Thelypteridaceae XII The genus Amphineuron Holttum. Blumea 23:205–218

    Google Scholar 

  • Holttum RE (1981) The genus Oreopteris (Thelypteridaceae). Kew Bull 36:223–226

    Article  Google Scholar 

  • Holttum RE (1982) Thelypteridaceae. In: Van Steenis CGGJ, Holttum RE (eds) Flora Malesiana II, 1: pp 331–560

  • Holttum RE, Grimes JW (1980) The genus Pseudocyclosorus Ching (Thelypteridaceae). Kew Bull 34:499–576

    Article  Google Scholar 

  • Holttum RE, Sen U, Mittra D (1970) Studies in the family Thelypteridaceae II. A comparative study of the type species of Thelypteris Schmidel, Cyclosorus Link and Ampelopteris Kunze. Blumea 18:195–215

    Google Scholar 

  • Hu S, Taylor DE (2014) Floristics and paleoecology of an early Cretaceous flora from Jordan. Bull Peabody Mus Nat Hist 55:153–170. doi:10.3374/014.055.0205

    Article  Google Scholar 

  • Kania I, Wang B, Szwedo J (2015) Dicranoptycha Osten Sacken, 1860 (Diptera, Limoniidae) from the earliest upper Cretaceous Burmese amber. Cretac Res 52:522–530. doi:10.1016/j.cretres.2014.03.002

    Article  Google Scholar 

  • Kramer KU (1987) A brief survey of the dromy in fern leaves, with an expanded terminology. Bot Helvetica 97:219–228

    Google Scholar 

  • Kramer KU (1990a) Glossary for pteridophytes. In: Kramer KU, Green PS (eds) The families and genera of vascular plants, Pteridophytes and gymnosperms, vol. 1. Springer, Berlin, p 16

    Chapter  Google Scholar 

  • Kramer KU (1990b) Dryopteridaceae. In: Kramer KU, Green PS (eds) The families and genera of vascular plants, vol. 1. Springer, Berlin, pp 101–144

    Google Scholar 

  • Kramer KU (1990c) Blechnaceae. In: Kramer KU, Green PS (eds) The families and genera of vascular plants, vol. 1. Springer, Berlin, pp 60–68

    Google Scholar 

  • Kramer KU (1990d) Davalliaceae. In: Kramer KU, Green PS (eds) The families and genera of vascular plants, vol. 1. Springer, Berlin, pp 74–80

    Google Scholar 

  • Kramer KU (1990e) Nephrolepidaceae. In: Kramer KU, Green PS (eds) The families and genera of vascular plants, vol. 1. Springer, Berlin, pp 188–190

    Google Scholar 

  • Kramer KU (1990f) Oleandraceae. In: Kramer KU, Green PS (eds) The families and genera of vascular plants, vol. 1. Springer, Berlin, pp 190–193

    Google Scholar 

  • Kramer KU (1990g) Lomariopsidaceae. In: Kramer KU, Green PS (eds) The families and genera of vascular plants, vol. 1. Springer, Berlin, pp 164–170

    Google Scholar 

  • Kramer KU, Green PS (eds) (1990) The families and genera of vascular plants, vol. 1. Springer, Berlin

    Google Scholar 

  • Kramer KU, Viane R (1990) Aspleniaceae. In: Kramer KU, Green PS (eds) The families and genera of vascular plants, vol. 1. Springer, Berlin, pp 52–57

    Google Scholar 

  • Kvâcek J, Dašková J, Renáta P (2006) A new schizaeaceous fern, Schizaeopsis ekrtii sp. nov., and its in situ spores from the Upper Cretaceous (Cenomanian) of the Czech Republic. Rev Palaeobot Palynol 140:51–60. doi:10.1016/j.revpalbo.2006.02.003

    Article  Google Scholar 

  • Labiak PH, Sundue M, Rouhan G, Garrison Hanks J, Mickel JT, Moran RC (2014) Phylogeny and historical biogeography of the lastreopsid ferns (Dryopteridaceae). Amer J Bot 101:1207–1228. doi:10.3732/ajb.1400071

    Article  Google Scholar 

  • Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder, combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molec Biol Evol 29:1695–1701. doi:10.1093/molbev/mss020

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Jiang R-H, Guo J, Hovenkamp P, Perrie LR, Shepherd L, Hennequin S, Schneider H (2013) Towards a phylogenetic classification of the climbing fern genus Arthropteris. Taxon 62:688–700. doi:10.12705/624.26

    Article  Google Scholar 

  • Liu HM, He LJ, Schneider H (2014) Towards the natural classification of tectarioid ferns: confirming the phylogenetic relationships of Pleocnemia and Pteridrys (eupolypods I). J Syst Evol 52:161–174. doi:10.1111/jse.12073

    Article  Google Scholar 

  • Liu HM, Zhang X-C, Wang MP, Shang H, Zhou SL, Yan YH, Wei XP, Xu WB, Schneider H (2016) Phylogenetic placement of the enigmatic fern genus Trichoneuron informs on the infra-familial relationship of Dryopteridaceae. Pl Syst Evol 302:319–332. doi:10.1007/s00606-015-1265-3

    Article  Google Scholar 

  • Mays C, Tosolini A-MP, Cantrill DJ, Stilwell JD (2015) Late Cretaceous (Cenamonian-Turonian) macroflora from the Chatham Islands, New Zealand: bryophytes, lycophytes and pteridophytes. Gondwana Res 27:1042–1080

    Article  Google Scholar 

  • Meredith RW, Janecka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodbla A, Eizirk E, Simao TL, Stadler T, Rabosky DL, Honeycutt RL, Flynn JJ, Ingram CM, Steiner C, Williams TL, Robinson TJ, Burk-Herrick A, Westerman M, Ayoub NA, Springer MS, Murphy WJ (2011) Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334:521–524. doi:10.1126/science.1211028

    Article  CAS  PubMed  Google Scholar 

  • Mickel JT, Smith AR (2004) The Pteridophytes of Mexico. Mem New York Bot Gard 88:72–132

    Google Scholar 

  • Mohr BAR, Bernardes-de-Oliveira MEC, Loveridge R, Pons D, Sucerquia PA, Castro-Fernandes MC (2015) Ruffordia goeppertii (Schizaeales, Anemiaceae) – a common fern from the Lower Cretaceous Crato Formation of northeast Brazil. Cretac Res 54:17–26. doi:10.1016/j.cretres.2014.11.006

    Article  Google Scholar 

  • Mynssen CM, Vasco A, Moran RC, Sylvestre LS, Rouhan G (2016) Desmophlebiaceae and Desmophlebium: a new family and genus of eupolypod II ferns. Taxon 65:19–34. doi:10.12705/651.2

    Article  Google Scholar 

  • Nagalingum NS, Cantrill DJ (2015) The Albian fern flora of Alexander island, Antarctica. Cretac Res 55:303–330. doi:10.1016/j.cretres.2015.02.005

    Article  Google Scholar 

  • Pagel M (1994) Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc Roy Soc London B Biol Sci 255:37–45

    Article  Google Scholar 

  • Pagel M (1999) The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst Biol 48:612–622

    Article  Google Scholar 

  • Palmer JD (1991) Plastid chromosome, structure and evolution. In: Bogorad L, Vasil IK (eds) The molecular biology of plastids. Academic Press, San Diego, pp 5–53

    Chapter  Google Scholar 

  • Paradis E (2012) Analysis of phylogenetics and evolution with R, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290. doi:10.1093/bioinformatics/btg412

    Article  CAS  PubMed  Google Scholar 

  • Parham JF, Donoghue PC, Bell CJ, Calway TD, Head JJ, Holroyd PA, Inoue JG, Irmis RB, Joyce WG, Ksepka DT, Patané JSL, Smith ND, Tarver JE, van Tuinen M, Yang Z, Angielczyk KD, Greenwood JM, Hipsley CA, Jacobs L, Makovicky PJ, Müller J, Smith KT, Theodor J, Warnock RCM, Benton MJ (2012) Best practices for justifying fossil calibrations. Syst Biol 61:346–359. doi:10.1093/sysbio/syr107

    Article  PubMed  Google Scholar 

  • Poinar GO Jr, Buckley R (2008) Cretacifilix fungiformis gen. and sp. nov. an eupolypod fern (Polypodiales) in early Cretaceous Burmese amber. J Bot Res Inst Texas 2:1175–1182

    Google Scholar 

  • Ppg I (2016) A community-derived classification for extant lycophytes and ferns. J Syst Evol 54:563–603. doi:10.1111/jse.12229

    Article  Google Scholar 

  • Prado J, Moran RC (2008) Revision of the neotropical species of Triplophyllum (Tectariaceae). Brittonia 60:103–130. doi:10.1007/s12228-008-9024-1

    Article  Google Scholar 

  • Rambaut A, Drummond AJ (2007) Tracer: MCMC trace analysis tool. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. http://beast.bio.ed.ac.uk/

  • Regalado L, Schmidt AR, Müller P, Kobbert MJ, Schneider H, Heinrichs J (2017) The first fossil of Lindsaeaceae (Polypodiales) from the Cretaceous amber forest of Myanmar. Cretac Res 72:8–12. doi:10.1016/j.cretres.2016.12.003

    Article  Google Scholar 

  • Rothfels CJ, Windham MD, Grusz AL, Gastony GJ, Pryer KM (2008) Toward a monophyletic Notholaena (Pteridaceae): resolving patterns of evolutionary convergence in xeric-adapted ferns. Taxon 57:712–724

    Google Scholar 

  • Rothfels CJ, Larsson A, Kuo LY, Korall P, Chiou WL, Pryer KM (2012a) Overcoming deep roots, fast rates, and short internodes to resolve the ancient rapid radiation of eupolypod II ferns. Syst Biol 16:490–509. doi:10.1093/sysbio/sys001

    Article  Google Scholar 

  • Rothfels CJ, Sundue MA, Kuo LY, Larsson A, Kato M, Schuettpelz E, Pryer KM (2012b) A revised family-level classification for eupolypod II ferns (Polypodiidae: Polypodiales). Taxon 61:515–533

    Google Scholar 

  • Rothfels CJ, Li FW, Sigel EM, Huiet L, Larsson A, Burge DO, Ruhsam M, Deyholos M, Soltis DE, Stewart CN, Shaw SW, Pokorny L, Chen T, dePamphilis C, DeGironimo L, Chen L, Wei X, Sun X, Korall P, Stevenson DW, Graham SW, Wong GKS, Pryer KM (2015) The evolutionary history of ferns inferred from 25 low-copy nuclear genes. Amer J Bot 102:1089–1107. doi:10.3732/ajb.1500089

    Article  CAS  Google Scholar 

  • Schneider H (2016) Tempo and mode in the evolution of morphological disparity in the Neotropical fern genus Pleopeltis. Biol J Linn Soc 118:929–939. doi:10.1111/bij.12774

    Article  Google Scholar 

  • Schneider H, Kenrick P (2001) An Early Cretaceous root-climbing epiphyte (Lindsaeaceae) and its significance for calibrating the diversification of polypodiaceous ferns. Rev Palaeobot Palynol 115:33–41

    Article  CAS  PubMed  Google Scholar 

  • Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallón S, Lupia R (2004a) Ferns diversified in the shadow of angiosperms. Nature 428:553–557. doi:10.1038/nature02361

    Article  CAS  PubMed  Google Scholar 

  • Schneider H, Smith AR, Cranfill R, Hildebrand TJ, Haufler CH, Ranker TA (2004b) Unraveling the phylogeny of polygrammoid ferns (Polypodiaceae and Grammitidaceae): exploring aspects of the diversification of epiphytic plants. Molec Phylogen Evol 31:1041–1063. doi:10.1016/j.ympev.2003.09.018

    Article  CAS  Google Scholar 

  • Schneider H, Smith AR, Pryer KM (2009) Is morphology really at odds with molecules in estimating fern phylogeny? Syst Bot 34:455–475. doi:10.1600/036364409789271209

    Article  Google Scholar 

  • Schneider H, Schmidt AR, Heinrichs J (2016) Burmese amber fossils bridge the gap in the Cretaceous record of polypod ferns. Perspect Pl Ecol Evol Syst 18:70–78. doi:10.1016/j.ppees.2016.01.003

    Article  Google Scholar 

  • Schuettpelz E, Pryer KM (2007) Fern phylogeny inferred from 400 leptosporangiate species and three plastid genes. Taxon 56:1037–1050

    Article  Google Scholar 

  • Schuettpelz E, Pryer KM (2009) Evidence for a Cenozoic radiation of ferns in an angiosperm-dominated canopy. Proc Natl Acad Sci USA 106:11200–11205. doi:10.1073/pnas.0811136106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi GH, Grimaldi DA, Harlow GE, Wang J, Wang J, Yang MC, Lei WY, Li QL, Li XH (2012) Age constraint on Burmese amber based on U-Pb dating of zircons. Cretac Res 37:155–163. doi:10.1016/j.cretres.2012.03.014

    Article  Google Scholar 

  • Skog JE (2001) Biogeography of Mesozoic leptosporangiate ferns related to extant ferns. Brittonia 53:236–269

    Article  Google Scholar 

  • Smith AR (1974) A revised classification of Thelypteris sg. Amauropelta. Amer Fern J 64:83–95

    Article  Google Scholar 

  • Smith AR (1990) Thelypteridaceae. In: Kramer KU, Green PS (eds) The families and genera of vascular plants, vol. 1. Springer, Berlin, pp 263–272

    Google Scholar 

  • Smith AR, Cranfill RB (2002) Intrafamilial relationships of the thelypteridoid ferns (Thelypteridaceae). Amer Fern J 92:31–149

    Google Scholar 

  • Smith SY, Rothwell GW, Stockey RA (2003) Cyathea cranhamii sp. nov. (Cyatheaceae), anatomically preserved tree fern sori from the Lower Cretaceous of Vancouver Island British Columbia. Amer J Bot 90:755–760. doi:10.3732/ajb.90.5.755

    Article  Google Scholar 

  • Smith AR, Pryer KM, Schuettpelz E, Korall P, Schneider H, Wolf PG (2006) A classification for extant ferns. Taxon 55:705–731

    Article  Google Scholar 

  • Smith MKA, Rothwell GW, Stockey RA (2015) Mesozoic diversity of Osmundaceae: Osmundacaulis whittlesii sp. nov. in the early Cretaceous of Western Canada. Int J Pl Sci 176:245–258. doi:10.1086/679352

    Article  Google Scholar 

  • Sousa M, Riba R, Chiang F, Pérez-García B, Zárate S, Pacheco L (1995) Glosario. In: Davidse G, Sousa M, Knapp S (eds) Flora mesoamerica, Psilotaceae a salviniaceae. Universidad Nacional Autónoma de México, México, pp 411–432

    Google Scholar 

  • Stadler T (2009) On incomplete sampling under birth-death models and connections to the sampling-based coalescent. J Theor Biol 261:58–66. doi:10.1016/j.jtbi.2009.07.018

    Article  PubMed  Google Scholar 

  • Testo W, Sundue M (2016) A 4000-species dataset provides new insight into the evolution of ferns. Molec Phylogen Evol 105:200–211. doi:10.1016/j.ympev.2016.09.003

    Article  Google Scholar 

  • Tidwell WD, Ash SR (1994) A review of selected Triassic to early Cretaceous ferns. J Pl Res 107:417–442

    Article  Google Scholar 

  • Tryon AF, Lugardon B (1991) Spores of the Pteridophyta. Springer, Berlin

    Book  Google Scholar 

  • Tryon RM, Tryon AF (1982) Ferns and allied plants with special reference to tropical America. Springer, New York

    Book  Google Scholar 

  • van Konijnenburg-van Cittert JHA (1989) Dicksoniaceous spores in situ from the Jurassic of Yorkshire, England. Rev Palaeobot Palynol 61:273–301

    Article  Google Scholar 

  • van Konijnenburg-van Cittert JHA (2002) Ecology of some Late Triassic to early Cretaceous ferns in Eurasia. Rev Palaeobot Palynol 119:113–124

    Article  Google Scholar 

  • Vera EI, Herbst R (2015) New cyathealean tree ferns from the Cretaceous of South Africa: Natalipteris wildei gen. et sp. nov. and Kwazulupteris schaarschmidtii gen. et sp. nov. J Afr Earth Sci 101:56–69. doi:10.1016/j.jafrearsci.2014.08.017

    Article  Google Scholar 

  • Wang RX, Shao W, Liu L, Liu J, Deng XC, Lu SG (2015) A systematic study of the fern genus Mesopteris ching (Thelypteridaceae). Amer Fern J 105:11–19. doi:10.1640/0002-8444-105.1.11

    Article  Google Scholar 

  • Warnock RCM, Parham JF, Joyce WG, Lyson TR, Donoghue PCJ (2015) Calibration uncertainty in molecular dating analyses: there is no substitute for the prior evaluation of time priors. Proc Roy Soc B Biol Sci 282:20141013. doi:10.1098/rspb.2014.1013

    Article  Google Scholar 

  • Wei R, Schneider H, Zhang XC (2013) Toward a new circumscription of the twinsorus-fern genus Diplazium (Athyriaceae): a molecular phylogeny with morphological implications and infrageneric taxonomy. Taxon 62:441–457

    Article  Google Scholar 

  • Xing FW, Wang FG, Kato M (2013a) Onocleaceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China (Pteridophytes), vol. 2-3. Science Press, Beijing, pp 408–410

    Google Scholar 

  • Xing FW, Yan Y, Don S, Wang F, Christenhusz MJM, Hovenkamp PH (2013b) Tectariaceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China (Pteridophytes), vol. 2-3. Science Press, Beijing, pp 730–746

    Google Scholar 

  • Zhang LB, Zhang L (2015) Didymochlaenaceae: a new fern family of eupolypods I (Polypodiales). Taxon 64:27–38. doi:0.12705/641.4

  • Zhang LB, Wu SG, Xiang JY, Xing FW, He H, Wang FG, Lu SG, Dong SY, Barrington DS, Iwatsuki K, Christenhusz MJM, Mickel JT, Kato M, Gilbert MG (2013) Dryopteridaceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China (Pteridophytes), vol. 2–3. Science Press, St. Louis: Missouri Botanical Garden Press, Beijing, pp 541–724. www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=100603

  • Zhang L, Schuettpelz E, Rothfels CJ, Zhou XM, Gao XF, Zhang LB (2016) Circumscription and phylogeny of the fern family Tectariaceae based on plastid and nuclear markers, with the description of two new genera: Draconopteris and Malaifilix (Tectariaceae). Taxon 65:723–738. doi:10.12705/654.3

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Bo Wang (Nanjing Institute of Geology and Palaeontology) for providing access to the amber fossil. The research activities that resulted in the discovery of the fern fossil were supported by the National Natural Science Foundation of China, Grant Numbers 41572010, 41622201 and 41688103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Heinrichs.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Handling editor: Mike Thiv.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online resource 1

Species, vouchers and GenBank accession numbers of the DNA sequences used in this study (PDF 185 kb)

Online resource 2

Alignment (PDF 610 kb)

Online resource 3

Morphological characters and states scored for the eupolypod ferns used in the ancestral state reconstructions (PDF 189 kb)

Online resource 4

Log likelihood values for three models of rate transitions between character states (PDF 15 kb)

Online resource 5

Divergence time estimates for eupolypods (PDF 115 kb)

Online resource 6

Node numbers for divergence time estimates (PDF 1400 kb)

7

Proportional likelihood of character states for all nodes in the phylogeny of eupolypod ferns (PDF 1319 kb)

Information on Electronic Supplementary Material

Information on Electronic Supplementary Material

Online resource 1. Species, vouchers and GenBank accession numbers of the DNA sequences used in this study.

Online resource 2. Alignment.

Online resource 3. Morphological characters and states scored for the eupolypod ferns used in the ancestral state reconstructions.

Online resource 4. Log likelihood values for three models of rate transitions between character states.

Online resource 5. Divergence time estimates for eupolypods.

Online resource 6. Node numbers for divergence time estimates.

Online resource 7. Proportional likelihood of character states for all nodes in the phylogeny of eupolypod ferns.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regalado, L., Schmidt, A.R., Krings, M. et al. Fossil evidence of eupolypod ferns in the mid-Cretaceous of Myanmar. Plant Syst Evol 304, 1–13 (2018). https://doi.org/10.1007/s00606-017-1439-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-017-1439-2

Keywords

Navigation