Skip to main content

Advertisement

Log in

Polyamine catabolism in carcinogenesis: potential targets for chemotherapy and chemoprevention

  • Minireview Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Polyamines, including spermine, spermidine, and the precursor diamine, putrescine, are naturally occurring polycationic alkylamines that are required for eukaryotic cell growth, differentiation, and survival. This absolute requirement for polyamines and the need to maintain intracellular levels within specific ranges require a highly regulated metabolic pathway primed for rapid changes in response to cellular growth signals, environmental changes, and stress. Although the polyamine metabolic pathway is strictly regulated in normal cells, dysregulation of polyamine metabolism is a frequent event in cancer. Recent studies suggest that the polyamine catabolic pathway may be involved in the etiology of some epithelial cancers. The catabolism of spermine to spermidine utilizes either the one-step enzymatic reaction of spermine oxidase (SMO) or the two-step process of spermidine/spermine N 1-acetyltransferase (SSAT) coupled with the peroxisomal enzyme N 1-acetylpolyamine oxidase. Both catabolic pathways produce hydrogen peroxide and a reactive aldehyde that are capable of damaging DNA and other critical cellular components. The catabolic pathway also depletes the intracellular concentrations of spermidine and spermine, which are free radical scavengers. Consequently, the polyamine catabolic pathway in general and specifically SMO and SSAT provide exciting new targets for chemoprevention and/or chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Atiya Ali M, Poortvliet E, Strömberg R, Yngve A (2011) Polyamines in foods: development of a food database. Food Nutr Res 55:424–429

    Article  Google Scholar 

  • Babbar N, Casero RA Jr (2006) Tumor necrosis factor-alpha increases reactive oxygen species by inducing spermine oxidase in human lung epithelial cells: a potential mechanism for inflammation-induced carcinogenesis. Cancer Res 66(23):11125–11130

    Article  CAS  PubMed  Google Scholar 

  • Babbar N, Hacker A, Huang Y, Casero RA Jr (2006a) Tumor necrosis factor alpha induces spermidine/spermine N1-acetyltransferase through nuclear factor kappaB in non-small cell lung cancer cells. J Biol Chem 281(34):24182–24192

    Article  CAS  PubMed  Google Scholar 

  • Babbar N, Gerner EW, Casero RA Jr (2006c) Induction of spermidine/spermine N1-acetyltransferase (SSAT) by aspirin in Caco-2 colon cancer cells. Biochem J 394(Pt1):317–324

    Google Scholar 

  • Bardia A, Platz EA, Yegnasubramanian S, De Marzo AM, Nelson WG (2009) Anti-inflammatory drugs, antioxidants, and prostate cancer prevention. Curr Opin Pharmacol 9(4):419–426

    Article  CAS  PubMed  Google Scholar 

  • Bianchi M, Polticelli F, Ascenzi P, Botta M, Federico R, Mariottini P, Cona A (2006) Inhibition of polyamine and spermine oxidases by polyamine analogues. FEBS J 273(6):1115–1123

    Article  CAS  PubMed  Google Scholar 

  • Burn J, Mathers J, Bishop DT (2013) Genetics, inheritance and strategies for prevention in populations at high risk of colorectal cancer (CRC). Recent Results Cancer Res 191:157–183

    Article  CAS  PubMed  Google Scholar 

  • Casero RA Jr, Marton LJ (2007) Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov 6(5):373–390

    Article  CAS  PubMed  Google Scholar 

  • Casero RA Jr, Pegg AE (2009) Polyamine catabolism and disease. Biochem J 421(3):323–338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Casero RA Jr, Ervin SJ, Celano P, Baylin SB, Bergeron RJ (1989) Differential response to treatment with the bis(ethyl)polyamine analogues between human small cell lung carcinoma and undifferentiated large cell lung carcinoma in culture. Cancer Res 49(3):639–643

    CAS  PubMed  Google Scholar 

  • Chaturvedi R, Cheng Y, Asim M, Bussiere FI, Xu H, Gobert AP, Hacker A, Casero RA Jr, Wilson KT (2004) Induction of polyamine oxidase 1 by Helicobacter pylori causes macrophage apoptosis by hydrogen peroxide release and mitochondrial membrane depolarization. J Biol Chem 279(38):40161–40173

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi R, de Sablet T, Peek RM, Wilson KT (2012) Spermine oxidase, a polyamine catabolic enzyme that links Helicobacter pylori CagA and gastric cancer cells. Gut Microbes 3(1):48–56

    Article  PubMed  Google Scholar 

  • Chu FF, Esworthy RS, Chu PG, Longmate JA, Huycke MM, Wilczynski S, Doroshow JH (2004) Bacteria-induced intestinal cancer in mice with disrupted Gpx1 and Gpx2 genes. Cancer Res 64(3):962–968

    Article  CAS  PubMed  Google Scholar 

  • De Marzo AM, Marchi VL, Epstein JI, Nelson WG (1999) Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am J Pathol 155(6):1985–1992

    Article  PubMed  Google Scholar 

  • Goel A, Chang DK, Ricciardiello L, Gasche C, Boland CR (2003) A novel mechanism for aspirin-mediated growth inhibition of human colon cancer cells. Clin Cancer Res 9(1):383–390

    CAS  PubMed  Google Scholar 

  • Goodwin AC, Jadallah S, Toubaji A, Lecksell K, Hicks JL, Kowalski J, Bova GS, De Marzo AM, Netto GJ, Casero RA Jr (2008) Increased spermine oxidase expression in human prostate cancer and prostatic intraepithelial neoplasia tissues. Prostate 68(7):766–772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goodwin AC, Destefano Shields CE, Wu S, Huso DL, Wu X, Murray-Stewart TR, Hacker-Prietz A, Rabizadeh S, Woster PM, Sears CL, Casero RA Jr (2011) Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci USA 108(37):15354–15359

    Article  CAS  PubMed  Google Scholar 

  • Ha HC, Sirisoma NS, Kuppusamy P, Zweier JL, Woster PM, Casero RA Jr (1998) The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci USA 95(19):11140–11145

    Article  CAS  PubMed  Google Scholar 

  • Hong SK, Chaturvedi R, Piazuelo MB, Coburn LA, Williams CS, Delgado AG, Casero RA Jr, Schwartz DA, Wilson KT (2010) Increased expression and cellular localization of spermine oxidase in ulcerative colitis and relationship to disease activity. Inflamm Bowel Dis 16(9):1557–1566

    Article  PubMed Central  PubMed  Google Scholar 

  • Hughes A, Smith NI, Wallace HM (2003) Polyamines reverse non-steroidal anti-inflammatory drug-induced toxicity in human colorectal cancer cells. Biochem J 374(Pt 2):481–488

    Article  CAS  PubMed  Google Scholar 

  • Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42(1):39–51

    Article  CAS  PubMed  Google Scholar 

  • Igarashi K, Kashiwagi K (2011) Protein-conjugated acrolein as a biochemical marker of brain infarction. Mol Nutr Food Res 55(9):1332–1341

    Article  CAS  PubMed  Google Scholar 

  • Ignatenko NA, Besselsen DG, Roy UK, Stringer DE, Blohm-Mangone KA, Padilla-Torres JL, Guillen-R JM, Gerner EW (2006) Dietary putrescine reduces the intestinal anticarcinogenic activity of sulindac in a murine model of familial adenomatous polyposis. Nutr Cancer 56(2):172–181

    Article  CAS  PubMed  Google Scholar 

  • Kee K, Foster BA, Merali S, Kramer DL, Hensen ML, Diegelman P, Kisiel N, Vujcic S, Mazurchuk RV, Porter CW (2004) Activated polyamine catabolism depletes acetyl-CoA pools and suppresses prostate tumor growth in TRAMP mice. J Biol Chem 279(38):40076–40083

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Iseki K, Saitoh H, Miyazaki K (1992) Uptake characteristics of polyamines into rat intestinal brush-border membrane. Biochim Biophys Acta 1105(1):177–183

    Article  CAS  PubMed  Google Scholar 

  • Kurata HT, Marton LJ, Nichols CG (2006) The polyamine binding site in inward rectifier K+ channels. J Gen Physiol 127(5):467–480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lopatin AN, Makhina EN, Nichols CG (1994) Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372(6504):366–369

    Article  CAS  PubMed  Google Scholar 

  • Löser C, Eisel A, Harms D, Fölsch UR (1999) Dietary polyamines are essential luminal growth factors for small intestinal and colonic mucosal growth and development. Gut 44(1):12–16

    Article  PubMed  Google Scholar 

  • Luk GD, Goodwin G, Marton LJ, Baylin SB (1981) Polyamines are necessary for the survival of human small-cell lung carcinoma in culture. Proc Natl Acad Sci USA 78(4):2355–2358

    Article  CAS  PubMed  Google Scholar 

  • Luk GD, Goodwin G, Gazdar AF, Baylin SB (1982) Growth-inhibitory effects of DL-alpha-difluoromethylornithine in the spectrum of human lung carcinoma cells in culture. Cancer Res 42(8):3070–3073

    CAS  PubMed  Google Scholar 

  • Macarthur M, Hold GL, El-Omar EM (2004) Inflammation and Cancer II. Role of chronic inflammation and cytokine gene polymorphisms in the pathogenesis of gastrointestinal malignancy. Am J Physiol Gastrointest Liver Physiol 286(4):G515–G520

    Article  CAS  PubMed  Google Scholar 

  • Mandal S, Mandal A, Johansson HE, Orjalo AV, Park MH (2013) Depletion of cellular polyamines, spermidine and spermine, causes a total arrest in translation and growth in mammalian cells. Proc Natl Acad Sci USA 110(6):2169–2174

    Article  CAS  PubMed  Google Scholar 

  • Merentie M, Uimari A, Pietilä M, Sinervirta R, Keinänen TA, Vepsäläinen J, Khomutov A, Grigorenko N, Herzig KH, Jänne J, Alhonen L (2007) Oxidative stress and inflammation in the pathogenesis of activated polyamine catabolism-induced acute pancreatitis. Amino Acids 33(2):323–330

    Article  CAS  PubMed  Google Scholar 

  • Murray-Stewart T, Wang Y, Devereux W, Casero RA Jr (2002) Cloning and characterization of multiple human polyamine oxidase splice variants that code for isoenzymes with different biochemical characteristics. Biochem J 368(Pt3):673–677

    Google Scholar 

  • Murray-Stewart T, Wang Y, Goodwin A, Hacker A, Meeker A, Casero RA Jr (2008) Nuclear localization of human spermine oxidase isoforms-possible implications in drug response and disease etiology. FEBS J 275(11):2795–2806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Obayashi M, Matsui-Yuasa I, Matsumoto T, Kitano A, Kobayashi K, Otani S (1992) Polyamine metabolism in colonic mucosa from patients with ulcerative colitis. Am J Gastroenterol 87(6):736–740

    CAS  PubMed  Google Scholar 

  • O’Hagan HM, Wang W, Sen S, Destefano Shields C, Lee SS, Zhang YW, Clements EG, Cai Y, Van Neste L, Easwaran H, Casero RA Jr, Sears CL, Baylin SB (2011) Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands. Cancer Cell 20(5):606–619

    Article  PubMed Central  PubMed  Google Scholar 

  • Park MH, Nishimura K, Zanelli CF, Valentini SR (2010) Functional significance of eIF5A and its hypusine modification in eukaryotes. Amino Acids 38(2):491–500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pegg AE (2006) Regulation of ornithine decarboxylase. J Biol Chem 281(21):14529–14532

    Article  CAS  PubMed  Google Scholar 

  • Pegg AE (2008) Spermidine/spermine-N(1)-acetyltransferase: a key metabolic regulator. Am J Physiol Endocrinol Metab 294(6):E995–E1010

    Article  CAS  PubMed  Google Scholar 

  • Pegg AE (2009) S-Adenosylmethionine decarboxylase. Essays Biochem 46:25–45

    Article  CAS  PubMed  Google Scholar 

  • Pegg AE, Casero RA Jr (2011) Current status of the polyamine research field. Methods Mol Biol 720:3–35

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pledgie-Tracy A, Billam M, Hacker A, Sobolewski MD, Woster PM, Zhang Z, Casero RA Jr, Davidson NE (2010) The role of the polyamine catabolic enzymes SSAT and SMO in the synergistic effects of standard chemotherapeutic agents with a polyamine analogue in human breast cancer cell lines. Cancer Chemother Pharmacol 65(6):1067–1081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poulin R, Casero RA Jr, Soulet D (2012) Recent advances in the molecular biology of metazoan polyamine transport. Amino Acids 42(2–3):711–723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raj KP, Zell JA, Rock CL, McLaren CE, Zoumas-Morse C, Gerner EW, Meyskens FL (2013) Role of dietary polyamines in a phase III clinical trial of difluoromethylornithine (DFMO) and sulindac for prevention of sporadic colorectal adenomas. Br J Cancer 108(3):512–518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ray RM, Zimmerman BJ, McCormack SA, Patel TB, Johnson LR (1999) Polyamine depletion arrests cell cycle and induces inhibitors p21(Waf1/Cip1), p27(Kip1), and p53 in IEC-6 cells. Am J Physiol 276(3 Pt 1):C684–C691

    CAS  PubMed  Google Scholar 

  • Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49(11):1603–1616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Riddell RH, Goldman H, Ransohoff DF, Appelman HD, Fenoglio CM, Haggitt RC, Ahren C, Correa P, Hamilton SR, Morson BC et al (1983) Dysplasia in inflammatory bowel disease: standardized classification with provisional clinical applications. Hum Pathol 14(11):931–968

    Article  CAS  PubMed  Google Scholar 

  • Ruschoff J, Wallinger S, Dietmaier W et al (1998) Aspirin suppresses the mutator phenotype associated with hereditary nonpolyposis colorectal cancer by genetic selection. Proc Natl Acad Sci USA 95:11301–11306

    Article  CAS  PubMed  Google Scholar 

  • Schipper RG, Penning LC, Verhofstad AA (2000) Involvement of polyamines in apoptosis. Facts and controversies: effectors or protectors? Semin Cancer Biol 10(1):55–68

    Article  CAS  PubMed  Google Scholar 

  • Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 10(8):2247–2258

    CAS  PubMed  Google Scholar 

  • Smirnova OA, Isaguliants MG, Hyvonen MT, Keinanen TA, Tunitskaya VL, Vepsalainen J, Alhonen L, Kochetkov SN, Ivanov AV (2012) Chemically induced oxidative stress increases polyamine levels by activating the transcription of ornithine decarboxylase and spermidine/spermine-N1-acetyltransferase in human hepatoma HUH7 cells. Biochimie 94(9):1876–1883

    Article  CAS  PubMed  Google Scholar 

  • ter Steege JC, Forget PP, Buurman WA (1999) Oral spermine administration inhibits nitric oxide-mediated intestinal damage and levels of systemic inflammatory mediators in a mouse endotoxin model. Shock 11(2):115–119

    Article  PubMed  Google Scholar 

  • Tucker JM, Murphy JT, Kisiel N, Diegelman P, Barbour KW, Davis C, Medda M, Alhonen L, Jänne J, Kramer DL, Porter CW, Berger FG (2005) Potent modulation of intestinal tumorigenesis in Apcmin/+mice by the polyamine catabolic enzyme spermidine/spermine N1-acetyltransferase. Cancer Res 65(12):5390–5398

    Article  CAS  PubMed  Google Scholar 

  • Turchanowa L, Dauletbaev N, Milovic V, Stein J (2001) Nonsteroidal anti-inflammatory drugs stimulate spermidine/spermine acetyltransferase and deplete polyamine content in colon cancer cells. Eur J Clin Invest 31(10):887–893

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Devereux W, Woster P, Stewart T, Hacker A, Casero RA Jr (2001) Cloning and characterization of a human polyamine oxidase that is inducible by polyamine analogue exposure. Cancer Res 61(14):5370–5373

    CAS  PubMed  Google Scholar 

  • Wang Y, Murray-Stewart T, Devereux W, Hacker A, Frydman B, Woster PM, Casero RA Jr (2003) Properties of purified recombinant human polyamine oxidase, PAOh1/SMO. Biochem Biophys Res Commun 304(4):605–611

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Hacker A, Murray-Stewart T, Fleischer JG, Woster PM, Casero RA Jr (2005) Induction of human spermine oxidase SMO(PAOh1) is regulated at the levels of new mRNA synthesis, mRNA stabilization and newly synthesized protein. Biochem J 386(Pt 3):543–547

    CAS  PubMed  Google Scholar 

  • Wang X, Feith DJ, Welsh P, Coleman CS, Lopez C, Woster PM, O’Brien TG, Pegg AE (2007) Studies of the mechanism by which increased spermidine/spermine N1-acetyltransferase activity increases susceptibility to skin carcinogenesis. Carcinogenesis 28(11):2404–2411

    Article  CAS  PubMed  Google Scholar 

  • Weinberg F, Chandel NS (2009) Reactive oxygen species-dependent signaling regulates cancer. Cell Mol Life Sci 66(23):3663–3673

    Article  CAS  PubMed  Google Scholar 

  • Weiss TS, Herfarth H, Obermeier F, Ouart J, Vogl D, Schölmerich J, Jauch KW, Rogler G (2004) Intracellular polyamine levels of intestinal epithelial cells in inflammatory bowel disease. Inflamm Bowel Dis 10(5):529–535

    Article  CAS  PubMed  Google Scholar 

  • Williams K (1997) Modulation and block of ion channels: a new biology of polyamines. Cell Signal 9(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Ling KQ, Sayre LM, McIntire WS (2005) Inhibition of murine N1-acetylated polyamine oxidase by an acetylenic amine and the allenic amine, MDL 72527. Biochem Biophys Res Commun 326(2):483–490

    Article  CAS  PubMed  Google Scholar 

  • Xie SQ, Zhang YH, Li Q, Wang JH, Li JH, Zhao J, Wang CJ (2011) COX-2-independent induction of apoptosis by celecoxib and polyamine naphthalimide conjugate mediated by polyamine depression in colorectal cancer cell lines. Int J Colorectal Dis 27(7):861–868

    Article  PubMed  Google Scholar 

  • Xu H, Chaturvedi R, Cheng Y, Bussiere FI, Asim M, Yao MD, Potosky D, Meltzer SJ, Rhee JG, Kim SS, Moss SF, Hacker A, Wang Y, Casero RA Jr, Wilson KT (2004) Spermine oxidation induced by Helicobacter pylori results in apoptosis and DNA damage: implications for gastric carcinogenesis. Cancer Res 64(23):8521–8525

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Fan Y, Wu J, Wan H, Wang J, Lam S, Lam WL, Girard L, Gazdar AF, Wu Z, Zhou Q (2012) Potential application of non-small cell lung cancer-associated autoantibodies to early cancer diagnosis. Biochem Biophys Res Commun 423(3):613–619

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Kashiwagi K, Shigemasa A, Taniguchi S, Yamamoto K, Makinoshima H, Ishihama A, Igarashi K (2004) A unifying model for the role of polyamines in bacterial cell growth, the polyamine modulon. J Biol Chem 279(44):46008–46013

    Article  CAS  PubMed  Google Scholar 

  • Yuan Q, Ray RM, Johnson LR (2002) Polyamine depletion prevents camptothecin-induced apoptosis by inhibiting the release of cytochrome c. Am J Physiol Cell Physiol 282(6):C1290–C1297

    Article  CAS  PubMed  Google Scholar 

  • Zahedi K, Wang Z, Barone S, Prada AE, Kelly CN, Casero RA Jr, Yokota N, Porter CW, Rabb H, Soleimani M (2003) Expression of SSAT, a novel biomarker of tubular cell damage, increases in kidney ischemia-reperfusion injury. Am J Physiol Renal Physiol 284(5):F1046–F1055

    CAS  PubMed  Google Scholar 

  • Zahedi K, Lentsch AB, Okaya T, Barone S, Sakai N, Witte DP, Arend LJ, Alhonen L, Jell J, Jänne J, Porter CW, Soleimani M (2009) Spermidine/spermine-N1-acetyltransferase ablation protects against liver and kidney ischemia-reperfusion injury in mice. Am J Physiol Gastrointest Liver Physiol 296(4):G899–G909

    Article  CAS  PubMed  Google Scholar 

  • Zahedi K, Barone S, Kramer DL, Amlal H, Alhonen L, Jänne J, Porter CW, Soleimani M (2010a) The role of spermidine/spermine N1-acetyltransferase in endotoxin-induced acute kidney injury. Am J Physiol Cell Physiol 299(1):C164–C174

    Article  CAS  PubMed  Google Scholar 

  • Zahedi K, Huttinger F, Morrison R, Murray-Stewart T, Casero RA Jr, Strauss KI (2010b) Polyamine catabolism is enhanced after traumatic brain injury. J Neurotrauma 27(3):515–525

    Article  PubMed  Google Scholar 

  • Zahedi K, Barone SL, Xu J, Steinbergs N, Schuster R, Lentsch AB, Amlal H, Wang J, Casero RA Jr, Soleimani M (2012) Hepatocyte-specific ablation of spermine/spermidine-N1-acetyltransferase gene reduces the severity of CCl4-induced acute liver injury. Am J Physiol Gastrointest Liver Physiol 303(5):G546–G560

    Article  CAS  PubMed  Google Scholar 

  • Zell JA, McLaren CE, Chen WP, Thompson PA, Gerner EW, Meyskens FL (2010) Ornithine decarboxylase-1 polymorphism, chemoprevention with eflornithine and sulindac, and outcomes among colorectal adenoma patients. J Natl Cancer Inst 102(19):1513–1516

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Caragine T, Wang H, Cohen PS, Botchkina G, Soda K, Bianchi M, Ulrich P, Cerami A, Sherry B, Tracey KJ (1997) Spermine inhibits proinflammatory cytokine synthesis in human mononuclear cells: a counterregulatory mechanism that restrains the immune response. J Exp Med 185(10):1759–1768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Portions of the work described in this manuscript were supported by the NIEHS T32 training grant ES07141 and NCI grants CA51085 and CA98454.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Casero Jr..

Additional information

V. Battaglia and C. DeStefano Shields contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battaglia, V., DeStefano Shields, C., Murray-Stewart, T. et al. Polyamine catabolism in carcinogenesis: potential targets for chemotherapy and chemoprevention. Amino Acids 46, 511–519 (2014). https://doi.org/10.1007/s00726-013-1529-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1529-6

Keywords

Navigation