Skip to main content

Advertisement

Log in

The spectrin–ankyrin–4.1–adducin membrane skeleton: adapting eukaryotic cells to the demands of animal life

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The cells in animals face unique demands beyond those encountered by their unicellular eukaryotic ancestors. For example, the forces engendered by the movement of animals places stresses on membranes of a different nature than those confronting free-living cells. The integration of cells into tissues, as well as the integration of tissue function into whole animal physiology, requires specialisation of membrane domains and the formation of signalling complexes. With the evolution of mammals, the specialisation of cell types has been taken to an extreme with the advent of the non-nucleated mammalian red blood cell. These and other adaptations to animal life seem to require four proteins—spectrin, ankyrin, 4.1 and adducin—which emerged during eumetazoan evolution. Spectrin, an actin cross-linking protein, was probably the earliest of these, with ankyrin, adducin and 4.1 only appearing as tissues evolved. The interaction of spectrin with ankyrin is probably a prerequisite for the formation of tissues; only with the advent of vertebrates did 4.1 acquires the ability to bind spectrin and actin. The latter activity seems to allow the spectrin complex to regulate the cell surface accumulation of a wide variety of proteins. Functionally, the spectrin–ankyrin–4.1–adducin complex is implicated in the formation of apical and basolateral domains, in aspects of membrane trafficking, in assembly of certain signalling and cell adhesion complexes and in providing stability to otherwise mechanically fragile cell membranes. Defects in this complex are manifest in a variety of hereditary diseases, including deafness, cardiac arrhythmia, spinocerebellar ataxia, as well as hereditary haemolytic anaemias. Some of these proteins also function as tumor suppressors. The spectrin–ankyrin–4.1–adducin complex represents a remarkable system that underpins animal life; it has been adapted to many different functions at different times during animal evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdi KM, Bennett V (2008) Adducin promotes micrometer-scale organization of beta2-spectrin in lateral membranes of bronchial epithelial cells. Mol Biol Cell 19(2):536–545

    PubMed  CAS  Google Scholar 

  • Adachi H, Ito D, Kurooka T, Otsuka Y, Arashiki N, Sato K, Inaba M (2009) Structural implications of the EL(KIQ)(L/C)LD(A/G)DD sequence in the C-terminal cytoplasmic tail for proper targeting of anion exchanger 1 to the plasma membrane. Jpn J Vet Res 57(3):135–146

    PubMed  Google Scholar 

  • Alejandro VSJ, Nelson WJ, Huie P, Sibley RK, Dafoe D, Kuo P, Scandling JD, Myers BD (1995) Postischemic injury, delayed function and Na+/K+-ATPase distribution in the transplanted kidney. Kidney Int 48(4):1308–1315

    PubMed  CAS  Google Scholar 

  • An X, Mohandas N (2008) Disorders of red cell membrane. Br J Haematol 141(3):367–375

    PubMed  CAS  Google Scholar 

  • An XL, Takakuwa Y, Manno S, Han BG, Gascard P, Mohandas N (2001) Structural and functional characterization of protein 4.1R–phosphatidylserine interaction: potential role in 4.1R sorting within cells. J Biol Chem 276(38):35778–35785

    PubMed  CAS  Google Scholar 

  • An X, Lecomte MC, Chasis JA, Mohandas N, Gratzer W (2002) Shear-response of the spectrin dimer-tetramer equilibrium in the red blood cell membrane. J Biol Chem 277(35):31796–31800

    PubMed  CAS  Google Scholar 

  • An X, Guo X, Sum H, Morrow J, Gratzer W, Mohandas N (2004) Phosphatidylserine binding sites in erythroid spectrin: location and implications for membrane stability. Biochemistry 43(2):310–315

    PubMed  CAS  Google Scholar 

  • An X, Debnath G, Guo X, Liu S, Lux SE, Baines A, Gratzer W, Mohandas N (2005a) Identification and functional characterization of protein 4.1R and actin-binding sites in erythrocyte beta spectrin: regulation of the interactions by phosphatidylinositol-4, 5-bisphosphate. Biochemistry 44(31):10681–10688

    PubMed  CAS  Google Scholar 

  • An X, Guo X, Gratzer W, Mohandas N (2005b) Phospholipid binding by proteins of the spectrin family: a comparative study. Biochem Biophys Res Commun 327(3):794–800

    PubMed  CAS  Google Scholar 

  • An X, Guo X, Zhang X, Baines AJ, Debnath G, Moyo D, Salomao M, Bhasin N, Johnson C, Discher D, Gratzer WB, Mohandas N (2006a) Conformational stabilities of the structural repeats of erythroid spectrin and their functional implications. J Biol Chem 281(15):10527–10532

    PubMed  CAS  Google Scholar 

  • An X, Zhang X, Debnath G, Baines AJ, Mohandas N (2006b) Phosphatidylinositol-4, 5-biphosphate (PIP2) differentially regulates the interaction of human erythrocyte protein 4.1 (4.1R) with membrane proteins. Biochemistry 45(18):5725–5732

    PubMed  CAS  Google Scholar 

  • An X, Zhang X, Salomao M, Guo X, Yang Y, Wu Y, Gratzer W, Baines AJ, Mohandas N (2006c) Thermal stabilities of brain spectrin and the constituent repeats of subunits. Biochemistry 45(45):13670–13676

    PubMed  CAS  Google Scholar 

  • Ango F, di Cristo G, Higashiyama H, Bennett V, Wu P, Huang ZJ (2004) Ankyrin-based subcellular gradient of neurofascin, an immunoglobulin family protein, directs GABAergic innervation at purkinje axon initial segment. Cell 119(2):257–272

    PubMed  CAS  Google Scholar 

  • Anong WA, Franco T, Chu H, Weis TL, Devlin EE, Bodine DM, An X, Mohandas N, Low PS (2009) Adducin forms a bridge between the erythrocyte membrane and its cytoskeleton and regulates membrane cohesion. Blood 114(9):1904–1912

    PubMed  CAS  Google Scholar 

  • Arber S, Hunter JJ, Ross J Jr, Hongo M, Sansig G, Borg J, Perriard JC, Chien KR, Caroni P (1997) MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88(3):393–403

    PubMed  CAS  Google Scholar 

  • Assemat E, Bazellieres E, Pallesi-Pocachard E, Le Bivic A, Massey-Harroche D (2008) Polarity complex proteins. Biochim Biophys Acta 1778(3):614–630. doi:10.1016/j.bbamem.2007.08.029

    PubMed  CAS  Google Scholar 

  • Ayalon G, Davis JQ, Scotland PB, Bennett V (2008) An ankyrin-based mechanism for functional organization of dystrophin and dystroglycan. Cell 135(7):1189–1200

    PubMed  CAS  Google Scholar 

  • Bagnato P, Barone V, Giacomello E, Rossi D, Sorrentino V (2003) Binding of an ankyrin-1 isoform to obscurin suggests a molecular link between the sarcoplasmic reticulum and myofibrils in striated muscles. J Cell Biol 160(2):245–253

    PubMed  CAS  Google Scholar 

  • Baines AJ (2006) A FERM-adjacent (FA) region defines a subset of the 4.1 superfamily and is a potential regulator of FERM domain function. BMC Genomics 7:85

    PubMed  Google Scholar 

  • Baines AJ (2009) Evolution of spectrin function in cytoskeletal and membrane networks. Biochem Soc Trans 37(Pt 4):796–803

    PubMed  CAS  Google Scholar 

  • Baines AJ, Pinder JC (2005) The spectrin-associated cytoskeleton in mammalian heart. Front Biosci 10:3020–3033

    PubMed  CAS  Google Scholar 

  • Banuelos S, Saraste M, Carugo KD (1998) Structural comparisons of calponin homology domains: implications for actin binding. Structure 6(11):1419–1431

    PubMed  CAS  Google Scholar 

  • Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-Jones S, Howe KL, Marshall M, Sonnhammer EL (2002) The Pfam protein families database. Nucleic Acids Res 30(1):276–280

    PubMed  CAS  Google Scholar 

  • Baumgartner S, Littleton JT, Broadie K, Bhat MA, Harbecke R, Lengyel JA, Chiquetehrismann R, Prokop A, Bellen HJ (1996) A Drosophila neurexin is required for septate junction and blood–nerve barrier formation and function. Cell 87(6):1059–1068

    PubMed  CAS  Google Scholar 

  • Beaven GH, Jean-Baptiste L, Ungewickell E, Baines AJ, Shahbakhti F, Pinder JC, Lux SE, Gratzer WB (1985a) An examination of the soluble oligomeric complexes extracted from the red cell membrane and their relation to the membrane cytoskeleton. Eur J Cell Biol 36(2):299–306

    PubMed  CAS  Google Scholar 

  • Beaven GH, Jean-Baptiste L, Ungewickell E, Baines AJ, Shahbakhti F, Pinder JC, Lux SE, Gratzer WB (1985b) An examination of the soluble oligomeric complexes extracted from the red cell membrane and their relation to the membrane cytoskeleton. Eur J Cell Biol 36(2):299–306

    PubMed  CAS  Google Scholar 

  • Bel C, Oguievetskaia K, Pitaval C, Goutebroze L, Faivre-Sarrailh C (2009) Axonal targeting of Caspr2 in hippocampal neurons via selective somatodendritic endocytosis. J Cell Sci 122(Pt 18):3403–3413

    PubMed  CAS  Google Scholar 

  • Bennett V, Branton D (1977) Selective association of spectrin with the cytoplasmic surface of human erythrocyte plasma membranes. Quantitative determination with purified (32P)spectrin. J Biol Chem 252(8):2753–2763

    PubMed  CAS  Google Scholar 

  • Bennett V, Davis J (1981) Erythrocyte ankyrin: immunoreactive analogues are associated with mitotic structures in cultured cells and with microtubules in brain. Proc Natl Acad Sci USA 78(12):7550–7554

    PubMed  CAS  Google Scholar 

  • Bennett V, Stenbuck PJ (1979a) Identification and partial purification of ankyrin, the high affinity membrane attachment site for human erythrocyte spectrin. J Biol Chem 254(7):2533–2541

    PubMed  CAS  Google Scholar 

  • Bennett V, Stenbuck PJ (1979b) The membrane attachment protein for spectrin is associated with band 3 in human erythrocyte membranes. Nature 280(5722):468–473

    PubMed  CAS  Google Scholar 

  • Bennett V, Stenbuck PJ (1980a) Association between ankyrin and the cytoplasmic domain of band 3 isolated from the human erythrocyte membrane. J Biol Chem 255(13):6424–6432

    PubMed  CAS  Google Scholar 

  • Bennett V, Stenbuck PJ (1980b) Human erythrocyte ankyrin. Purification and properties. J Biol Chem 255(6):2540–2548

    PubMed  CAS  Google Scholar 

  • Bennett V, Davis J, Fowler WE (1982a) Brain spectrin, a membrane-associated protein related in structure and function to erythrocyte spectrin. Nature 299(5879):126–131

    PubMed  CAS  Google Scholar 

  • Bennett V, Davis J, Fowler WE (1982b) Brain spectrin. A membrane associated protein related in structure and function to erythrocyte spectrin. Nature 299:126–131

    PubMed  CAS  Google Scholar 

  • Bennett PM, Baines AJ, Lecomte MC, Maggs AM, Pinder JC (2004) Not just a plasma membrane protein: in cardiac muscle cells alpha-II spectrin also shows a close association with myofibrils. J Muscle Res Cell Motil 25(2):119–126

    PubMed  CAS  Google Scholar 

  • Bennett PM, Maggs AM, Baines AJ, Pinder JC (2006) The transitional junction: a new functional subcellular domain at the intercalated disc. Mol Biol Cell 17(4):2091–2100

    PubMed  CAS  Google Scholar 

  • Berghs S, Aggujaro D, Dirkx R Jr, Maksimova E, Stabach P, Hermel JM, Zhang JP, Philbrick W, Slepnev V, Ort T, Solimena M (2000) betaIV spectrin, a new spectrin localized at axon initial segments and nodes of Ranvier in the central and peripheral nervous system. J Cell Biol 151(5):985–1002

    PubMed  CAS  Google Scholar 

  • Biederer T, Sudhof TC (2001) Cask and protein 4.1 support F-actin nucleation on neurexins. J Biol Chem 276(51):47869–47876

    PubMed  CAS  Google Scholar 

  • Bignone PA, Baines AJ (2003) Spectrin alphaII and betaII isoforms interact with high affinity at the tetramerization site. Biochem J 374(Pt 3):613–624

    PubMed  CAS  Google Scholar 

  • Bignone PA, King MD, Pinder JC, Baines AJ (2007) Phosphorylation of a threonine unique to the short C-terminal isoform of betaII-spectrin links regulation of alpha–beta spectrin interaction to neuritogenesis. J Biol Chem 282(2):888–896

    PubMed  CAS  Google Scholar 

  • Binda AV, Kabbani N, Lin R, Levenson R (2002) D2 and D3 dopamine receptor cell surface localization mediated by interaction with protein 4.1N. Mol Pharmacol 62(3):507–513

    PubMed  CAS  Google Scholar 

  • Blank ME, Ehmke H (2003) Aquaporin-1 and HCO3(-)-Cl- transporter-mediated transport of CO2 across the human erythrocyte membrane. J Physiol 550(Pt 2):419–429

    PubMed  CAS  Google Scholar 

  • Boiko T, Vakulenko M, Ewers H, Yap CC, Norden C, Winckler B (2007) Ankyrin-dependent and -independent mechanisms orchestrate axonal compartmentalization of L1 family members neurofascin and L1/neuron-glia cell adhesion molecule. J Neurosci 27(3):590–603

    PubMed  CAS  Google Scholar 

  • Borzok MA, Catino DH, Nicholson JD, Kontrogianni-Konstantopoulos A, Bloch RJ (2007) Mapping the binding site on small ankyrin 1 for obscurin. J Biol Chem 282(44):32384–32396. doi:10.1074/jbc.M704089200

    PubMed  CAS  Google Scholar 

  • Bourguignon LY, Lokeshwar VB, He J, Chen X, Bourguignon GJ (1992) A CD44-like endothelial cell transmembrane glycoprotein (GP116) interacts with extracellular matrix and ankyrin. Mol Cell Biol 12(10):4464–4471

    PubMed  CAS  Google Scholar 

  • Bourguignon LY, Jin H, Iida N, Brandt NR, Zhang SH (1993) The involvement of ankyrin in the regulation of inositol 1, 4, 5- trisphosphate receptor-mediated internal Ca2+ release from Ca2+ storage vesicles in mouse T-lymphoma cells. J Biol Chem 268(10):7290–7297

    PubMed  CAS  Google Scholar 

  • Bournier O, Kroviarski Y, Rotter B, Nicolas G, Lecomte MC, Dhermy D (2006) Spectrin interacts with EVL (enabled/vasodilator-stimulated phosphoprotein-like protein), a protein involved in actin polymerization. Biol Cell 98(5):279–293

    PubMed  CAS  Google Scholar 

  • Bouzidi M, Tricaud N, Giraud P, Kordeli E, Caillol G, Deleuze C, Couraud F, Alcaraz G (2002) Interaction of the Nav1.2a subunit of the voltage-dependent sodium channel with nodal ankyrinG. In vitro mapping of the interacting domains and association in synaptosomes. J Biol Chem 277(32):28996–29004

    PubMed  CAS  Google Scholar 

  • Bruce LJ, Ghosh S, King MJ, Layton DM, Mawby WJ, Stewart GW, Oldenborg PA, Delaunay J, Tanner MJ (2002) Absence of CD47 in protein 4.2-deficient hereditary spherocytosis in man: an interaction between the Rh complex and the band 3 complex. Blood 100(5):1878–1885

    Google Scholar 

  • Bruce LJ, Beckmann R, Ribeiro ML, Peters LL, Chasis JA, Delaunay J, Mohandas N, Anstee DJ, Tanner MJ (2003) A band 3-based macrocomplex of integral and peripheral proteins in the RBC membrane. Blood 101(10):4180–4188

    PubMed  CAS  Google Scholar 

  • Burns NR, Ohanian V, Gratzer WB (1983) Properties of brain spectrin (fodrin). FEBS Lett 153(1):165–168

    PubMed  CAS  Google Scholar 

  • Burridge K (1982) Nonerythroid spectrins: actin–membrane attachment proteins in many cell types. J Cell Biol 95:478–486

    PubMed  CAS  Google Scholar 

  • Byers TJ, Branton D (1985) Visualization of the protein associations in the erythrocyte membrane skeleton. Proc Natl Acad Sci USA 82(18):6153–6157

    PubMed  CAS  Google Scholar 

  • Campos I, Geiger JA, Santos AC, Carlos V, Jacinto A (2010) Genetic screen in Drosophila melanogaster uncovers a novel set of genes required for embryonic epithelial repair. Genetics 184(1):129–140

    PubMed  Google Scholar 

  • Carlin RK, Bartelt DC, Siekevitz P (1983) Identification of fodrin as a major calmodulin-binding protein in postsynaptic density preparations. J Cell Biol 96:443–448

    PubMed  CAS  Google Scholar 

  • Carugo KD, Banuelos S, Saraste M (1997) Crystal structure of a calponin homology domain. Nat Struct Biol 4(3):175–179

    CAS  Google Scholar 

  • Chasis JA, Coulombel L, McGee S, Lee G, Tchernia G, Conboy J, Mohandas N (1996) Differential use of protein-4.1 Translation initiation sites during erythropoiesis—implications for a mutation-induced stage-specific deficiency of protein-4.1 during erythroid development. Blood 87(12):5324—5331

    Google Scholar 

  • Chauhan VS, Tuvia S, Buhusi M, Bennett V, Grant AO (2000) Abnormal cardiac Na(+) channel properties and QT heart rate adaptation in neonatal ankyrin(B) knockout mice. Circ Res 86(4):441–447

    PubMed  CAS  Google Scholar 

  • Chen L, Ong B, Bennett V (2001) LAD-1, the Caenorhabditis elegans L1CAM homologue, participates in embryonic and gonadal morphogenesis and is a substrate for fibroblast growth factor receptor pathway-dependent phosphotyrosine-based signaling. J Cell Biol 154(4):841–855

    PubMed  CAS  Google Scholar 

  • Chen H, Khan AA, Liu F, Gilligan DM, Peters LL, Messick J, Haschek-Hock WM, Li X, Ostafin AE, Chishti AH (2007) Combined deletion of mouse dematin-headpiece and beta-adducin exerts a novel effect on the spectrin–actin junctions leading to erythrocyte fragility and hemolytic anemia. J Biol Chem 282(6):4124–4135

    PubMed  CAS  Google Scholar 

  • Chen TW, Chen G, Funkhouser LJ, Nam SC (2009) Membrane domain modulation by Spectrins in Drosophila photoreceptor morphogenesis. Genesis 47(11):744–750

    PubMed  CAS  Google Scholar 

  • Cherry L, Menhart N, Fung LW (1999) Interactions of the alpha-spectrin N-terminal region with beta-spectrin. Implications for the spectrin tetramerization reaction. J Biol Chem 274(4):2077–2084

    PubMed  CAS  Google Scholar 

  • Chishti AH, Kim AC, Marfatia SM, Lutchman M, Hanspal M, Jindal H, Liu SC, Low PS, Rouleau GA, Mohandas N, Chasis JA, Conboy JG, Gascard P, Takakuwa Y, Huang SC, Benz EJ, Bretscher A, Fehon RG, Gusella AF, Ramesh V, Solomon F, Marchesi VT, Tsukita S, Arpin M, Louvard D, Tonks NK, Anderson JM, Fanning AS, Bryant PJ, Woods DF, Hoover KB (1998) The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem Sci 23(8):281–282

    PubMed  CAS  Google Scholar 

  • Chung HJ, Jan YN, Jan LY (2006) Polarized axonal surface expression of neuronal KCNQ channels is mediated by multiple signals in the KCNQ2 and KCNQ3 C-terminal domains. Proc Natl Acad Sci USA 103(23):8870–8875

    PubMed  CAS  Google Scholar 

  • Cianci CD, Giorgi M, Morrow JS (1988) Phosphorylation of ankyrin down-regulates its cooperative interaction with spectrin and protein 3. J Cell Biochem 37(3):301–315

    PubMed  CAS  Google Scholar 

  • Cioe L, Laurila P, Meo P, Krebs K, Goodman S, Curtis PJ (1987) Cloning and nucleotide sequence of a mouse erythrocyte beta-spectrin cDNA. Blood 70(4):915–920

    PubMed  CAS  Google Scholar 

  • Cioffi DL, Wu S, Alexeyev M, Goodman SR, Zhu MX, Stevens T (2005) Activation of the endothelial store-operated ISOC Ca2+ channel requires interaction of protein 4.1 with TRPC4. Circ Res 97(11):1164–1172

    PubMed  CAS  Google Scholar 

  • Citterio L, Azzani T, Duga S, Bianchi G (1999) Genomic organization of the human gamma adducin gene. Biochem Biophys Res Commun 266(1):110–114

    PubMed  CAS  Google Scholar 

  • Clark MB, Ma Y, Bloom ML, Barker JE, Zagon IS, Zimmer WE, Goodman SR (1995) Brain alpha-erthroid spectrin—identification, compartmentalization, and beta-spectrin associations (vol 663, p 223, 1994). Brain Res 700(1–2):308–308

    CAS  Google Scholar 

  • Cohen CM, Foley SF (1980) Spectrin-dependent and -independent association of F-actin with the erythrocyte membrane. J Cell Biol 86(2):694–698

    PubMed  CAS  Google Scholar 

  • Cohen CM, Jackson PL, Branton D (1978) Actin–membrane interactions: association of G-actin with the red cell membrane. J Supramol Struct 9(1):113–124

    PubMed  CAS  Google Scholar 

  • Cohen AM, Liu SC, Derick LH, Palek J (1986) Ultrastructural studies of the interaction of spectrin with phosphatidylserine liposomes. Blood 68(4):920–926

    PubMed  CAS  Google Scholar 

  • Coleman TR, Harris AS, Mische SM, Mooseker MS, Morrow JS (1987) Beta spectrin bestows protein 4.1 sensitivity on spectrin–actin interactions. J Cell Biol 104(3):519–526

    PubMed  CAS  Google Scholar 

  • Coleman SK, Cai C, Mottershead DG, Haapalahti JP, Keinanen K (2003) Surface expression of GluR-D AMPA receptor is dependent on an interaction between its C-terminal domain and a 4.1 protein. J Neurosci 23(3):798–806

    PubMed  CAS  Google Scholar 

  • Conboy J (1999) The role of alternative pre-mRNA splicing in regulating the structure and function of skeletal protein 4.1. Proc Soc Exp Biol Med 220(2):73–78

    PubMed  CAS  Google Scholar 

  • Conboy J, Kan YW, Shohet SB, Mohandas N (1986) Molecular cloning of protein 4.1, a major structural element of the human erythrocyte membrane skeleton. Proc Natl Acad Sci USA 83(24):9512–9516

    PubMed  CAS  Google Scholar 

  • Correas I, Avila J (1988) Erythrocyte protein-4.1 associates with tubulin. Biochem J 255(1):217–221

    PubMed  CAS  Google Scholar 

  • Correas I, Leto TL, Speicher DW, Marchesi VT (1986a) Identification of the functional site of erythrocyte protein 4.1 involved in spectrin–actin associations. J Biol Chem 261(7):3310–3315

    PubMed  CAS  Google Scholar 

  • Correas I, Speicher DW, Marchesi VT (1986b) Structure of the spectrin–actin binding-site of erythrocyte protein 4.1. J Biol Chem 261(28):3362–3366

    Google Scholar 

  • Craig SW, Pardo JV (1983) Gamma actin, spectrin, and intermediate filament proteins colocalize with vinculin at costameres, myofibril-to-sarcolemma attachment sites. Cell Motil 3(5–6):449–462

    PubMed  CAS  Google Scholar 

  • Dahl KN, Parthasarathy R, Westhoff CM, Layton DM, Discher DE (2004) Protein 4.2 is critical to CD47–membrane skeleton attachment in human red cells. Blood 103(3):1131–1136

    Google Scholar 

  • Das A, Base C, Manna D, Cho W, Dubreuil RR (2008) Unexpected complexity in the mechanisms that target assembly of the spectrin cytoskeleton. J Biol Chem 283(18):12643–12653

    PubMed  CAS  Google Scholar 

  • Davis J, Bennett V (1983) Brain spectrin. Isolation of subunits and formation of hybrids with erythrocyte spectrin subunits. J Biol Chem 258(12):7757–7766

    PubMed  CAS  Google Scholar 

  • Davis JQ, Bennett V (1984a) Brain ankyrin. A membrane-associated protein with binding sites for spectrin, tubulin, and the cytoplasmic domain of the erythrocyte anion channel. J Biol Chem 259(21):13550–13559

    PubMed  CAS  Google Scholar 

  • Davis JQ, Bennett V (1984b) Brain ankyrin. Purification of a 72, 000 Mr spectrin-binding domain. J Biol Chem 259(3):1874–1881

    PubMed  CAS  Google Scholar 

  • Davis JQ, Bennett V (1986) Association of brain ankyrin with brain membranes and isolation of active proteolytic fragments of membrane-associated ankyrin-binding protein(s). J Biol Chem 261(34):16198–16206

    PubMed  CAS  Google Scholar 

  • Davis JQ, Bennett V (1993) Ankyrin-binding activity of nervous system cell adhesion molecules expressed in adult brain. J Cell Sci Suppl 17:109–117

    PubMed  CAS  Google Scholar 

  • Davis JQ, Bennett V (1994) Ankyrin binding activity shared by the neurofascin/L1/NrCAM family of nervous system cell adhesion molecules. J Biol Chem 269(44):27163–27166

    PubMed  CAS  Google Scholar 

  • Davis J, Davis L, Bennett V (1989) Diversity in membrane binding sites of ankyrins. Brain ankyrin, erythrocyte ankyrin, and processed erythrocyte ankyrin associate with distinct sites in kidney microsomes. J Biol Chem 264(11):6417–6426

    PubMed  CAS  Google Scholar 

  • Davis L, Abdi K, Machius M, Brautigam C, Tomchick DR, Bennett V, Michaely P (2008) Localization and structure of the ankyrin-binding site on beta 2-spectrin. J Biol Chem

  • Del Rio M, Imam A, DeLeon M, Gomez G, Mishra J, Ma Q, Parikh S, Devarajan P (2004) The death domain of kidney ankyrin interacts with Fas and promotes Fas-mediated cell death in renal epithelia. J Am Soc Nephrol 15(1):41–51

    PubMed  Google Scholar 

  • Delhommeau F, Vasseur-Godbillon C, Leclerc P, Schischmanoff PO, Croisille L, Rince P, Moriniere M, Benz EJ Jr, Tchernia G, Tamagnini G, Ribeiro L, Delaunay J, Baklouti F (2002) A splicing alteration of 4.1R pre-mRNA generates 2 protein isoforms with distinct assembly to spindle poles in mitotic cells. Blood 100(7):2629–2636

    Google Scholar 

  • Denisenko-Nehrbass N, Oguievetskaia K, Goutebroze L, Galvez T, Yamakawa H, Ohara O, Carnaud M, Girault JA (2003) Protein 4.1B associates with both Caspr/paranodin and Caspr2 at paranodes and juxtaparanodes of myelinated fibres. Eur J Neurosci 17(2):411–416

    PubMed  Google Scholar 

  • Devaux J, Alcaraz G, Grinspan J, Bennett V, Joho R, Crest M, Scherer SS (2003) Kv3.1b is a novel component of CNS nodes. J Neurosci 23(11):4509–4518

    PubMed  CAS  Google Scholar 

  • Devaux JJ, Kleopa KA, Cooper EC, Scherer SS (2004) KCNQ2 is a nodal K+ channel. J Neurosci 24(5):1236–1244

    PubMed  CAS  Google Scholar 

  • Discher D, Parra M, Conboy JG, Mohandas N (1993) Mechanochemistry of the alternatively spliced spectrin–actin binding domain in membrane skeletal protein 4.1. J Biol Chem 268(10):7186–7195

    PubMed  CAS  Google Scholar 

  • Discher DE, Winardi R, Schischmanoff PO, Parra M, Conboy JG, Mohandas N (1995) Mechanochemistry of protein 4.1 s spectrin–actin-binding domain—ternary complex interactions, membrane-binding, network integration, structural strengthening. J Cell Biol 130(4):897–907

    PubMed  CAS  Google Scholar 

  • Bodine DMt, Birkenmeier CS, Barker JE (1984) Spectrin deficient inherited hemolytic anemias in the mouse: characterization by spectrin synthesis and mRNA activity in reticulocytes. Cell 37(3):721–729

    PubMed  CAS  Google Scholar 

  • Doctor RB, Bennett V, Mandel LJ (1993) Degradation of spectrin and ankyrin in the ischemic rat kidney. Am J Physiol 264(4 Pt 1):C1003–C1013

    PubMed  CAS  Google Scholar 

  • Dodge JT, Mitchell C, Hanahan DJ (1963) The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys 100:119–130

    PubMed  CAS  Google Scholar 

  • Dubreuil RR, MacVicar G, Dissanayake S, Liu C, Homer D, Hortsch M (1996) Neuroglian-mediated cell adhesion induces assembly of the membrane skeleton at cell contact sites. J Cell Biol 133(3):647–655

    PubMed  CAS  Google Scholar 

  • Dzhashiashvili Y, Zhang Y, Galinska J, Lam I, Grumet M, Salzer JL (2007) Nodes of Ranvier and axon initial segments are ankyrin G-dependent domains that assemble by distinct mechanisms. J Cell Biol 177(5):857–870

    PubMed  CAS  Google Scholar 

  • Eber S, Lux SE (2004) Hereditary spherocytosis-defects in proteins that connect the membrane skeleton to the lipid bilayer. Semin Hematol 41(2):118–141

    PubMed  CAS  Google Scholar 

  • Endeward V, Musa-Aziz R, Cooper GJ, Chen LM, Pelletier MF, Virkki LV, Supuran CT, King LS, Boron WF, Gros G (2006) Evidence that aquaporin 1 is a major pathway for CO2 transport across the human erythrocyte membrane. FASEB J 20(12):1974–1981

    PubMed  CAS  Google Scholar 

  • Endeward V, Cartron JP, Ripoche P, Gros G (2008) RhAG protein of the Rhesus complex is a CO2 channel in the human red cell membrane. FASEB J 22(1):64–73

    PubMed  CAS  Google Scholar 

  • Fairbanks G, Steck TL, Wallach DF (1971) Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10(13):2606–2617

    PubMed  CAS  Google Scholar 

  • Fehon RG, Dawson IA, Artavanistsakonas S (1994) A Drosophila homolog of membrane–skeleton protein–4.1 is associated with septate junctions and is encoded by the coracle gene. Development 120(3):545–557

    PubMed  CAS  Google Scholar 

  • Flick MJ, Konieczny SF (2000) The muscle regulatory and structural protein MLP is a cytoskeletal binding partner of betaI-spectrin. J Cell Sci 113(Pt 9):1553–1564

    PubMed  CAS  Google Scholar 

  • Fowler VM (1990) Tropomodulin: a cytoskeletal protein that binds to the end of erythrocyte tropomyosin and inhibits tropomyosin binding to actin. J Cell Biol 111(2):471–481

    PubMed  CAS  Google Scholar 

  • Fowler VM, Bennett V (1984) Erythrocyte membrane tropomyosin. Purification and properties. J Biol Chem 259(9):5978–5989

    PubMed  CAS  Google Scholar 

  • Fowler V, Taylor DL (1980) Spectrin plus band 4.1 cross-link actin. Regulation by micromolar calcium. J Cell Biol 85(2):361–376

    PubMed  CAS  Google Scholar 

  • Fowler VM, Luna EJ, Hargreaves WR, Taylor DL, Branton D (1981) Spectrin promotes the association of F-actin with the cytoplasmic surface of the human erythrocyte membrane. J Cell Biol 88(2):388–395

    PubMed  CAS  Google Scholar 

  • Gagelin C, Constantin B, Deprette C, Ludosky MA, Recouvreur M, Cartaud J, Cognard C, Raymond G, Kordeli E (2002) Identification of Ank(G107), a muscle-specific ankyrin-G isoform. J Biol Chem 277(15):12978–12987

    PubMed  CAS  Google Scholar 

  • Gallagher PG (2004) Hereditary elliptocytosis: spectrin and protein 4.1R. Semin Hematol 41(2):142–164

    PubMed  CAS  Google Scholar 

  • Gardner K, Bennett V (1986) A new erythrocyte membrane-associated protein with calmodulin-binding activity: identification and purification. J Biol Chem 261:1339–1348

    PubMed  CAS  Google Scholar 

  • Gardner K, Bennett V (1987) Modulation of spectrin–actin assembly by erythrocyte adducin. Nature 328(6128):359–362

    PubMed  CAS  Google Scholar 

  • Garrido JJ, Giraud P, Carlier E, Fernandes F, Moussif A, Fache MP, Debanne D, Dargent B (2003) A targeting motif involved in sodium channel clustering at the axonal initial segment. Science 300(5628):2091–2094

    PubMed  CAS  Google Scholar 

  • Gascard P, Cohen CM (1994) Absence of high-affinity band 4.1 binding sites from membranes of glycophorin C- and D-deficient (leach phenotype) erythrocytes. Blood 83(4):1102–1108

    Google Scholar 

  • Gascard P, Lee G, Coulombel L, Auffray I, Lum M, Parra M, Conboy JG, Mohandas N, Chasis JA (1998) Characterization of multiple isoforms of protein 4.1R expressed during erythroid terminal differentiation. Blood 92(11):4404–4414

    Google Scholar 

  • Gascard P, Nunomura W, Lee G, Walensky LD, Krauss SW, Takakuwa Y, Chasis JA, Mohandas N, Conboy JG (1999) Deciphering the nuclear import pathway for the cytoskeletal red cell protein 4.1R. Mol Biol Cell 10(6):1783–1798

    PubMed  CAS  Google Scholar 

  • Gascard P, Parra MK, Zhao Z, Calinisan VR, Nunomura W, Rivkees SA, Mohandas N, Conboy JG (2004) Putative tumor suppressor protein 4.1B is differentially expressed in kidney and brain via alternative promoters and 5' alternative splicing. Biochim Biophys Acta 1680(2):71–82

    PubMed  CAS  Google Scholar 

  • Genova JL, Fehon RG (2003) Neuroglian, Gliotactin, and the Na+/K+ ATPase are essential for septate junction function in Drosophila. J Cell Biol 161(5):979–989. Epub 2003 Jun 2002

    Google Scholar 

  • Gilligan DM, Lozovatsky L, Gwynn B, Brugnara C, Mohandas N, Peters LL (1999) Targeted disruption of the beta adducin gene (Add2) causes red blood cell spherocytosis in mice. Proc Natl Acad Sci USA 96(19):10717–10722

    PubMed  CAS  Google Scholar 

  • Gimm JA, An X, Nunomura W, Mohandas N (2002) Functional characterization of spectrin–actin-binding domains in 4.1 family of proteins. Biochemistry 41(23):7275–7282

    PubMed  CAS  Google Scholar 

  • Girault JA, Oguievetskaia K, Carnaud M, Denisenko-Nehrbass N, Goutebroze L (2003) Transmembrane scaffolding proteins in the formation and stability of nodes of Ranvier. Biol Cell 95(7):447–452

    PubMed  CAS  Google Scholar 

  • Glele-Kakai C, Garbarz M, Lecomte MC, Leborgne S, Galand C, Bournier O, Devaux I, Gautero H, Zohoun I, Gallagher PG, Forget BG, Dhermy D (1996) Epidemiological studies of spectrin mutations related to hereditary elliptocytosis and spectrin polymorphisms in Benin. Br J Haematol 95(1):57–66

    PubMed  CAS  Google Scholar 

  • Glenney JR Jr, Glenney P (1984) Comparison of spectrin isolated from erythroid and non-erythroid sources. Eur J Biochem 144(3):529–539

    PubMed  CAS  Google Scholar 

  • Glenney JR, Glenney P, Weber K (1982a) Erythroid spectrin, brain fodrin, and intestinal brush-border proteins (tw-260/240) are related molecules containing a common calmodulin-binding subunit bound to a variant cell type-specific subunit. Proc Natl Acad Sci USA Biol Sci 79(13):4002–4005

    CAS  Google Scholar 

  • Glenney JR Jr, Glenney P, Osborn M, Weber K (1982b) An F-actin- and calmodulin-binding protein from isolated intestinal brush borders has a morphology related to spectrin. Cell 28(4):843–854

    PubMed  CAS  Google Scholar 

  • Glenney JR Jr, Glenney P, Weber K (1982c) Erythroid spectrin, brain fodrin, and intestinal brush border proteins (TW-260/240) are related molecules containing a common calmodulin-binding subunit bound to a variant cell type-specific subunit. Proc Natl Acad Sci USA 79(13):4002–4005

    PubMed  CAS  Google Scholar 

  • Glenney JR Jr, Glenney P, Weber K (1982d) F-actin-binding and cross-linking properties of porcine brain fodrin, a spectrin-related molecule. J Biol Chem 257(16):9781–9787

    PubMed  CAS  Google Scholar 

  • Gobel V, Barrett PL, Hall DH, Fleming JT (2004) Lumen morphogenesis in C. elegans requires the membrane–-cytoskeleton linker erm-1. Dev Cell 6(6):865–873. doi:10.1016/j.devcel.2004.05.018

    Google Scholar 

  • Gollan L, Sabanay H, Poliak S, Berglund EO, Ranscht B, Peles E (2002) Retention of a cell adhesion complex at the paranodal junction requires the cytoplasmic region of Caspr. J Cell Biol 157(7):1247–1256. Epub 2002 Jun 1224

    Google Scholar 

  • Goodman SR, Zagon IS, Kulikowski RR (1981) Identification of a spectrin-like protein in nonerythroid cells. Proc Natl Acad Sci USA 78(12):7570–7574

    PubMed  CAS  Google Scholar 

  • Gratzer WB, Beaven GH (1975) Properties of the high-molecular-weight protein (spectrin) from human-erythrocyte membranes. Eur J Biochem 58(2):403–409

    PubMed  CAS  Google Scholar 

  • Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73(7):2424–2428

    PubMed  CAS  Google Scholar 

  • Gutmann DH, Donahoe J, Perry A, Lemke N, Gorse K, Kittiniyom K, Rempel SA, Gutierrez JA, Newsham IF (2000) Loss of DAL-1, a protein 4.1-related tumor suppressor, is an important early event in the pathogenesis of meningiomas. Hum Mol Genet 9(10):1495–1500

    PubMed  CAS  Google Scholar 

  • Haest CW, Plasa G, Kamp D, Deuticke B (1978) Spectrin as a stabilizer of the phospholipid asymmetry in the human erythrocyte membrane. Biochim Biophys Acta 509(1):21–32

    PubMed  CAS  Google Scholar 

  • Hammarlund M, Davis WS, Jorgensen EM (2000) Mutations in beta-spectrin disrupt axon outgrowth and sarcomere structure. J Cell Biol 149(4):931–942

    PubMed  CAS  Google Scholar 

  • Hammarlund M, Jorgensen EM, Bastiani MJ (2007) Axons break in animals lacking beta-spectrin. J Cell Biol 176(3):269–275

    PubMed  CAS  Google Scholar 

  • Han BG, Nunomura W, Takakuwa Y, Mohandas N, Jap BK (2000a) Protein 4.1R core domain structure and insights into regulation of cytoskeletal organization. Nat Struct Biol 7(10):871–875

    PubMed  CAS  Google Scholar 

  • Han BG, Nunomura W, Takakuwa Y, Mohandas N, Jap BK (2000b) Protein 4.1R core domain structure and insights into regulation of cytoskeletal organization. Nat Struct Biol 7(10):871–875

    PubMed  CAS  Google Scholar 

  • Hassoun H, Hanada T, Lutchman M, Sahr KE, Palek J, Hanspal M, Chishti AH (1998) Complete deficiency of glycophorin A in red blood cells from mice with targeted inactivation of the band 3 (AE1) gene. Blood 91(6):2146–2151

    PubMed  CAS  Google Scholar 

  • Hayes NV, Scott C, Heerkens E, Ohanian V, Maggs AM, Pinder JC, Kordeli E, Baines AJ (2000) Identification of a novel C-terminal variant of beta II spectrin: two isoforms of beta II spectrin have distinct intracellular locations and activities. J Cell Sci 113(Pt 11):2023–2034

    PubMed  CAS  Google Scholar 

  • Hedstrom KL, Xu X, Ogawa Y, Frischknecht R, Seidenbecher CI, Shrager P, Rasband MN (2007) Neurofascin assembles a specialized extracellular matrix at the axon initial segment. J Cell Biol 178(5):875–886

    PubMed  CAS  Google Scholar 

  • Hedstrom KL, Ogawa Y, Rasband MN (2008) AnkyrinG is required for maintenance of the axon initial segment and neuronal polarity. J Cell Biol 183(4):635–640

    PubMed  CAS  Google Scholar 

  • Hilenski LL, Ma XH, Vinson N, Terracio L, Borg TK (1992) The role of beta 1 integrin in spreading and myofibrillogenesis in neonatal rat cardiomyocytes in vitro. Cell Motil Cytoskeleton 21(2):87–100

    PubMed  CAS  Google Scholar 

  • Hill AS, Nishino A, Nakajo K, Zhang G, Fineman JR, Selzer ME, Okamura Y, Cooper EC (2008) Ion channel clustering at the axon initial segment and node of Ranvier evolved sequentially in early chordates. PLoS Genet 4(12):e1000317

    PubMed  Google Scholar 

  • Hiller G, Weber K (1977) Spectrin is absent in various tissue culture cells. Nature 266(5598):181–183

    PubMed  CAS  Google Scholar 

  • Hoover KB, Bryant PJ (2000) The genetics of the protein 4.1 family: organizers of the membrane and cytoskeleton. Curr Opin Cell Biol 12(2):229–234

    PubMed  CAS  Google Scholar 

  • Hopitzan AA, Baines AJ, Ludosky MA, Recouvreur M, Kordeli E (2005) Ankyrin-G in skeletal muscle: tissue-specific alternative splicing contributes to the complexity of the sarcolemmal cytoskeleton. Exp Cell Res 309(1):86–98

    PubMed  CAS  Google Scholar 

  • Hopitzan AA, Baines AJ, Kordeli E (2006) Molecular evolution of ankyrin: gain of function in vertebrates by acquisition of an obscurin/titin-binding-related domain. Mol Biol Evol 23(1):46–55

    PubMed  CAS  Google Scholar 

  • Horresh I, Poliak S, Grant S, Bredt D, Rasband MN, Peles E (2008) Multiple molecular interactions determine the clustering of Caspr2 and Kv1 channels in myelinated axons. J Neurosci 28(52):14213–14222

    PubMed  CAS  Google Scholar 

  • Horresh I, Bar V, Kissil JL, Peles E (2010) Organization of myelinated axons by Caspr and Caspr2 requires the cytoskeletal adapter protein 4.1B. J Neurosci 30(7):2480–2489

    PubMed  CAS  Google Scholar 

  • Hortsch M, Paisley KL, Tian MZ, Qian M, Bouley M, Chandler R (2002) The axonal localization of large Drosophila ankyrin2 protein isoforms is essential for neuronal functionality. Mol Cell Neurosci 20(1):43–55

    PubMed  CAS  Google Scholar 

  • Howe CL, Sacramone LM, Mooseker MS, Morrow JS (1985) Mechanisms of cytoskeletal regulation: modulation of membrane affinity in avian brush border and erythrocyte spectrins. J Cell Biol 101(4):1379–1385

    PubMed  CAS  Google Scholar 

  • Hu RJ, Moorthy S, Bennett V (1995) Expression of functional domains of beta G-spectrin disrupts epithelial morphology in cultured cells. J Cell Biol 128(6):1069–1080

    PubMed  CAS  Google Scholar 

  • Hund TJ, Mohler PJ (2008) Ankyrin-based targeting pathway regulates human sinoatrial node automaticity. Channels (Austin) 2(6):404–406

    Google Scholar 

  • Hung LY, Tang CJ, Tang TK (2000) Protein 4.1 R-135 interacts with a novel centrosomal protein (CPAP) which is associated with the gamma-tubulin complex. Mol Cell Biol 20(20):7813–7825

    PubMed  CAS  Google Scholar 

  • Husain-Chishti A, Faquin W, Wu CC, Branton D (1989) Purification of erythrocyte dematin (protein 4.9) reveals an endogenous protein kinase that modulates actin-bundling activity. J Biol Chem 264(15):8985–8991

    PubMed  CAS  Google Scholar 

  • Inaba M, Gupta KC, Kuwabara M, Takahashi T, Benz EJ Jr, Maede Y (1992) Deamidation of human erythrocyte protein 4.1: possible role in aging. Blood 79(12):3355–3361

    Google Scholar 

  • Ipsaro JJ, Huang L, Mondragon A (2009) Structures of the spectrin–ankyrin interaction binding domains. Blood 113(22):5385–5389

    PubMed  CAS  Google Scholar 

  • Ipsaro JJ, Harper SL, Messick TE, Marmorstein R, Mondragon A, Speicher DW (2010) Crystal structure and functional interpretation of the erythrocyte spectrin tetramerization domain complex. Blood Mar 2. [Epub ahead of print] doi:10.1182/blood-2010-1101-261396

  • Isayama T, Goodman SR, Zagon IS (1993) Localization of spectrin isoforms in the adult mouse heart. Cell Tissue Res 274(1):127–133

    PubMed  CAS  Google Scholar 

  • Jenkins SM, Bennett V (2001) Ankyrin-G coordinates assembly of the spectrin-based membrane skeleton, voltage-gated sodium channels, and L1 CAMs at Purkinje neuron initial segments. J Cell Biol 155(5):739–746

    PubMed  CAS  Google Scholar 

  • Jenkins SM, Bennett V (2002) Developing nodes of Ranvier are defined by ankyrin-G clustering and are independent of paranodal axoglial adhesion. Proc Natl Acad Sci USA 99(4):2303–2308

    PubMed  CAS  Google Scholar 

  • Johnson CP, Gaetani M, Ortiz V, Bhasin N, Harper S, Gallagher PG, Speicher DW, Discher DE (2007a) Pathogenic proline mutation in the linker between spectrin repeats: disease caused by spectrin unfolding. Blood 109(8):3538–3543

    PubMed  CAS  Google Scholar 

  • Johnson CP, Tang HY, Carag C, Speicher DW, Discher DE (2007b) Forced unfolding of proteins within cells. Science 317(5838):663–666

    PubMed  CAS  Google Scholar 

  • Jons T, Drenckhahn D (1992) Identification of the binding interface involved in linkage of cytoskeletal protein 4.1 to the erythrocyte anion exchanger. EMBO J 11(8):2863–2867

    PubMed  CAS  Google Scholar 

  • Joshi R, Gilligan DM, Otto E, McLaughlin T, Bennett V (1991) Primary structure and domain organization of human alpha and beta adducin. J Cell Biol 115(3):665–675

    PubMed  CAS  Google Scholar 

  • Kaiser HW, O’Keefe E, Bennett V (1989) Adducin: Ca++-dependent association with sites of cell–cell contact. J Cell Biol 109(2):557–569

    PubMed  CAS  Google Scholar 

  • Kakiuchi S, Sobue K, Morimoto K, Kanda K (1982) A spectrin-like calmodulin-binding protein (calspectin) of brain. Biochem Int 5(6):755–762

    CAS  Google Scholar 

  • Kang Q, Wang T, Zhang H, Mohandas N, An X (2009) A Golgi-associated protein 4.1B variant is required for assimilation of proteins in the membrane. J Cell Sci 122(Pt 8):1091–1099

    PubMed  CAS  Google Scholar 

  • Karinch AM, Zimmer WE, Goodman SR (1990) The identification and sequence of the actin-binding domain of human red blood cell beta-spectrin. J Biol Chem 265(20):11833–11840

    PubMed  CAS  Google Scholar 

  • Kasahara M (2007) The 2R hypothesis: an update. Curr Opin Immunol 19(5):547–552

    PubMed  CAS  Google Scholar 

  • Katagiri T, Ozaki K, Fujiwara T, Shimizu F, Kawai A, Okuno S, Suzuki M, Nakamura Y, Takahashi E, Hirai Y (1996) Cloning, expression and chromosome mapping of adducin-like 70 (ADDL), a human cDNA highly homologous to human erythrocyte adducin. Cytogenet Cell Genet 74(1–2):90–95

    PubMed  CAS  Google Scholar 

  • Kennedy SP, Warren SL, Forget BG, Morrow JS (1991) Ankyrin binds to the 15th repetitive unit of erythroid and nonerythroid beta-spectrin. J Cell Biol 115(1):267–277

    PubMed  CAS  Google Scholar 

  • Khan AA, Hanada T, Mohseni M, Jeong JJ, Zeng L, Gaetani M, Li D, Reed BC, Speicher DW, Chishti AH (2008) Dematin and adducin provide a novel link between the spectrin cytoskeleton and human erythrocyte membrane by directly interacting with glucose transporter-1. J Biol Chem 283(21):14600–14609

    PubMed  CAS  Google Scholar 

  • Kimura K, Fukata Y, Matsuoka Y, Bennett V, Matsuura Y, Okawa K, Iwamatsu A, Kaibuchi K (1998) Regulation of the association of adducin with actin filaments by Rho-associated kinase (Rho-kinase) and myosin phosphatase. J Biol Chem 273(10):5542–5548

    PubMed  CAS  Google Scholar 

  • King N (2005) Choanoflagellates. Curr Biol 15(4):R113–R114

    PubMed  CAS  Google Scholar 

  • King N, Hittinger CT, Carroll SB (2003) Evolution of key cell signaling and adhesion protein families predates animal origins. Science 301(5631):361–363

    PubMed  CAS  Google Scholar 

  • King N, Westbrook MJ, Young SL, Kuo A, Abedin M, Chapman J, Fairclough S, Hellsten U, Isogai Y, Letunic I, Marr M, Pincus D, Putnam N, Rokas A, Wright KJ, Zuzow R, Dirks W, Good M, Goodstein D, Lemons D, Li W, Lyons JB, Morris A, Nichols S, Richter DJ, Salamov A, Sequencing JG, Bork P, Lim WA, Manning G, Miller WT, McGinnis W, Shapiro H, Tjian R, Grigoriev IV, Rokhsar D (2008) The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451(7180):783–788

    PubMed  CAS  Google Scholar 

  • Kirkpatrick FH (1976) Interaction of spectrin with muscle actin detected by spin labelling. Biochem Biophys Res Commun 69(1):225–229

    PubMed  CAS  Google Scholar 

  • Kizhatil K, Bennett V (2004) Lateral membrane biogenesis in human bronchial epithelial cells requires 190-kDa ankyrin-G. J Biol Chem 279(16):16706–16714

    PubMed  CAS  Google Scholar 

  • Kizhatil K, Davis JQ, Davis L, Hoffman J, Hogan BL, Bennett V (2007a) Ankyrin-G is a molecular partner of E-cadherin in epithelial cells and early embryos. J Biol Chem 282(36):26552–26561

    PubMed  CAS  Google Scholar 

  • Kizhatil K, Yoon W, Mohler PJ, Davis LH, Hoffman JA, Bennett V (2007b) Ankyrin-G and beta2-spectrin collaborate in biogenesis of lateral membrane of human bronchial epithelial cells. J Biol Chem 282(3):2029–2037

    PubMed  CAS  Google Scholar 

  • Komada M, Soriano P (2002) [Beta]IV-spectrin regulates sodium channel clustering through ankyrin-G at axon initial segments and nodes of Ranvier. J Cell Biol 156(2):337–348

    PubMed  CAS  Google Scholar 

  • Kontrogianni-Konstantopoulos A, Jones EM, Van Rossum DB, Bloch RJ (2003) Obscurin is a ligand for small ankyrin 1 in skeletal muscle. Mol Biol Cell 14(3):1138–1148

    PubMed  CAS  Google Scholar 

  • Kordeli E, Lambert S, Bennett V, Ankyrin G (1995) A new ankyrin gene with neural-specific isoforms localized at the axonal initial segment and node of Ranvier. J Biol Chem 270(5):2352–2359

    PubMed  CAS  Google Scholar 

  • Korsgren C, Peters LL, Lux SE (2009) Protein 4.2 binds to the carboxyterminal EF-hands of erythroid alpha spectrin in a calcium and calmodulin dependent manner. J Biol Chem

  • Kotula L, DeSilva TM, Speicher DW, Curtis PJ (1993) Functional characterization of recombinant human red cell alpha-spectrin polypeptides containing the tetramer binding site. J Biol Chem 268(20):14788–14793

    PubMed  CAS  Google Scholar 

  • Krauss SW, Lee G, Chasis JA, Mohandas N, Heald R (2004) Two protein 4.1 domains essential for mitotic spindle and aster microtubule dynamics and organization in vitro. J Biol Chem 279(26):27591–27598

    PubMed  CAS  Google Scholar 

  • Kuhlman PA (2000) Characterization of the actin filament capping state in human erythrocyte ghost and cytoskeletal preparations. Biochem J 349(Pt 1):105–111

    PubMed  CAS  Google Scholar 

  • Kuhlman PA, Fowler VM (1997) Purification and characterization of an alpha 1 beta 2 isoform of CapZ from human erythrocytes: cytosolic location and inability to bind to Mg2+ ghosts suggest that erythrocyte actin filaments are capped by adducin. Biochemistry 36(44):13461–13472. doi:10.1021/bi970601b

    PubMed  CAS  Google Scholar 

  • Kuhlman PA, Hughes CA, Bennett V, Fowler VM (1996) A new function for adducin. Calcium/calmodulin-regulated capping of the barbed ends of actin filaments. J Biol Chem 271(14):7986–7991

    PubMed  CAS  Google Scholar 

  • Kustu S, Inwood W (2006) Biological gas channels for NH3 and CO2: evidence that Rh (Rhesus) proteins are CO2 channels. Transfus Clin Biol 13(1–2):103–110

    PubMed  CAS  Google Scholar 

  • Kusunoki H, MacDonald RI, Mondragon A (2004) Structural insights into the stability and flexibility of unusual erythroid spectrin repeats. Structure (Camb) 12(4):645–656

    CAS  Google Scholar 

  • Lambert S, Davis JQ, Bennett V (1997) Morphogenesis of the node of Ranvier: co-clusters of ankyrin and ankyrin-binding integral proteins define early developmental intermediates. J Neurosci 17(18):7025–7036

    PubMed  CAS  Google Scholar 

  • Laprise P, Lau KM, Harris KP, Silva-Gagliardi NF, Paul SM, Beronja S, Beitel GJ, McGlade CJ, Tepass U (2009) Yurt, coracle, neurexin IV and the Na(+), K(+)-ATPase form a novel group of epithelial polarity proteins. Nature 459(7250):1141–1145

    PubMed  CAS  Google Scholar 

  • Lazarides E, Nelson WJ (1982) Expression of spectrin in nonerythroid cells. Cell 31:505–508

    PubMed  CAS  Google Scholar 

  • Le Scouarnec S, Bhasin N, Vieyres C, Hund TJ, Cunha SR, Koval O, Marionneau C, Chen B, Wu Y, Demolombe S, Song LS, Le Marec H, Probst V, Schott JJ, Anderson ME, Mohler PJ (2008) Dysfunction in ankyrin-B-dependent ion channel and transporter targeting causes human sinus node disease. Proc Natl Acad Sci USA 105(40):15617–15622

    PubMed  Google Scholar 

  • Leclerc E, Vetter S (1998) Characterization of a calcium-dependent calmodulin-binding domain in the 135-kD human protein 4.1 isoform. Eur J Biochem 258(2):567–571

    PubMed  CAS  Google Scholar 

  • Lee JK, Coyne RS, Dubreuil RR, Goldstein LS, Branton D (1993) Cell shape and interaction defects in alpha-spectrin mutants of Drosophila melanogaster. J Cell Biol 123(6 Pt 2):1797–1809

    PubMed  CAS  Google Scholar 

  • Lee HG, Zarnescu DC, MacIver B, Thomas GH (2010) The cell adhesion molecule Roughest depends on beta(heavy)-spectrin during eye morphogenesis in Drosophila. J Cell Sci 123(Pt 2):277–285

    PubMed  CAS  Google Scholar 

  • Legendre K, Safieddine S, Kussel-Andermann P, Petit C, El-Amraoui A (2008) alphaII-betaV spectrin bridges the plasma membrane and cortical lattice in the lateral wall of the auditory outer hair cells. J Cell Sci 121(Pt 20):3347–3356

    PubMed  CAS  Google Scholar 

  • Lemaillet G, Walker B, Lambert S (2003) Identification of a conserved ankyrin-binding motif in the family of sodium channel alpha subunits. J Biol Chem 278(30):27333–27339

    PubMed  CAS  Google Scholar 

  • Lencesova L, O’Neill A, Resneck WG, Bloch RJ, Blaustein MP (2004) Plasma membrane–cytoskeleton–endoplasmic reticulum complexes in neurons and astrocytes. J Biol Chem 279(4):2885–2893

    PubMed  CAS  Google Scholar 

  • Levine J, Willard M (1981) Fodrin: axonally transported polypeptides associated with the internal periphery of many cells. J Cell Biol 90:631–643

    PubMed  CAS  Google Scholar 

  • Li X, Matsuoka Y, Bennett V (1998) Adducin preferentially recruits spectrin to the fast growing ends of actin filaments in a complex requiring the MARCKS-related domain and a newly defined oligomerization domain. J Biol Chem 273(30):19329–19338

    PubMed  CAS  Google Scholar 

  • Li J, Mahajan A, Tsai MD (2006) Ankyrin repeat: a unique motif mediating protein–protein interactions. Biochemistry 45(51):15168–15178

    PubMed  CAS  Google Scholar 

  • Lin B, Nasir J, McDonald H, Graham R, Rommens JM, Goldberg YP, Hayden MR (1995) Genomic organization of the human alpha-adducin gene and its alternately spliced isoforms. Genomics 25(1):93–99

    PubMed  CAS  Google Scholar 

  • Ling E, Gardner K, Bennett V (1986) Protein kinase C phosphorylates a recently identified membrane skeleton- associated calmodulin-binding protein in human erythrocytes. J Biol Chem 261(30):13875–13878

    PubMed  CAS  Google Scholar 

  • Linnenbach AJ, Speicher DW, Marchesi VT, Forget BG (1986) Cloning of a portion of the chromosomal gene for human erythrocyte alpha-spectrin by using a synthetic gene fragment. Proc Natl Acad Sci USA 83(8):2397–2401

    PubMed  CAS  Google Scholar 

  • Liu SC, Derick LH, Palek J (1987) Visualization of the hexagonal lattice in the erythrocyte membrane skeleton. J Cell Biol 104(3):527–536

    PubMed  CAS  Google Scholar 

  • Liu SC, Derick LH, Agre P, Palek J (1990a) Alteration of the erythrocyte membraneskeletal ultrastructure in hereditary spherocytosis, hereditary elliptocytosis, and pyropoikilocytosis. Blood 76(1):198–205

    PubMed  CAS  Google Scholar 

  • Liu SC, Zhai S, Palek J, Golan DE, Amato D, Hassan K, Nurse GT, Babona D, Coetzer T, Jarolim P et al (1990b) Molecular defect of the band 3 protein in southeast Asian ovalocytosis. N Engl J Med 323(22):1530–1538

    PubMed  CAS  Google Scholar 

  • Lopez C, Metral S, Eladari D, Drevensek S, Gane P, Chambrey R, Bennett V, Cartron JP, Le Van KC, Colin Y (2005) The ammonium transporter RhBG: requirement of a tyrosine-based signal and ankyrin-G for basolateral targeting and membrane anchorage in polarized kidney epithelial cells. J Biol Chem 280(9):8221–8228

    PubMed  CAS  Google Scholar 

  • Lowe JS, Palygin O, Bhasin N, Hund TJ, Boyden PA, Shibata E, Anderson ME, Mohler PJ (2008) Voltage-gated Nav channel targeting in the heart requires an ankyrin-G dependent cellular pathway. J Cell Biol 180(1):173–186

    PubMed  CAS  Google Scholar 

  • Lu D, Yan H, Othman T, Rivkees SA (2004a) Cytoskeletal protein 4.1G is a binding partner of the metabotropic glutamate receptor subtype 1alpha. J Neurosci Res 78(1):49–55

    PubMed  CAS  Google Scholar 

  • Lu D, Yan H, Othman T, Turner CP, Woolf T, Rivkees SA (2004b) Cytoskeletal protein 4.1G binds to the third intracellular loop of the A1 adenosine receptor and inhibits receptor action. Biochem J 377(Pt 1):51–59

    PubMed  CAS  Google Scholar 

  • Lue RA, Marfatia SM, Branton D, Chishti AH (1994) Cloning and characterization of hdlg: the human homologue of the Drosophila discs large tumor suppressor binds to protein 4.1. Proc Natl Acad Sci USA 91(21):9818–9822

    PubMed  CAS  Google Scholar 

  • Luque CM, Correas I (2000) A constitutive region is responsible for nuclear targeting of 4.1R: modulation by alternative sequences results in differential intracellular localization. J Cell Sci 113(Pt 13):2485–2495

    PubMed  CAS  Google Scholar 

  • Luque CM, Lallena MJ, Alonso MA, Correas I (1998) An alternative domain determines nuclear localization in multifunctional protein 4.1. J Biol Chem 273(19):11643–11649

    PubMed  CAS  Google Scholar 

  • Luque CM, Lallena MJ, Perez-Ferreiro CM, de Isidro Y, De Carcer G, Alonso MA, Correas I (1999) The N-terminal 209-aa domain of high molecular-weight 4.1R isoforms abrogates 4.1R targeting to the nucleus. Proc Natl Acad Sci USA 96(26):14925–14930

    PubMed  CAS  Google Scholar 

  • Lux SE, John KM, Bennett V (1990) Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins. Nature 344(6261):36–42

    PubMed  CAS  Google Scholar 

  • Macias MJ, Musacchio A, Ponstingl H, Nilges M, Saraste M, Oschkinat H (1994) Structure of the pleckstrin homology domain from beta-spectrin. Nature 369(6482):675–677

    PubMed  CAS  Google Scholar 

  • Manno S, Takakuwa Y, Nagao K, Mohandas N (1995) Modulation of erythrocyte membrane mechanical function by beta-spectrin phosphorylation and dephosphorylation. J Biol Chem 270(10):5659–5665

    PubMed  CAS  Google Scholar 

  • Manno S, Takakuwa Y, Mohandas N (2002) Identification of a functional role for lipid asymmetry in biological membranes: phosphatidylserine–skeletal protein interactions modulate membrane stability. Proc Natl Acad Sci USA 99(4):1943–1948

    PubMed  CAS  Google Scholar 

  • Manno S, Takakuwa Y, Mohandas N (2005) Modulation of erythrocyte membrane mechanical function by protein 4.1 phosphorylation. J Biol Chem 280(9):7581–7587

    PubMed  CAS  Google Scholar 

  • Marchesi VT, Steers E Jr (1968) Selective solubilization of a protein component of the red cell membrane. Science 159(811):203–204

    PubMed  CAS  Google Scholar 

  • Mariani M, Maretzki D, Lutz HU (1993) A tightly membrane-associated subpopulation of spectrin is 3H-palmitoylated. J Biol Chem 268(17):12996–13001

    PubMed  CAS  Google Scholar 

  • Matsuoka Y, Hughes CA, Bennett V (1996) Adducin regulation. Definition of the calmodulin-binding domain and sites of phosphorylation by protein kinases A and C. J Biol Chem 271(41):25157–25166

    PubMed  CAS  Google Scholar 

  • Matsuoka Y, Li X, Bennett V (1998) Adducin is an in vivo substrate for protein kinase C: phosphorylation in the MARCKS-related domain inhibits activity in promoting spectrin–actin complexes and occurs in many cells, including dendritic spines of neurons. J Cell Biol 142(2):485–497

    PubMed  CAS  Google Scholar 

  • Matsuoka Y, Li X, Bennett V (2000) Adducin: structure, function and regulation. Cell Mol Life Sci 57(6):884–895

    PubMed  CAS  Google Scholar 

  • Mattagajasingh SN, Huang SC, Hartenstein JS, Snyder M, Marchesi VT, Benz EJ (1999) A nonerythroid isoform of protein 4.1R interacts with the nuclear mitotic apparatus (NuMA) protein. J Cell Biol 145(1):29–43

    PubMed  CAS  Google Scholar 

  • Maximov A, Tang TS, Bezprozvanny I (2003) Association of the type 1 inositol (1, 4, 5)-trisphosphate receptor with 4.1N protein in neurons. Mol Cell Neurosci 22(2):271–283

    PubMed  CAS  Google Scholar 

  • McKeown C, Praitis V, Austin J (1998) sma-1 encodes a betaH-spectrin homolog required for Caenorhabditis elegans morphogenesis. Development 125(11):2087–2098

    PubMed  CAS  Google Scholar 

  • Meary F, Metral S, Ferreira C, Eladari D, Colin Y, Lecomte MC, Nicolas G (2007) A mutant alphaII-spectrin designed to resist calpain and caspase cleavage questions the functional importance of this process in vivo. J Biol Chem 282(19):14226–14237

    PubMed  CAS  Google Scholar 

  • Medina E, Williams J, Klipfell E, Zarnescu D, Thomas G, Le Bivic A (2002) Crumbs interacts with moesin and beta(Heavy)-spectrin in the apical membrane skeleton of Drosophila. J Cell Biol 158(5):941–951

    PubMed  CAS  Google Scholar 

  • Menegoz M, Gaspar P, LeBert M, Galvez T, Burgaya F, Palfrey C, Ezan P, Amos F, Girault JA (1997) Paranodin, a glycoprotein of neuronal paranodal membranes. Neuron 19(2):319–331

    PubMed  CAS  Google Scholar 

  • Merilainen J, Palovuori R, Sormunen R, Wasenius VM, Lehto VP (1993) Binding of the alpha-fodrin SH3 domain to the leading lamellae of locomoting chicken fibroblasts. J Cell Sci 105(Pt 3):647–654

    PubMed  CAS  Google Scholar 

  • Metral S, Machnicka B, Bigot S, Colin Y, Dhermy D, Lecomte M-C (2009) {alpha}II-Spectrin is critical for cell adhesion and cell cycle. J Biol Chem 284(4):2409–2418. doi:10.1074/jbc.M801324200

    PubMed  CAS  Google Scholar 

  • Michaely P, Tomchick DR, Machius M, Anderson RG (2002) Crystal structure of a 12 ANK repeat stack from human ankyrinR. EMBO J 21(23):6387–6396

    PubMed  CAS  Google Scholar 

  • Michalak K, Bobrowska M, Sikorski AF (1993) Interaction of bovine erythrocyte spectrin with aminophospholipid liposomes. Gen Physiol Biophys 12(2):163–170

    PubMed  CAS  Google Scholar 

  • Mische SM, Mooseker MS, Morrow JS (1987) Erythrocyte adducin: a calmodulin-regulated actin-bundling protein that stimulates spectrin–actin binding. J Cell Biol 105(6 Pt 1):2837–2845

    PubMed  CAS  Google Scholar 

  • Mishra L, Cai T, Yu P, Monga SP, Mishra B (1999) Elf3 encodes a novel 200-kD beta-spectrin: role in liver development. Oncogene 18(2):353–364

    PubMed  CAS  Google Scholar 

  • Missner A, Kugler P, Saparov SM, Sommer K, Mathai JC, Zeidel ML, Pohl P (2008) Carbon dioxide transport through membranes. J Biol Chem 283(37):25340–25347

    PubMed  CAS  Google Scholar 

  • Mohandas N, Winardi R, Knowles D, Leung A, Parra M, George E, Conboy J, Chasis J (1992) Molecular basis for membrane rigidity of hereditary ovalocytosis. A novel mechanism involving the cytoplasmic domain of band 3. J Clin Invest 89(2):686–692

    PubMed  CAS  Google Scholar 

  • Mohler PJ, Bennett V (2005) Ankyrin-based cardiac arrhythmias: a new class of channelopathies due to loss of cellular targeting. Curr Opin Cardiol 20(3):189–193

    PubMed  Google Scholar 

  • Mohler PJ, Gramolini AO, Bennett V (2002) The ankyrin-B C-terminal domain determines activity of ankyrin-B/G chimeras in rescue of abnormal inositol 1, 4, 5-trisphosphate and ryanodine receptor distribution in ankyrin-B (-/-) neonatal cardiomyocytes. J Biol Chem 277(12):10599–10607

    PubMed  CAS  Google Scholar 

  • Mohler PJ, Schott JJ, Gramolini AO, Dilly KW, Guatimosim S, duBell WH, Song LS, Haurogne K, Kyndt F, Ali ME, Rogers TB, Lederer WJ, Escande D, Le Marec H, Bennett V (2003) Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 421(6923):634–639

    PubMed  CAS  Google Scholar 

  • Mohler PJ, Davis JQ, Davis LH, Hoffman JA, Michaely P, Bennett V (2004a) Inositol 1, 4, 5-trisphosphate receptor localization and stability in neonatal cardiomyocytes requires interaction with ankyrin-B. J Biol Chem 279(13):12980–12987

    PubMed  CAS  Google Scholar 

  • Mohler PJ, Rivolta I, Napolitano C, LeMaillet G, Lambert S, Priori SG, Bennett V (2004b) Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes. Proc Natl Acad Sci USA 101(50):17533–17538

    PubMed  CAS  Google Scholar 

  • Mohler PJ, Davis JQ, Bennett V (2005) Ankyrin-B coordinates the Na/K ATPase, Na/Ca exchanger, and InsP3 receptor in a cardiac T-tubule/SR microdomain. PLoS Biol 3(12):e423

    PubMed  Google Scholar 

  • Mombers C, Verkleij AJ, de Gier J, van Deenen LL (1979) The interaction of spectrin–actin and synthetic phospholipids. II. The interaction with phosphatidylserine. Biochim Biophys Acta 551(2):271–281

    PubMed  CAS  Google Scholar 

  • Moorthy S, Chen L, Bennett V (2000) Caenorhabditis elegans beta-G spectrin is dispensable for establishment of epithelial polarity, but essential for muscular and neuronal function. J Cell Biol 149(4):915–930

    PubMed  CAS  Google Scholar 

  • Morrow JS, Marchesi VT (1981) Self-assembly of spectrin oligomers in vitro: a basis for a dynamic cytoskeleton. J Cell Biol 88(2):463–468

    PubMed  CAS  Google Scholar 

  • Morrow JS, Cianci CD, Ardito T, Mann AS, Kashgarian M (1989) Ankyrin links fodrin to the alpha subunit of Na, K-ATPase in Madin-Darby canine kidney cells and in intact renal tubule cells. J Cell Biol 108(2):455–465

    PubMed  CAS  Google Scholar 

  • Muro AF, Marro ML, Gajovic S, Porro F, Luzzatto L, Baralle FE (2000) Mild spherocytic hereditary elliptocytosis and altered levels of alpha- and gamma-adducins in beta-adducin-deficient mice. Blood 95(12):3978–3985

    PubMed  CAS  Google Scholar 

  • Musacchio A, Noble M, Pauptit R, Wierenga R, Saraste M (1992) Crystal structure of a Src-homology 3 (SH3) domain. Nature 359(6398):851–855

    PubMed  CAS  Google Scholar 

  • Nakhoul NL, Davis BA, Romero MF, Boron WF (1998) Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes. Am J Physiol 274(2 Pt 1):C543–C548

    PubMed  CAS  Google Scholar 

  • Nedrelow JH, Cianci CD, Morrow JS (2003) c-Src binds alpha II spectrin’s Src homology 3 (SH3) domain and blocks calpain susceptibility by phosphorylating Tyr1176. J Biol Chem 278(9):7735–7741

    PubMed  CAS  Google Scholar 

  • Nelson WJ, Hammerton RW (1989) A membrane–cytoskeletal complex containing Na+, K + -ATPase, ankyrin, and fodrin in Madin-Darby canine kidney (MDCK) cells: implications for the biogenesis of epithelial cell polarity. J Cell Biol 108(3):893–902

    PubMed  CAS  Google Scholar 

  • Nelson WJ, Veshnock PJ (1987) Ankyrin binding to (Na+ + K+)ATPase and implications for the organization of membrane domains in polarized cells. Nature 328(6130):533–536

    PubMed  CAS  Google Scholar 

  • Nelson WJ, Shore EM, Wang AZ, Hammerton RW (1990) Identification of a membrane–cytoskeletal complex containing the cell adhesion molecule uvomorulin (E-cadherin), ankyrin, and fodrin in Madin- Darby canine kidney epithelial cells. J Cell Biol 110(2):349–357

    PubMed  CAS  Google Scholar 

  • Nicolas G, Pedroni S, Fournier C, Gautero H, Craescu C, Dhermy D, Lecomte MC (1998) Spectrin self-association site: characterization and study of beta-spectrin mutations associated with hereditary elliptocytosis. Biochem J 332(Pt 1):81–89

    PubMed  CAS  Google Scholar 

  • Nicolas G, Fournier CM, Galand C, Malbert-Colas L, Bournier O, Kroviarski Y, Bourgeois M, Camonis JH, Dhermy D, Grandchamp B, Lecomte MC (2002) Tyrosine phosphorylation regulates alpha II spectrin cleavage by calpain. Mol Cell Biol 22(10):3527–3536

    PubMed  CAS  Google Scholar 

  • Nicolas V, Le Van KC, Gane P, Birkenmeier C, Cartron JP, Colin Y, Mouro-Chanteloup I (2003) Rh-RhAG/ankyrin-R, a new interaction site between the membrane bilayer and the red cell skeleton, is impaired by Rh(null)-associated mutation. J Biol Chem 278(28):25526–25533

    PubMed  CAS  Google Scholar 

  • Nishimura K, Yoshihara F, Tojima T, Ooashi N, Yoon W, Mikoshiba K, Bennett V, Kamiguchi H (2003) L1-dependent neuritogenesis involves ankyrinB that mediates L1-CAM coupling with retrograde actin flow. J Cell Biol 163(5):1077–1088

    PubMed  CAS  Google Scholar 

  • Nishimura K, Akiyama H, Komada M, Kamiguchi H (2007) betaIV-spectrin forms a diffusion barrier against L1CAM at the axon initial segment. Mol Cell Neurosci 34(3):422–430

    PubMed  CAS  Google Scholar 

  • Norman KR, Moerman DG (2002) Alpha spectrin is essential for morphogenesis and body wall muscle formation in Caenorhabditis elegans. J Cell Biol 157(4):665–677

    PubMed  CAS  Google Scholar 

  • Nunomura W, Takakuwa Y (2006) Regulation of protein 4.1R interactions with membrane proteins by Ca2+ and calmodulin. Front Biosci 11:1522–1539

    PubMed  CAS  Google Scholar 

  • Nunomura W, Takakuwa Y, Tokimitsu R, Krauss SW, Kawashima M, Mohandas N (1997) Regulation of CD44–protein 4.1 interaction by Ca2+ and calmodulin. Implications for modulation of CD44–ankyrin interaction. J Biol Chem 272(48):30322–30328

    PubMed  CAS  Google Scholar 

  • Nunomura W, Parra M, Hebiguchi M, Sawada KI, Mohandas N, Takakuwa Y (2009) Marked difference in membrane protein binding properties of the two isoforms of protein 4.1R expressed at early and late stages of erythroid differentiation. Biochem J 417(1):141–148

    PubMed  CAS  Google Scholar 

  • Odell AF, Van Helden DF, Scott JL (2008) The spectrin cytoskeleton influences the surface expression and activation of human transient receptor potential channel 4 channels. J Biol Chem 283(7):4395–4407

    PubMed  CAS  Google Scholar 

  • Ogawa Y, Rasband MN (2008) The functional organization and assembly of the axon initial segment. Curr Opin Neurobiol 18(3):307–313

    PubMed  CAS  Google Scholar 

  • Ogawa Y, Rasband MN (2009) Proteomic analysis of optic nerve lipid rafts reveals new paranodal proteins. J Neurosci Res 87(15):3502–3510

    PubMed  CAS  Google Scholar 

  • Ogawa Y, Schafer DP, Horresh I, Bar V, Hales K, Yang Y, Susuki K, Peles E, Stankewich MC, Rasband MN (2006) Spectrins and ankyrinB constitute a specialized paranodal cytoskeleton. J Neurosci 26(19):5230–5239

    PubMed  CAS  Google Scholar 

  • Ohanian V, Wolfe LC, John KM, Pinder JC, Lux SE, Gratzer WB (1984) Analysis of the ternary interaction of the red cell membrane skeletal proteins spectrin, actin, and 4.1. Biochemistry 23(19):4416–4420

    PubMed  CAS  Google Scholar 

  • Otto E, Kunimoto M, McLaughlin T, Bennett V (1991) Isolation and characterization of cDNAs encoding human brain ankyrins reveal a family of alternatively spliced genes. J Cell Biol 114(2):241–253

    PubMed  CAS  Google Scholar 

  • Palfrey HC, Waseem A (1985) Protein kinase C in the human erythrocyte. Translocation to the plasma membrane and phosphorylation of bands 4.1 and 4.9 and other membrane proteins. J Biol Chem 260(29):16021–16029

    PubMed  CAS  Google Scholar 

  • Pan Z, Kao T, Horvath Z, Lemos J, Sul JY, Cranstoun SD, Bennett V, Scherer SS, Cooper EC (2006) A common ankyrin-G-based mechanism retains KCNQ and NaV channels at electrically active domains of the axon. J Neurosci 26(10):2599–2613

    PubMed  CAS  Google Scholar 

  • Pardo JV, Siliciano JD, Craig SW (1983a) A vinculin-containing cortical lattice in skeletal muscle: transverse lattice elements (“costameres”) mark sites of attachment between myofibrils and sarcolemma. Proc Natl Acad Sci USA 80(4):1008–1012

    PubMed  CAS  Google Scholar 

  • Pardo JV, Siliciano JD, Craig SW (1983b) Vinculin is a component of an extensive network of myofibril-sarcolemma attachment regions in cardiac muscle fibers. J Cell Biol 97(4):1081–1088

    PubMed  CAS  Google Scholar 

  • Parkinson NJ, Olsson CL, Hallows JL, McKee-Johnson J, Keogh BP, Noben-Trauth K, Kujawa SG, Tempel BL (2001) Mutant beta-spectrin 4 causes auditory and motor neuropathies in quivering mice. Nat Genet 29(1):61–65

    PubMed  CAS  Google Scholar 

  • Parra M, Gascard P, Walensky LD, Snyder SH, Mohandas N, Conboy JG (1998) Cloning and characterization of 4.1G (EPB41L2), a new member of the skeletal protein 4.1 (EPB41) gene family. Genomics 39:298–306

    Google Scholar 

  • Parra M, Gascard P, Walensky LD, Gimm JA, Blackshaw S, Chan N, Takakuwa Y, Berger T, Lee G, Chasis JA, Snyder SH, Mohandas N, Conboy JG (2000) Molecular and functional characterization of protein 4.1B, a novel member of the protein 4.1 family with high level, focal expression in brain. J Biol Chem 275(5):3247–3255

    PubMed  CAS  Google Scholar 

  • Parra M, Gee S, Chan N, Ryaboy D, Dubchak I, Mohandas N, Gascard PD, Conboy JG (2004) Differential domain evolution and complex RNA processing in a family of paralogous EPB41 (protein 4.1) genes facilitate expression of diverse tissue-specific isoforms. Genomics 84(4):637–646

    PubMed  CAS  Google Scholar 

  • Pascual J, Pfuhl M, Rivas G, Pastore A, Saraste M (1996) The spectrin repeat folds into a three-helix bundle in solution. FEBS Lett 383(3):201–207

    PubMed  CAS  Google Scholar 

  • Pasternack GR, Anderson RA, Leto TL, Marchesi VT (1985) Interactions between protein 4.1 and band 3. An alternative binding site for an element of the membrane skeleton. J Biol Chem 260(6):3676–3683

    PubMed  CAS  Google Scholar 

  • Paw BH, Davidson AJ, Zhou Y, Li R, Pratt SJ, Lee C, Trede NS, Brownlie A, Donovan A, Liao EC, Ziai JM, Drejer AH, Guo W, Kim CH, Gwynn B, Peters LL, Chernova MN, Alper SL, Zapata A, Wickramasinghe SN, Lee MJ, Lux SE, Fritz A, Postlethwait JH, Zon LI (2003) Cell-specific mitotic defect and dyserythropoiesis associated with erythroid band 3 deficiency. Nat Genet 34(1):59–64

    PubMed  CAS  Google Scholar 

  • Pei X, Guo X, Coppel R, Bhattacharjee S, Haldar K, Gratzer W, Mohandas N, An X (2007a) The ring-infected erythrocyte surface antigen (RESA) of Plasmodium falciparum stabilizes spectrin tetramers and suppresses further invasion. Blood 110(3):1036–1042

    PubMed  CAS  Google Scholar 

  • Pei X, Guo X, Coppel R, Mohandas N, An X (2007b) Plasmodium falciparum erythrocyte membrane protein 3 (PfEMP3) destabilizes erythrocyte membrane skeleton. J Biol Chem 282(37):26754–26758

    PubMed  CAS  Google Scholar 

  • Perez-Ferreiro CM, Luque CM, Correas I (2001) 4.1R proteins associate with interphase microtubules in human T cells: a 4.1R constitutive region is involved in tubulin binding. J Biol Chem 276(48):44785–44791

    PubMed  CAS  Google Scholar 

  • Perez-Ferreiro CM, Vernos I, Correas I (2004) Protein 4.1R regulates interphase microtubule organization at the centrosome. J Cell Sci 117(Pt 25):6197–6206

    PubMed  CAS  Google Scholar 

  • Peters LL, John KM, Lu FM, Eicher EM, Higgins A, Yialamas M, Turtzo LC, Otsuka AJ, Lux SE (1995) Ank3 (epithelial ankyrin), a widely distributed new member of the ankyrin gene family and the major ankyrin in kidney, is expressed in alternatively spliced forms, including forms that lack the repeat domain. J Cell Biol 130(2):313–330

    PubMed  CAS  Google Scholar 

  • Petrella LN, Smith-Leiker T, Cooley L (2007) The Ovhts polyprotein is cleaved to produce fusome and ring canal proteins required for Drosophila oogenesis. Development 134(4):703–712

    PubMed  CAS  Google Scholar 

  • Phillips MD, Thomas GH (2006) Brush border spectrin is required for early endosome recycling in Drosophila. J Cell Sci 119(Pt 7):1361–1370

    PubMed  CAS  Google Scholar 

  • Pielage J, Fetter RD, Davis GW (2006) A postsynaptic spectrin scaffold defines active zone size, spacing, and efficacy at the Drosophila neuromuscular junction. J Cell Biol 175(3):491–503

    PubMed  CAS  Google Scholar 

  • Pielage J, Cheng L, Fetter RD, Carlton PM, Sedat JW, Davis GW (2008) A presynaptic giant ankyrin stabilizes the NMJ through regulation of presynaptic microtubules and transsynaptic cell adhesion. Neuron 58(2):195–209

    PubMed  CAS  Google Scholar 

  • Pinder JC, Baines AJ (2000) A protein accumulator. Nature 406(6793):253–254

    PubMed  CAS  Google Scholar 

  • Pinder JC, Gratzer WB (1983) Structural and dynamic states of actin in the erythrocyte. J Cell Biol 96(3):768–775

    PubMed  CAS  Google Scholar 

  • Pinder JC, Bray D, Gratzer WB (1975) Actin polymerisation induced by spectrin. Nature 258(5537):765–766

    PubMed  CAS  Google Scholar 

  • Pinder JC, Phethean J, Gratzer WB (1978a) Spectrin in primitive erythrocytes. FEBS Lett 92(2):278–282

    PubMed  CAS  Google Scholar 

  • Pinder JC, Ungewickell E, Bray D, Gratzer WB (1978b) The spectrin–actin complex and erythrocyte shape. J Supramol Struct 8(4):439–445

    PubMed  CAS  Google Scholar 

  • Pinder JC, Ohanian V, Gratzer WB (1984) Spectrin and protein 4.1 as an actin filament capping complex. FEBS Lett 169(2):161–164

    PubMed  CAS  Google Scholar 

  • Poliak S, Gollan L, Martinez R, Custer A, Einheber S, Salzer JL, Trimmer JS, Shrager P, Peles E (1999) Caspr2, a new member of the neurexin superfamily, is localized at the juxtaparanodes of myelinated axons and associates with K+ channels. Neuron 24(4):1037–1047

    PubMed  CAS  Google Scholar 

  • Poliak S, Gollan L, Salomon D, Berglund EO, Ohara R, Ranscht B, Peles E (2001) Localization of Caspr2 in myelinated nerves depends on axon–glia interactions and the generation of barriers along the axon. J Neurosci 21(19):7568–7575

    PubMed  CAS  Google Scholar 

  • Porter NC, Resneck WG, O’Neill A, Van Rossum DB, Stone MR, Bloch RJ (2005) Association of small ankyrin 1 with the sarcoplasmic reticulum. Mol Membr Biol 22(5):421–432. doi:10.1080/09687860500244262

    PubMed  CAS  Google Scholar 

  • Pradhan D, Lombardo CR, Roe S, Rimm DL, Morrow JS (2001) alpha -Catenin binds directly to spectrin and facilitates spectrin–membrane assembly in vivo. J Biol Chem 276(6):4175–4181

    PubMed  CAS  Google Scholar 

  • Praitis V, Ciccone E, Austin J (2005) SMA-1 spectrin has essential roles in epithelial cell sheet morphogenesis in C-elegans. Dev Biol 283(1):157–170

    PubMed  CAS  Google Scholar 

  • Prasad GV, Coury LA, Finn F, Zeidel ML (1998) Reconstituted aquaporin 1 water channels transport CO2 across membranes. J Biol Chem 273(50):33123–33126

    PubMed  CAS  Google Scholar 

  • Preston GM, Agre P (1991) Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci USA 88(24):11110–11114

    PubMed  CAS  Google Scholar 

  • Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256(5055):385–387

    PubMed  CAS  Google Scholar 

  • Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, Jurka J, Genikhovich G, Grigoriev IV, Lucas SM, Steele RE, Finnerty JR, Technau U, Martindale MQ, Rokhsar DS (2007) Sea Anemone Genome Reveals Ancestral Eumetazoan Gene Repertoire and Genomic Organization. Science 317(5834):86–94. doi:10.1126/science.1139158

    PubMed  CAS  Google Scholar 

  • Ralston GB (1975) The isolation of aggregates of spectrin from bovine erythrocyte membranes. Aust J Biol Sci 28(3):259–266

    PubMed  CAS  Google Scholar 

  • Ralston GB, Dunbar JC (1979) Salt and temperature-dependent conformation changes in spectrin from human erythrocyte membranes. Biochim Biophys Acta 579(1):20–30

    PubMed  CAS  Google Scholar 

  • Ramez M, Blot-Chabaud M, Cluzeaud F, Chanan S, Patterson M, Walensky LD, Marfatia S, Baines AJ, Chasis JA, Conboy JG, Mohandas N, Gascard P (2003) Distinct distribution of specific members of protein 4.1 gene family in the mouse nephron. Kidney Int 63(4):1321–1337

    PubMed  CAS  Google Scholar 

  • Rasmussen HB, Frokjaer-Jensen C, Jensen CS, Jensen HS, Jorgensen NK, Misonou H, Trimmer JS, Olesen SP, Schmitt N (2007) Requirement of subunit co-assembly and ankyrin-G for M-channel localization at the axon initial segment. J Cell Sci 120(Pt 6):953–963

    PubMed  CAS  Google Scholar 

  • Reid ME, Takakuwa Y, Conboy J, Tchernia G, Mohandas N (1990) Glycophorin C content of human erythrocyte membrane is regulated by protein 4.1. Blood 75(11):2229–2234

    Google Scholar 

  • Ripoche P, Goossens D, Devuyst O, Gane P, Colin Y, Verkman AS, Cartron JP (2006) Role of RhAG and AQP1 in NH3 and CO2 gas transport in red cell ghosts: a stopped-flow analysis. Transfus Clin Biol 13(1–2):117–122

    PubMed  CAS  Google Scholar 

  • Robb VA, Li W, Gascard P, Perry A, Mohandas N, Gutmann DH (2003) Identification of a third Protein 4.1 tumor suppressor, Protein 4.1R, in meningioma pathogenesis. Neurobiol Dis 13(3):191–202

    PubMed  CAS  Google Scholar 

  • Robb VA, Gerber MA, Hart-Mahon EK, Gutmann DH (2005) Membrane localization of the U2 domain of Protein 4.1B is necessary and sufficient for meningioma growth suppression. Oncogene 24(11):1946–1957

    PubMed  CAS  Google Scholar 

  • Robledo RF, Ciciotte SL, Gwynn B, Sahr KE, Gilligan DM, Mohandas N, Peters LL (2008) Targeted deletion of {alpha}-adducin results in absent {beta}- and {gamma}-adducin, compensated hemolytic anemia, and lethal hydrocephalus in mice. Blood

  • Rotter B, Bournier O, Nicolas G, Dhermy D, Lecomte MC (2005) AlphaII-spectrin interacts with Tes and EVL, two actin-binding proteins located at cell contacts. Biochem J 388(Pt 2):631–638

    PubMed  CAS  Google Scholar 

  • Sahr KE, Tobe T, Scarpa A, Laughinghouse K, Marchesi SL, Agre P, Linnenbach AJ, Marchesi VT, Forget BG (1989) Sequence and exon–intron organization of the DNA encoding the alpha I domain of human spectrin. Application to the study of mutations causing hereditary elliptocytosis J Clin Invest 84(4):1243–1252

    CAS  Google Scholar 

  • Sahr KE, Laurila P, Kotula L, Scarpa AL, Coupal E, Leto TL, Linnenbach AJ, Winkelmann JC, Speicher DW, Marchesi VT, Curtis PJ, Forget BG (1990) The complete cDNA and polypeptide sequences of human erythroid alpha-spectrin. J Biol Chem 265(8):4434–4443

    PubMed  CAS  Google Scholar 

  • Salomao M, An X, Guo X, Gratzer WB, Mohandas N, Baines AJ (2006) Mammalian alphaI-spectrin is a neofunctionalized polypeptide adapted to small highly deformable erythrocytes. Proc Natl Acad Sci USA 103(3):643–648

    PubMed  CAS  Google Scholar 

  • Salomao M, Zhang X, Yang Y, Lee S, Hartwig JH, Chasis JA, Mohandas N, An X (2008) Protein 4.1R-dependent multiprotein complex: new insights into the structural organization of the red blood cell membrane. Proc Natl Acad Sci USA 105(23):8026–8031

    PubMed  CAS  Google Scholar 

  • Salomao M, Chen K, Villalobos J, Mohandas N, An X, Chasis JA (2010) Hereditary spherocytosis and hereditary elliptocytosis: aberrant protein sorting during erythroblast enucleation. Blood Mar 25. [Epub ahead of print]

  • Samarel AM (2005) Costameres, focal adhesions, and cardiomyocyte mechanotransduction. Am J Physiol Heart Circ Physiol 289(6):H2291–H2301

    PubMed  CAS  Google Scholar 

  • Satchwell TJ, Shoemark DK, Sessions RB, Toye AM (2009) Protein 4.2: a complex linker. Blood Cells Mol Dis 42(3):201–210

    PubMed  CAS  Google Scholar 

  • Schafer DP, Jha S, Liu F, Akella T, McCullough LD, Rasband MN (2009) Disruption of the axon initial segment cytoskeleton is a new mechanism for neuronal injury. J Neurosci 29(42):13242–13254

    PubMed  CAS  Google Scholar 

  • Scott C, Phillips GW, Baines AJ (2001) Properties of the C-terminal domain of 4.1 proteins. Eur J Biochem 268(13):3709–3717

    PubMed  CAS  Google Scholar 

  • Shahbakhti F, Gratzer WB (1986) Analysis of the self-association of human red cell spectrin. Biochemistry 25(20):5969–5975

    PubMed  CAS  Google Scholar 

  • Sheetz MP (1979) Integral membrane protein interaction with Triton cytoskeletons of erythrocytes. Biochim Biophys Acta 557(1):122–134

    PubMed  CAS  Google Scholar 

  • Sheetz MP, Painter RG, Singer SJ (1976) Relationships of the spectrin complex of human erythrocyte membranes to the actomyosins of muscle cells. Biochemistry 15(20):4486–4492

    PubMed  CAS  Google Scholar 

  • Shen L, Liang F, Walensky LD, Huganir RL (2000) Regulation of AMPA receptor GluR1 subunit surface expression by a 4. 1 N-linked actin cytoskeletal association. J Neurosci 20(21):7932–7940

    PubMed  CAS  Google Scholar 

  • Shotton D, Burke B, Branton D (1978) The shape of spectrin molecules from human erythrocyte membranes. Biochim Biophys Acta 536(1):313–317

    PubMed  CAS  Google Scholar 

  • Siegel DL, Branton D (1985) Partial purification and characterization of an actin-bundling protein, band 4.9, from human erythrocytes. J Cell Biol 100(3):775–785

    PubMed  CAS  Google Scholar 

  • Simonovic M, Zhang Z, Cianci CD, Steitz TA, Morrow JS (2006) Structure of the calmodulin alphaII-spectrin complex provides insight into the regulation of cell plasticity. J Biol Chem 281(45):34333–34340

    PubMed  CAS  Google Scholar 

  • Sobotzik JM, Sie JM, Politi C, Del Turco D, Bennett V, Deller T, Schultz C (2009) AnkyrinG is required to maintain axo-dendritic polarity in vivo. Proc Natl Acad Sci USA 106(41):17564–17569

    PubMed  CAS  Google Scholar 

  • Song AH, Wang D, Chen G, Li Y, Luo J, Duan S, Poo MM (2009) A selective filter for cytoplasmic transport at the axon initial segment. Cell 136(6):1148–1160

    PubMed  CAS  Google Scholar 

  • Speicher DW, Marchesi VT (1984) Erythrocyte spectrin is comprised of many homologous triple helical segments. Nature 311(5982):177–180

    PubMed  CAS  Google Scholar 

  • Speicher DW, Davis G, Marchesi VT (1983) Structure of human erythrocyte spectrin. II. The sequence of the alpha-I domain. J Biol Chem 258(24):14938–14947

    PubMed  CAS  Google Scholar 

  • Srinivasan Y, Elmer L, Davis J, Bennett V, Angelides K (1988) Ankyrin and spectrin associate with voltage-dependent sodium channels in brain. Nature 333(6169):177–180

    PubMed  CAS  Google Scholar 

  • Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, Signorovitch AY, Moreno MA, Kamm K, Grimwood J, Schmutz J, Shapiro H, Grigoriev IV, Buss LW, Schierwater B, Dellaporta SL, Rokhsar DS (2008) The Trichoplax genome and the nature of placozoans. Nature 454(7207):955–960

    PubMed  CAS  Google Scholar 

  • Stabach PR, Morrow JS (2000) Identification and characterization of beta V spectrin, a mammalian ortholog of Drosophila beta H spectrin. J Biol Chem 275(28):21385–21395

    PubMed  CAS  Google Scholar 

  • Stabach PR, Simonovic I, Ranieri MA, Aboodi MS, Steitz TA, Simonovic M, Morrow JS (2009) The structure of the ankyrin-binding site of beta-spectrin reveals how tandem spectrin-repeats generate unique ligand-binding properties. Blood 113(22):5377–5384

    PubMed  CAS  Google Scholar 

  • Stagg MA, Carter E, Sohrabi N, Siedlecka U, Soppa GK, Mead F, Mohandas N, Taylor-Harris P, Baines A, Bennett P, Yacoub MH, Pinder JC, Terracciano CMN (2008) Cytoskeletal protein 4.1R affects repolarization and regulates calcium handling in the heart. Circ Res 103(8):855–863. doi:10.1161/circresaha.108.176461

    PubMed  CAS  Google Scholar 

  • Steck TL, Weinstein RS, Straus JH, Wallach DF (1970) Inside-out red cell membrane vesicles: preparation and purification. Science 168(928):255–257

    PubMed  CAS  Google Scholar 

  • Stumpp MT, Amstutz P (2007) DARPins: a true alternative to antibodies. Curr Opin Drug Disc Dev 10(2):153–159

    CAS  Google Scholar 

  • Sussman MA, McCulloch A, Borg TK (2002) Dance band on the titanic: biomechanical signaling in cardiac hypertrophy. Circ Res 91(10):888–898. doi:10.1161/01.res.0000041680.43270.f8

    PubMed  CAS  Google Scholar 

  • Tang HY, Speicher DW (2004) In vivo phosphorylation of human erythrocyte spectrin occurs in a sequential manner. Biochemistry 43(14):4251–4262

    PubMed  CAS  Google Scholar 

  • Tang Y, Katuri V, Dillner A, Mishra B, Deng CX, Mishra L (2003) Disruption of transforming growth factor-beta signaling in ELF beta- spectrin-deficient mice. Science 299(5606):574–577

    PubMed  CAS  Google Scholar 

  • Taylor-Harris PM, Felkin LE, Birks EJ, Franklin RC, Yacoub MH, Baines AJ, Barton PJ, Pinder JC (2005a) Expression of human membrane skeleton protein genes for protein 4.1 and betaIISigma2-spectrin assayed by real-time RT-PCR. Cell Mol Biol Lett 10(1):135–149

    PubMed  CAS  Google Scholar 

  • Taylor-Harris PM, Keating LA, Maggs AM, Phillips GW, Birks EJ, Franklin RC, Yacoub MH, Baines AJ, Pinder JC (2005b) Cardiac muscle cell cytoskeletal protein 4.1: analysis of transcripts and subcellular location–relevance to membrane integrity, microstructure, and possible role in heart failure. Mamm Genome 16(3):137–151

    PubMed  CAS  Google Scholar 

  • Tepass U (2009) FERM proteins in animal morphogenesis. Curr Opin Genet Dev 19(4):357–367

    PubMed  CAS  Google Scholar 

  • Thomas GH, Zarnescu DC, Juedes AE, Bales MA, Londergan A, Korte CC, Kiehart DP (1998) Drosophila betaHeavy-spectrin is essential for development and contributes to specific cell fates in the eye. Development 125(11):2125–2134

    PubMed  CAS  Google Scholar 

  • Tillack TW, Marchesi SL, Marchesi VT, Steers E Jr (1970) A comparative study of spectrin: a protein isolated from red blood cell membranes. Biochim Biophys Acta 200(1):125–131

    PubMed  CAS  Google Scholar 

  • Tilney LG, Detmers P (1975) Actin in erythrocyte ghosts and its association with spectrin. Evidence for a nonfilamentous form of these two molecules in situ. J Cell Biol 66(3):508–520

    PubMed  CAS  Google Scholar 

  • Tisminetzky S, Devescovi G, Tripodi G, Muro A, Bianchi G, Colombi M, Moro L, Barlati S, Tuteja R, Baralle FE (1995) Genomic organisation and chromosomal localisation of the gene encoding human beta adducin. Gene 167(1–2):313–316

    PubMed  CAS  Google Scholar 

  • Tran YK, Bogler O, Gorse KM, Wieland I, Green MR, Newsham IF (1999) A novel member of the NF2/ERM/4.1 superfamily with growth suppressing properties in lung cancer. Cancer Res 59(1):35–43

    PubMed  CAS  Google Scholar 

  • Trave G, Pastore A, Hyvonen M, Saraste M (1995) The C-terminal domain of alpha-spectrin is structurally related to calmodulin. Eur J Biochem 227(1–2):35–42

    PubMed  CAS  Google Scholar 

  • Tse WT, Lux SE (1999) Red blood cell membrane disorders. Br J Haematol 104(1):2–13

    PubMed  CAS  Google Scholar 

  • Tse WT, Lecomte MC, Costa FF, Garbarz M, Feo C, Boivin P, Dhermy D, Forget BG (1990) Point mutation in the beta-spectrin gene associated with alpha I/74 hereditary elliptocytosis. Implications for the mechanism of spectrin dimer self-association. J Clin Invest 86(3):909–916

    PubMed  CAS  Google Scholar 

  • Tuvia S, Buhusi M, Davis L, Reedy M, Bennett V (1999) Ankyrin-B is required for intracellular sorting of structurally diverse Ca2+ homeostasis proteins. J Cell Biol 147(5):995–1008

    PubMed  CAS  Google Scholar 

  • Tyler JM, Hargreaves WR, Branton D (1979) Purification of two spectrin-binding proteins: biochemical and electron microscopic evidence for site-specific reassociation between spectrin and bands 2.1 and 4.1. Proc Natl Acad Sci USA 76(10):5192–5196

    PubMed  CAS  Google Scholar 

  • Tyler JM, Reinhardt BN, Branton D (1980) Associations of erythrocyte membrane proteins. Binding of purified bands 2.1 and 4.1 to spectrin. J Biol Chem 255(14):7034–7039

    PubMed  CAS  Google Scholar 

  • Uemoto Y, Suzuki S, Terada N, Ohno N, Ohno S, Yamanaka S, Komada M (2007) Specific role of the truncated betaIV-spectrin Sigma6 in sodium channel clustering at axon initial segments and nodes of Ranvier. J Biol Chem 282(9):6548–6555

    PubMed  CAS  Google Scholar 

  • Ungewickell E, Gratzer W (1978) Self-association of human spectrin. A thermodynamic and kinetic study. Eur J Biochem 88(2):379–385

    PubMed  CAS  Google Scholar 

  • Ungewickell E, Bennett PM, Calvert R, Ohanian V, Gratzer WB (1979) In vitro formation of a complex between cytoskeletal proteins of the human erythrocyte. Nature 280(5725):811–814

    PubMed  CAS  Google Scholar 

  • Ursitti JA, Fowler VM (1994) Immunolocalization of tropomodulin, tropomyosin and actin in spread human erythrocyte skeletons. J Cell Sci 107(Pt 6):1633–1639

    PubMed  CAS  Google Scholar 

  • Ursitti JA, Kotula L, DeSilva TM, Curtis PJ, Speicher DW (1996) Mapping the human erythrocyte beta-spectrin dimer initiation site using recombinant peptides and correlation of its phasing with the alpha-actinin dimer site. J Biol Chem 271(12):6636–6644

    PubMed  CAS  Google Scholar 

  • Van de Peer Y (2004) Tetraodon genome confirms Takifugu findings: most fish are ancient polyploids. Genome Biol 5(12):250

    PubMed  Google Scholar 

  • Van Wart A, Trimmer JS, Matthews G (2007) Polarized distribution of ion channels within microdomains of the axon initial segment. J Comp Neurol 500(2):339–352

    PubMed  Google Scholar 

  • Viel A, Gee MS, Tomooka L, Branton D (1998) Motifs involved in interchain binding at the tail-end of spectrin. Biochim Biophys Acta 1384(2):396–404

    PubMed  CAS  Google Scholar 

  • Vince JW, Reithmeier RA (1998) Carbonic anhydrase II binds to the carboxyl terminus of human band 3, the erythrocyte C1-/HCO3- exchanger. J Biol Chem 273(43):28430–28437

    PubMed  CAS  Google Scholar 

  • Voas MG, Lyons DA, Naylor SG, Arana N, Rasband MN, Talbot WS (2007) alphaII-spectrin is essential for assembly of the nodes of Ranvier in myelinated axons. Curr Biol 17(6):562–568

    PubMed  CAS  Google Scholar 

  • Walensky LD, Blackshaw S, Liao D, Watkins CC, Weier HU, Parra M, Huganir RL, Conboy JG, Mohandas N, Snyder SH (1999) A novel neuron-enriched homolog of the erythrocyte membrane cytoskeletal protein 4.1. J Neurosci 19(15):6457–6467

    PubMed  CAS  Google Scholar 

  • Waller KL, Nunomura W, An X, Cooke BM, Mohandas N, Coppel RL (2003) Mature parasite-infected erythrocyte surface antigen (MESA) of Plasmodium falciparum binds to the 30-kDa domain of protein 4.1 in malaria-infected red blood cells. Blood 102(5):1911–1914

    Google Scholar 

  • Waller KL, Stubberfield LM, Dubljevic V, Buckingham DW, Mohandas N, Coppel RL, Cooke BM (2010) Interaction of the exported malaria protein Pf332 with the red blood cell membrane skeleton. Biochim Biophys Acta 1798(5):861–871

    PubMed  CAS  Google Scholar 

  • Ward REt, Schweizer L, Lamb RS, Fehon RG (2001) The protein 4.1, ezrin, radixin, moesin (FERM) domain of Drosophila Coracle, a cytoplasmic component of the septate junction, provides functions essential for embryonic development and imaginal cell proliferation. Genetics 159(1):219–228

  • Waseem A, Palfrey HC (1988) Erythrocyte adducin. Comparison of the alpha- and beta-subunits and multiple-site phosphorylation by protein kinase C and cAMP-dependent protein kinase. Eur J Biochem 178(2):563–573

    PubMed  CAS  Google Scholar 

  • Waseem A, Palfrey HC (1990) Identification and protein kinase C-dependent phosphorylation of alpha-adducin in human fibroblasts. J Cell Sci 96(Pt 1):93–98

    PubMed  CAS  Google Scholar 

  • Wechsler A, Teichberg VI (1998) Brain spectrin binding to the NMDA receptor is regulated by phosphorylation, calcium and calmodulin. EMBO J 17(14):3931–3939

    PubMed  CAS  Google Scholar 

  • Whittaker KL, Ding D, Fisher WW, Lipshitz HD (1999) Different 3’ untranslated regions target alternatively processed hu-li tai shao (hts) transcripts to distinct cytoplasmic locations during Drosophila oogenesis. J Cell Sci 112(Pt 19):3385–3398

    PubMed  CAS  Google Scholar 

  • Williamson RC, Toye AM (2008) Glycophorin A: band 3 aid. Blood Cells Mol Dis 41(1):35–43

    PubMed  CAS  Google Scholar 

  • Winkelmann JC, Leto TL, Watkins PC, Eddy R, Shows TB, Linnenbach AJ, Sahr KE, Kathuria N, Marchesi VT, Forget BG (1988) Molecular cloning of the cDNA for human erythrocyte beta-spectrin. Blood 72(1):328–334

    PubMed  CAS  Google Scholar 

  • Winkelmann JC, Chang JG, Tse WT, Scarpa AL, Marchesi VT, Forget BG (1990a) Full-length sequence of the cDNA for human erythroid beta-spectrin. J Biol Chem 265(20):11827–11832

    PubMed  CAS  Google Scholar 

  • Winkelmann JC, Costa FF, Linzie BL, Forget BG (1990b) Beta spectrin in human skeletal muscle. Tissue-specific differential processing of 3' beta spectrin pre-mRNA generates a beta spectrin isoform with a unique carboxyl terminus. J Biol Chem 265(33):20449–20454

    PubMed  CAS  Google Scholar 

  • Woroniecki R, Ferdinand JR, Morrow JS, Devarajan P (2003) Dissociation of spectrin–ankyrin complex as a basis for loss of Na-K-ATPase polarity after ischemia. Am J Physiol Renal Physiol 284(2):F358–F364

    PubMed  CAS  Google Scholar 

  • Xu X, Shrager P (2005) Dependence of axon initial segment formation on Na+ channel expression. J Neurosci Res 79(4):428–441

    PubMed  CAS  Google Scholar 

  • Xu M, Cao R, Xiao R, Zhu MX, Gu C (2007) The axon-dendrite targeting of Kv3 (Shaw) channels is determined by a targeting motif that associates with the T1 domain and ankyrin G. J Neurosci 27(51):14158–14170

    PubMed  CAS  Google Scholar 

  • Yan Y, Winograd E, Viel A, Cronin T, Harrison SC, Branton D (1993) Crystal structure of the repetitive segments of spectrin. Science 262(5142):2027–2030

    PubMed  CAS  Google Scholar 

  • Yang S, Guo X, Debnath G, Mohandas N, An X (2009) Protein 4.1R links E-cadherin/beta-catenin complex to the cytoskeleton through its direct interaction with beta-catenin and modulates adherens junction integrity. Biochim Biophys Acta 1788(7):1458–1465

    PubMed  CAS  Google Scholar 

  • Yoshino H, Marchesi VT (1984) Isolation of spectrin subunits and reassociation in vitro. Analysis by fluorescence polarization. J Biol Chem 259(7):4496–4500

    PubMed  CAS  Google Scholar 

  • Yu J, Goodman SR (1979) Syndeins: the spectrin-binding protein(s) of the human erythrocyte membrane. Proc Natl Acad Sci USA 76(5):2340–2344

    PubMed  CAS  Google Scholar 

  • Yu J, Fischman DA, Steck TL (1973) Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J Supramol Struct 1(3):233–248

    PubMed  CAS  Google Scholar 

  • Yue L, Spradling AC (1992) hu-li tai shao, a gene required for ring canal formation during Drosophila oogenesis, encodes a homolog of adducin. Genes Dev 6(12B):2443–2454

    Google Scholar 

  • Zarnescu DC, Thomas GH (1999) Apical spectrin is essential for epithelial morphogenesis but not apicobasal polarity in Drosophila. J Cell Biol 146(5):1075–1086

    PubMed  CAS  Google Scholar 

  • Zhang P, Talluri S, Deng H, Branton D, Wagner G (1995) Solution structure of the pleckstrin homology domain of Drosophila beta-spectrin. Structure 3(11):1185–1195

    PubMed  CAS  Google Scholar 

  • Zhou D, Lambert S, Malen PL, Carpenter S, Boland LM, Bennett V (1998) AnkyrinG is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing. J Cell Biol 143(5):1295–1304

    PubMed  CAS  Google Scholar 

  • Ziemnicka-Kotula D, Xu J, Gu H, Potempska A, Kim KS, Jenkins EC, Trenkner E, Kotula L (1998) Identification of a candidate human spectrin Src homology 3 domain-binding protein suggests a general mechanism of association of tyrosine kinases with the spectrin-based membrane skeleton. J Biol Chem 273(22):13681–13692

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Marie-Christine Lecomte and Dr. Ekaterini Kordeli (INSERM, Paris) for their comments on the manuscript.

Conflict of Interest

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Baines.

Additional information

Handling Editor: David Robinson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baines, A.J. The spectrin–ankyrin–4.1–adducin membrane skeleton: adapting eukaryotic cells to the demands of animal life. Protoplasma 244, 99–131 (2010). https://doi.org/10.1007/s00709-010-0181-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-010-0181-1

Keywords

Navigation