Skip to main content

Advertisement

Log in

Identification of peptide sequences that target to the brain using in vivo phage display

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Phage display technology could provide a rapid means for the discovery of novel peptides. To find peptide ligands specific for the brain vascular receptors, we performed a modified phage display method. Phages were recovered from mice brain parenchyma after administrated with a random 7-mer peptide library intravenously. A longer circulation time was arranged according to the biodistributive brain/blood ratios of phage particles. Following sequential rounds of isolation, a number of phages were sequenced and a peptide sequence (CTSTSAPYC, denoted as PepC7) was identified. Clone 7-1, which encodes PepC7, exhibited translocation efficiency about 41-fold higher than the random library phage. Immunofluorescence analysis revealed that Clone 7-1 had a significant superiority on transport efficiency into the brain compared with native M13 phage. Clone 7-1 was inhibited from homing to the brain in a dose-dependent fashion when cyclic peptides of the same sequence were present in a competition assay. Interestingly, the linear peptide (ATSTSAPYA, Pep7) and a scrambled control peptide PepSC7 (CSPATSYTC) did not compete with the phage at the same tested concentration (0.2–200 pg). Labeled by Cy5.5, PepC7 exhibited significant brain-targeting capability in in vivo optical imaging analysis. The cyclic conformation of PepC7 formed by disulfide bond, and the correct structure itself play a critical role in maintaining the selectivity and affinity for the brain. In conclusion, PepC7 is a promising brain-target motif never been reported before and it could be applied to targeted drug delivery into the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott NJ (2005) Physiology of the blood-brain barrier and its consequences for drug transport to the brain. Int Congr 1277:3–18

    Article  CAS  Google Scholar 

  • Abbott NJ, Patabendige AAK, Dolman DEM et al (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25

    Article  PubMed  CAS  Google Scholar 

  • Arap W, Pasqualini R, Ruoslahti E (1988) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377–380

    Article  Google Scholar 

  • Arap W, Haedicke W, Bernasconi M et al (2002) Targeting the prostate for destruction through a vascular address. Proc Natl Acad Sci 99:1527–1531

    Article  PubMed  CAS  Google Scholar 

  • Barbas CF, Burton DR, Scott JK, Silverman GJ (2001) Phage Display: A laboratory manual. Cold Spring Harbor Laboratory Press, New York, pp 1.1–1.37

    Google Scholar 

  • Barry MA, Dower WJ, Johnston SA (1996) Toward cell-targeting gene therapy vectors: selection of cell-binding peptides from random peptide-presenting phage libraries. Nat Med 2:299–305

    Article  PubMed  CAS  Google Scholar 

  • Béduneau A, Saulnier P, Benoit JP (2007) Active targeting of brain tumors using nanocarriers. Biomaterials 28:4947–4967

    Article  PubMed  Google Scholar 

  • Begley DJ (2004) Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther 104:29–45

    Article  PubMed  CAS  Google Scholar 

  • Cabilly S (1999) The basic structure of filamentous phage and its use in the display of combinatorial peptide libraries. Mol Biotechnol 12:143–148

    Article  PubMed  CAS  Google Scholar 

  • Cardarelli PM, Yamagata S, Taguchi I et al (1992) The collagen receptor-alpha-2-beta-1, from MG-63 and HT1080-cells, interacts with a cyclic RGD peptide. J Biol Chem 267:23159–23164

    PubMed  CAS  Google Scholar 

  • Costantino L, Tosi G, Ruozi B et al (2009) Colloidal systems for CNS drug delivery. Prog Brain Res 180:35–69

    Article  PubMed  CAS  Google Scholar 

  • Demeule M, Regina A, Che C et al (2008) Identification and design of peptides as a new drug delivery system for the brain. Pharmacol Exp Ther 324:1064–1072

    Article  CAS  Google Scholar 

  • Gabathuler R (2010) Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol Dis 37:48–57

    Article  PubMed  CAS  Google Scholar 

  • Hu KL, Li JW, Shen YH et al (2009) Lactoferrin-conjugated PEG–PLA nanoparticles with improved brain delivery: In vitro and in vivo evaluations. J Control Rel 134:55–61

    Article  CAS  Google Scholar 

  • Huwyler J, Wu D, Pardridge WM (1996) Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci 93:14164–14169

    Article  PubMed  CAS  Google Scholar 

  • Joyce JA, Laakkonen P, Bernasconi M et al (2003) Stage-specific vascular markers revealed by phage display in a mouse model of pancreatic islet tumorigenesis. Cancer Cell 4:393–401

    Article  PubMed  CAS  Google Scholar 

  • Kehoe JW, Kay BK (2005) Filamentous phage display in the new millennium. Chem Rev 105:4056–4072

    Article  PubMed  CAS  Google Scholar 

  • Koivunen E, Wang BC, Ruoslahti E (1994) Isolation of a highly specific ligand for the α 5 β 1 integrin from a phage display library. J Cell Biol 124:373–380

    Article  PubMed  CAS  Google Scholar 

  • Kolonin MG, Sun J, Do KA et al (2006) Synchronous selection of homing peptides for multiple tissues by in vivo phage display. FASEB J 20:E99–E107

    Article  Google Scholar 

  • Lee JH, Engler JA, Collawn JF, Moore BA (2001) Receptor mediated uptake of peptides that bind the human transferrin receptor. Eur J Biochem 268:2004–2012

    Article  PubMed  CAS  Google Scholar 

  • Lee TY, Wu HC, Tseng YL, Lin CT (2004) A novel peptide specifically binding to nasopharyngeal carcinoma for targeted drug delivery. Cancer Res 64:8002–8008

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Chen C (2005) Strategies to optimize brain penetration in drug discovery. Curr Opin Drug Disc 8:505–512

    CAS  Google Scholar 

  • Murai KK, Nguyen LN, Koolpe M et al (2003) Targeting the EphA4 receptor in the nervous system with biologically active peptides. Mol Cell Neurosci 24:1000–1011

    Article  PubMed  CAS  Google Scholar 

  • Nicklin SA, White SJ, Watkins SJ et al (2000) Selective targeting of gene transfer to vascular endothelial cells by use of peptides isolated by phage display. Circulation 102:231–237

    PubMed  CAS  Google Scholar 

  • Pande J, Szewczyk MM, Grover AK (2010) Phage display: concept, innovations and future. Biotechnol Adv 28:849–858

    Article  PubMed  CAS  Google Scholar 

  • Pardridge WM (2005) Molecular biology of the blood-brain barrier. Mol Biotechnol 30:57–70

    Article  PubMed  CAS  Google Scholar 

  • Pasqualini R, Ruoslahti E (1996) Organ targeting in vivo using phage display peptide libraries. Nature 380:364–366

    Article  PubMed  CAS  Google Scholar 

  • Pasqualini R, Koivunen E, Ruoslahti E (1997) Integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 15:542–546

    Article  PubMed  CAS  Google Scholar 

  • Pasqualini R, Koivunen E, Kain R et al (2000) Aminopeptidease N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60:722–727

    PubMed  CAS  Google Scholar 

  • Praveen B, Alex B, Maiken N (2004) The blood-brain barrier: an overview: structure, regulation and clinical implications. Neurobiol Dis 16:1–13

    Article  Google Scholar 

  • Rajotte D, Arap W, Hagedorn M et al (1998) Molecular heterogeneity of the endothelium revealed by in vivo phage display. J Clin Invest 102:430–437

    Article  PubMed  CAS  Google Scholar 

  • Re F, Cambianica I, Zona C et al (2011) Functionalization of liposomes with ApoE-derived peptides at different density affects cellular uptake and drug transport across a blood-brain barrier model. Nanomed Nanotech biol Med (in Press)

  • Régina A, Demeule M, Ché C et al (2008) Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2. Brit J Pharmacol 155:185–197

    Article  Google Scholar 

  • Roney C, Kulkarni P, Arora V et al (2005) Targeted nanoparticles for drug delivery through the blood-brain barrier for Alzheimer’s disease. J Control Rel 108:193–214

    Article  CAS  Google Scholar 

  • Rooy IV, Tascioglu SC, Couraud PO et al (2010) Identification of peptide ligands for targeting to the blood-brain barrier. Pharm Res 27:673–682

    Article  PubMed  Google Scholar 

  • Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell-adhesion-RGD and integrins. Science 238:491–497

    Article  PubMed  CAS  Google Scholar 

  • Sidhu SS (2001) Engineering M13 for phage display. Biomol Eng 18:57–63

    Article  PubMed  CAS  Google Scholar 

  • Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    Article  PubMed  CAS  Google Scholar 

  • Smith GP, Petrenko VA (1997) Phage Display. Chem Rev 97:391–410

    Article  PubMed  CAS  Google Scholar 

  • Ulbrich K, Hekmatara T, Herbert E, Kreutre J (2009) Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB). Eur J Parm Biopharm 71:251–256

    Article  CAS  Google Scholar 

  • Wan XM, Chen YP, Xu WR et al (2009) Identification of nose-to-brain homing peptide through phage display. Peptides 30:343–350

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Pardridge WM (2005) Delivery of β-galactosidase to mouse brain via the blood–brain barrier transferrin receptor. J Pharmaco Exp Ther 313:1075–1108

    Article  CAS  Google Scholar 

  • Zou J, Dickerson MT, Owen NK et al (2004) Biodistribution of filamentous phage peptide libraries in mice. Mol Biol Rep 31:121–129

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Basic Research Program of China (973 Program) (2007CB935800), National Science and Technology Major Project 2009ZX09310-006 and Doctorial Innovation Fund of Fudan University. We thank Prof. L.P. Wen and Dr. X.M. Wang (University of Science and Technology of China, School of Life Sciences) for technological support in phage display screening.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinguo Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Zhang, Q., Pang, Z. et al. Identification of peptide sequences that target to the brain using in vivo phage display. Amino Acids 42, 2373–2381 (2012). https://doi.org/10.1007/s00726-011-0979-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-0979-y

Keywords

Navigation