Skip to main content

Advertisement

Log in

In vivo delivery of interleukin-35 relieves coxsackievirus-B3-induced viral myocarditis by inhibiting Th17 cells

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Interleukin (IL)-35 is a new member of the IL-12 cytokine family. The suppressive role of IL-35 in the immune response to parasitic and bacterial infections and in autoimmunity has been demonstrated in terms of its anti-inflammatory properties. However, the functional role of IL-35 in viral myocarditis has not been investigated. In this study, IL-35 expression was measured in heart tissues with coxsackievirus B3 (CVB3)-induced myocarditis. It was significantly reduced in the late stage of viral infection and correlated negatively with disease severity. To examine the therapeutic role of IL-35 in viral myocarditis, an IL-35-expressing plasmid (pIL-35-FC) was packaged with polyethyleneimine and delivered intraperitoneally to BALB/c male mice before and after CVB3 infection. The severity of myocarditis was assessed 7 days after infection. The in vivo delivery of IL-35 significantly ameliorated the severity of viral myocarditis, reflected in an increased survival rate and increased bodyweights, and reduced serum creatine kinase (CK) and CK-MB activities, cardiac pathological scores, and viral replication. We also show that the overexpression of IL-35 reduced splenic Th17 cells and Th17-related proinflammatory cytokines in heart tissues. In conclusion, our data indicate that IL-35 effectively protects the myocardium from the pathogenesis of CVB3-induced viral myocarditis, which may be attributable to reduced Th17 production. This suggests that supplementation with IL-35 could be a novel therapeutic treatment for viral myocarditis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Badorff C, Fichtlscherer B, Rhoads RE, Zeiher AM, Muelsch A, Dimmeler S, Knowlton KU (2000) Nitric oxide inhibits dystrophin proteolysis by coxsackieviral protease 2A through S-nitrosylation: a protective mechanism against enteroviral cardiomyopathy. Circulation 102:2276–2281

    Article  CAS  PubMed  Google Scholar 

  2. Bardel E, Larousserie F, Charlot-Rabiega P, Coulomb-L’Hermine A, Devergne O (2008) Human CD4+ CD25+ Foxp3+ regulatory T cells do not constitutively express IL-35. J Immunol 181:6898–6905

    Article  CAS  PubMed  Google Scholar 

  3. Castellani ML, Anogeianaki A, Felaco P, Toniato E, De Lutiis MA, Shaik B, Fulcheri M, Vecchiet J, Tete S, Salini V, Theoharides TC, Caraffa A, Antinolfi P, Frydas I, Conti P, Cuccurullo C, Ciampoli C, Cerulli G, Kempuraj D (2010) IL-35, an anti-inflammatory cytokine which expands CD4+CD25+ Treg cells. J Biol Regul Homeost Agents 24:131–135

    PubMed  Google Scholar 

  4. Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, Cross R, Sehy D, Blumberg RS, Vignali DA (2007) The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450:566–569

    Article  CAS  PubMed  Google Scholar 

  5. Collison LW, Chaturvedi V, Henderson AL, Giacomin PR, Guy C, Bankoti J, Finkelstein D, Forbes K, Workman CJ, Brown SA, Rehg JE, Jones ML, Ni HT, Artis D, Turk MJ, Vignali DA (2010) IL-35-mediated induction of a potent regulatory T cell population. Nat Immunol 11:1093–1101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Devergne O, Birkenbach M, Kieff E (1997) Epstein-Barr virus-induced gene 3 and the p35 subunit of interleukin 12 form a novel heterodimeric hematopoietin. Proc Natl Acad Sci USA 94:12041–12046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Esfandiarei M, McManus BM (2008) Molecular biology and pathogenesis of viral myocarditis. Annu Rev Pathol 3:127–155

    Article  CAS  PubMed  Google Scholar 

  8. Fan Y, Weifeng W, Yuluan Y, Qing K, Yu P, Yanlan H (2011) Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of coxsackievirus b3-induced viral myocarditis reduces myocardium inflammation. Virol J 8:17

    Article  PubMed Central  PubMed  Google Scholar 

  9. Feldman AM, McNamara D (2000) Myocarditis. N Engl J Med 343:1388–1398

    Article  CAS  PubMed  Google Scholar 

  10. Frisancho-Kiss S, Coronado MJ, Frisancho JA, Lau VM, Rose NR, Klein SL, Fairweather D (2009) Gonadectomy of male BALB/c mice increases Tim-3(+) alternatively activated M2 macrophages, Tim-3(+) T cells, Th2 cells and Treg in the heart during acute coxsackievirus-induced myocarditis. Brain Behav Immun 23:649–657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Fuse K, Chan G, Liu Y, Gudgeon P, Husain M, Chen M, Yeh WC, Akira S, Liu PP (2005) Myeloid differentiation factor-88 plays a crucial role in the pathogenesis of Coxsackievirus B3-induced myocarditis and influences type I interferon production. Circulation 112:2276–2285

    Article  CAS  PubMed  Google Scholar 

  12. Guthrie M, Lodge PA, Huber SA (1984) Cardiac injury in myocarditis induced by Coxsackievirus group B, type 3 in Balb/c mice is mediated by Lyt 2+ cytolytic lymphocytes. Cell Immunol 88:558–567

    Article  CAS  PubMed  Google Scholar 

  13. He J, Yue Y, Dong C, Xiong S (2013) MiR-21 confers resistance against CVB3-induced myocarditis by inhibiting PDCD4-mediated apoptosis. Clin Invest Med 36:E103–E111

    CAS  PubMed  Google Scholar 

  14. Henke A, Nestler M, Strunze S, Saluz HP, Hortschansky P, Menzel B, Martin U, Zell R, Stelzner A, Munder T (2001) The apoptotic capability of coxsackievirus B3 is influenced by the efficient interaction between the capsid protein VP2 and the proapoptotic host protein Siva. Virology 289:15–22

    Article  CAS  PubMed  Google Scholar 

  15. Hibbert L, Pflanz S, De Waal Malefyt R, Kastelein RA (2003) IL-27 and IFN-alpha signal via Stat1 and Stat3 and induce T-Bet and IL-12Rbeta2 in naive T cells. J Interferon Cytokine Res 23:513–522

    Article  CAS  PubMed  Google Scholar 

  16. Jiang Z, Xu W, Li K, Yue Y, Xu L, Ye F, Xiong S (2008) Remission of CVB3-induced viral myocarditis by in vivo Th2 polarization via hydrodynamics-based interleukin-4 gene transfer. J Gene Med 10:918–929

    Article  CAS  PubMed  Google Scholar 

  17. Klingel K, Kandolf R (1993) The role of enterovirus replication in the development of acute and chronic heart muscle disease in different immunocompetent mouse strains. Scand J Infect Dis Suppl 88:79–85

    CAS  PubMed  Google Scholar 

  18. Leipner C, Grun K, Borchers M, Stelzner A (2000) The outcome of coxsackievirus B3-(CVB3-) induced myocarditis is influenced by the cellular immune status. Herz 25:245–248

    Article  CAS  PubMed  Google Scholar 

  19. Li Z, Yue Y, Xiong S (2013) Distinct Th17 inductions contribute to the gender bias in CVB3-induced myocarditis. Cardiovasc Pathol 22:373–382

  20. Liu F, Tong F, He Y, Liu H (2011) Detectable expression of IL-35 in CD4+ T cells from peripheral blood of chronic hepatitis B patients. Clin Immunol 139:1–5

    Article  CAS  PubMed  Google Scholar 

  21. Ma X, Chow JM, Gri G, Carra G, Gerosa F, Wolf SF, Dzialo R, Trinchieri G (1996) The interleukin 12 p40 gene promoter is primed by interferon gamma in monocytic cells. J Exp Med 183:147–157

    Article  CAS  PubMed  Google Scholar 

  22. Maekawa Y, Ouzounian M, Opavsky MA, Liu PP (2007) Connecting the missing link between dilated cardiomyopathy and viral myocarditis: virus, cytoskeleton, and innate immunity. Circulation 115:5–8

    Article  PubMed  Google Scholar 

  23. Maier R, Krebs P, Ludewig B (2004) Immunopathological basis of virus-induced myocarditis. Clin Dev Immunol 11:1–5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Muir P, Kammerer U, Korn K, Mulders MN, Poyry T, Weissbrich B, Kandolf R, Cleator GM, van Loon AM (1998) Molecular typing of enteroviruses: current status and future requirements. The European Union concerted action on virus meningitis and encephalitis. Clin Microbiol Rev 11:202–227

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Niedbala W, Wei XQ, Cai B, Hueber AJ, Leung BP, McInnes IB, Liew FY (2007) IL-35 is a novel cytokine with therapeutic effects against collagen-induced arthritis through the expansion of regulatory T cells and suppression of Th17 cells. Eur J Immunol 37:3021–3029

    Article  CAS  PubMed  Google Scholar 

  26. Nishio R, Matsumori A, Shioi T, Ishida H, Sasayama S (1999) Treatment of experimental viral myocarditis with interleukin-10. Circulation 100:1102–1108

    Article  CAS  PubMed  Google Scholar 

  27. Pflanz S, Hibbert L, Mattson J, Rosales R, Vaisberg E, Bazan JF, Phillips JH, McClanahan TK, de Waal Malefyt R, Kastelein RA (2004) WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27. J Immunol 172:2225–2231

    Article  CAS  PubMed  Google Scholar 

  28. Racaniello VR (2007) Picornaviridae: the virus and their replication. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Straus SE, Martin MA, Roizman B (eds) Fields virology, 5th edn. Lippincott, Philadelphia

    Google Scholar 

  29. Ritter JT, Tang-Feldman YJ, Lochhead GR, Estrada M, Lochhead S, Yu C, Ashton-Sager A, Tuteja D, Leutenegger C, Pomeroy C (2010) In vivo characterization of cytokine profiles and viral load during murine cytomegalovirus-induced acute myocarditis. Cardiovasc Pathol 19:83–93

    Article  CAS  PubMed  Google Scholar 

  30. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  31. Schoenhaut DS, Chua AO, Wolitzky AG, Quinn PM, Dwyer CM, McComas W, Familletti PC, Gately MK, Gubler U (1992) Cloning and expression of murine IL-12. J Immunol 148:3433–3440

    CAS  PubMed  Google Scholar 

  32. Shi Y, Chen C, Lisewski U, Wrackmeyer U, Radke M, Westermann D, Sauter M, Tschope C, Poller W, Klingel K, Gotthardt M (2009) Cardiac deletion of the Coxsackievirus-adenovirus receptor abolishes Coxsackievirus B3 infection and prevents myocarditis in vivo. J Am Coll Cardiol 53:1219–1226

    Article  CAS  PubMed  Google Scholar 

  33. Stern AS, Podlaski FJ, Hulmes JD, Pan YC, Quinn PM, Wolitzky AG, Familletti PC, Stremlo DL, Truitt T, Chizzonite R et al (1990) Purification to homogeneity and partial characterization of cytotoxic lymphocyte maturation factor from human B-lymphoblastoid cells. Proc Natl Acad Sci USA 87:6808–6812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Tam PE (2006) Coxsackievirus myocarditis: interplay between virus and host in the pathogenesis of heart disease. Viral Immunol 19:133–146

    Article  CAS  PubMed  Google Scholar 

  35. Vojdani A, Lambert J (2011) The role of Th17 in neuroimmune disorders: target for CAM therapy. Part I. Evid Based Complement Altern Med 2011:927294

    Google Scholar 

  36. Why HJ, Meany BT, Richardson PJ, Olsen EG, Bowles NE, Cunningham L, Freeke CA, Archard LC (1994) Clinical and prognostic significance of detection of enteroviral RNA in the myocardium of patients with myocarditis or dilated cardiomyopathy. Circulation 89:2582–2589

    Article  CAS  PubMed  Google Scholar 

  37. Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, Basham B, Smith K, Chen T, Morel F, Lecron JC, Kastelein RA, Cua DJ, McClanahan TK, Bowman EP, de Waal Malefyt R (2007) Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 8:950–957

    Article  CAS  PubMed  Google Scholar 

  38. Wirtz S, Billmeier U, McHedlidze T, Blumberg RS, Neurath MF (2011) Interleukin-35 mediates mucosal immune responses that protect against T-cell-dependent colitis. Gastroenterology 141:1875–1886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Xie Y, Chen R, Zhang X, Chen P, Liu X, Xie Y, Yu Y, Yang Y, Zou Y, Ge J, Chen H (2011) The role of Th17 cells and regulatory T cells in Coxsackievirus B3-induced myocarditis. Virology 421:78–84

    Article  CAS  PubMed  Google Scholar 

  40. Yuan J, Yu M, Lin QW, Cao AL, Yu X, Dong JH, Wang JP, Zhang JH, Wang M, Guo HP, Cheng X, Liao YH (2010) Th17 cells contribute to viral replication in coxsackievirus B3-induced acute viral myocarditis. J Immunol 185:4004–4010

    Article  CAS  PubMed  Google Scholar 

  41. Yuan J, Yu M, Lin QW, Cao AL, Yu X, Dong JH, Wang JP, Zhang JH, Wang M, Guo HP, Cheng X, Liao YH (2011) Th17 cells contribute to viral replication in coxsackievirus B3-induced acute viral myocarditis. J Immunol 185:4004–4010

    Article  Google Scholar 

  42. Zandian M, Mott KR, Allen SJ, Dumitrascu O, Kuo JZ, Ghiasi H (2011) Use of cytokine immunotherapy to block CNS demyelination induced by a recombinant HSV-1 expressing IL-2. Gene Ther 18:734–742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Foo Y. Liew at the University of Glasgow for providing mouse IL-35 expression plasmids. This work was supported by grants from the National Natural Science Foundation of China (81072413, 31270977, 31270973, 31170878), Major State Basic Research Development Program of China (2013CB530501, 2013CB531502), Jiangsu “Pan-Deng” Project (BK2010004), the Natural Science Foundation of the Jiangsu Higher Education Institutions (12KJB310015), Jiangsu “333” Project of Cultivation of High-Level Talents and Jiangsu Provincial Innovative Team, Qing Lan Project of the Jiangsu Higher Education Institutions, Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT-IRT1075). The authors have no conflicting financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidong Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Dong, C., Yue, Y. et al. In vivo delivery of interleukin-35 relieves coxsackievirus-B3-induced viral myocarditis by inhibiting Th17 cells. Arch Virol 159, 2411–2419 (2014). https://doi.org/10.1007/s00705-014-2098-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-014-2098-z

Keywords

Navigation