Skip to main content
Log in

Perchlorate and halophilic prokaryotes: implications for possible halophilic life on Mars

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

In view of the finding of perchlorate among the salts detected by the Phoenix Lander on Mars, we investigated the relationships of halophilic heterotrophic microorganisms (archaea of the family Halobacteriaceae and the bacterium Halomonas elongata) toward perchlorate. All strains tested grew well in NaCl-based media containing 0.4 M perchlorate, but at the highest perchlorate concentrations, tested cells were swollen or distorted. Some species (Haloferax mediterranei, Haloferax denitrificans, Haloferax gibbonsii, Haloarcula marismortui, Haloarcula vallismortis) could use perchlorate as an electron acceptor for anaerobic growth. Although perchlorate is highly oxidizing, its presence at a concentration of 0.2 M for up to 2 weeks did not negatively affect the ability of a yeast extract-based medium to support growth of the archaeon Halobacterium salinarum. These findings show that presence of perchlorate among the salts on Mars does not preclude the possibility of halophilic life. If indeed the liquid brines that may exist on Mars are inhabited by salt-requiring or salt-tolerant microorganisms similar to the halophiles on Earth, presence of perchlorate may even be stimulatory when it can serve as an electron acceptor for respiratory activity in the anaerobic Martian environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bruce RA, Achenbach LA, Coates JD (1999) Reduction of (per) chlorate by a novel organism isolated from paper mill waste. Environ Microbiol 1:319–329

    Article  CAS  PubMed  Google Scholar 

  • Bryan EA, Rohlich GA (1954) Biological reduction of sodium chlorate as applied to measurement of sewage B.O.D. Sewage Indust Waste 26:1315–1324

    CAS  Google Scholar 

  • Catling DC, Claire MW, Zahnle KJ, Quinn RC, Clark BC, Hecht MH, Kounaves S (2010) Atmospheric origins of perchlorate on Mars and in the Atacama. J Geophys Res 115:E00–E11

    Google Scholar 

  • Chevrier VF, Rivera-Valentin EG (2012) Formation of recurring slope lineae by liquid brines on present-day Mars. Geophys Res Lett 39:L21202

    Google Scholar 

  • Chevrier VF, Hanley J, Altheide TS (2009) Stability of perchlorate hydrates and their liquid solutions at the Phoenix landing site, Mars. Geophys Res Lett 36:L10202

    Article  Google Scholar 

  • Clark BC, Van Hart DC (1981) The salts of Mars. Icarus 45:370–378

    Article  CAS  Google Scholar 

  • Coates JD, Achenbach LA (2004) Microbial perchlorate reduction: rocket-fuelled metabolism. Nat Rev Microbiol 2:569–580

    Article  CAS  PubMed  Google Scholar 

  • Coates JD, Michaelidou U, Bruce RA, O’Connor SM, Crespi JN, Achenbach LA (1999) Ubiquity and diversity of dissimilatory (per) chlorate-reducing bacteria. Appl Environ Microbiol 65:5234–5241

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cull SC, Arvidson RE, Catalano JG, Ming DW, Morris RV, Mellon MT, Lemmon M (2010) Concentrated perchlorate at the Mars Phoenix landing site: evidence for a thin film liquid water on Mars. Geophys Res Lett 37:L22203

    Google Scholar 

  • Dasgupta PK, Marinelango PK, Jackson WA, Tian K, Tock RW, Rajagopalan S (2005) The origin of naturally occurring perchlorate: the role of atmospheric processes. Environ Sci Technol 39:1569–1575

    Article  CAS  PubMed  Google Scholar 

  • Davila AF, Gago Duport L, Melchiorri R, Jänchen J, Valea S, de los Rios A, Fairén AG, Möhlmann D, McKay CP, Ascaso C, Wierzchos J (2010) Hygroscopic salts and the potential for life on Mars. Astrobiology 10:617–628

    Article  CAS  PubMed  Google Scholar 

  • Fendrihan S, Bérces A, Lammer H, Musso M, Rontó G, Polacsek TK, Holzinger A, Kolb C, Stan-Lotter H (2009) Investigating the effect of simulated Martian ultraviolet radiation on Halococcus dombrowskii and other extremely halophilic Archaebacteria. Astrobiology 9:104–112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hackenthal E, Mannheim R, Hackenthal R, Becher R (1964) Die Reduktion von Perchlorat durch Bakterien. I. Untersuchungen an intakten Zellen. Biochem Pharmacol 13:195–206

    Article  CAS  PubMed  Google Scholar 

  • Hecht MH, Kounaves SP, Quinn RC, West SJ, Young SMM, Ming DW, Catling DC, Clark BC, Boynton WV, Hoffman J, DeFlores LP, Gospodinova K, Kapit J, Smith PH (2009) Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix Lander site. Science 325:64–67

    CAS  PubMed  Google Scholar 

  • Kish A, Kirkali G, Robinson C, Rosenblatt R, Jaruga P, Dizdaroglu M, DiRuggiero J (2009) Salt shield: intracellular salts provide cellular protection against ionizing radiation in the halophilic archaeon, Halobacterium salinarum NRC-1. Environ Microbiol 5:1066–1078

    Article  Google Scholar 

  • Kottemann M, Kish A, Iloanusi C, Bjork S, DiRuggiero J (2005) Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation. Extremophiles 9:219–227

    Article  CAS  PubMed  Google Scholar 

  • Kounaves SP, Stroble ST, Anderson RM, Moore Q, Catling DC, Douglas S, McKay CP, Ming DW, Smith PH, Tamppari LK, Zent AP (2010) Discovery of natural perchlorate in the Antarctic Dry Valleys and its global implications. Environ Sci Technol 44:2360–2364

    Article  CAS  PubMed  Google Scholar 

  • Landis GA (2001) Martian water: are there extant halobacteria on Mars? Astrobiology 1:161–164

    Article  CAS  PubMed  Google Scholar 

  • Litchfield CD (1998) Survival strategies for microorganisms in hypersaline environments and their relevance to life on early Mars. Meteor Planet Sci 33:813–819

    Article  CAS  Google Scholar 

  • Logan BE (1998) A review of chlorate- and perchlorate-respiring microorganisms. Bioremed J 2:69–79

    Article  CAS  Google Scholar 

  • Logan BE, Wu J, Unz RF (2001) Biological perchlorate reduction in high-salinity solutions. Wat Res 35:3034–3038

    Article  CAS  Google Scholar 

  • Mancinelli RL, Hochstein LI (1986) The occurrence of denitrification in extremely halophilic bacteria. FEMS Microbiol Lett 35:55–58

    Article  CAS  PubMed  Google Scholar 

  • Mancinelli RL, White MR, Rothschild LJ (1998) Biopan-survival I: exposure of the osmophiles Synechococcus sp. (Nägeli) and Haloarcula sp. to the space environment. Adv Space Res 22:327–334

    Article  CAS  Google Scholar 

  • Mancinelli RL, Fahlen TF, Landheim R, Klovstadt MR (2004) Brines and evaporites: analogs for Martian life. Space Life Sci 33:1244–1246

    CAS  Google Scholar 

  • Mancinelli RL, Landheim R, Sánchez-Porro C, Dornmayr-Pfaffenhuemer M, Gruber C, Legat A, Ventosa A, Radax C, Ihara K, White MR, Stan-Lotter H (2008) Halorubrum chaoviator sp. nov., a haloarchaeon isolated from sea salt in Baja California, Mexico, Western Australia and Naxos, Greece. Int J Syst Evol Microbiol 59:1908–1913

    Article  Google Scholar 

  • Martinez-Espinosa RM, Bonete MJ (2007) Bioremediation of chlorate and perchlorate salted water using Haloferax mediterranei. J Biotechnol 131S:S227

    Article  Google Scholar 

  • McEwen AS, Ojha L, Dundas CM, Mattson SS, Byrne S, Wray JJ, Cull SC, Murchie SL, Thomas N, Gulick VC (2011) Seasonal flows on warm Martian slopes. Science 333:740–743

    Article  CAS  PubMed  Google Scholar 

  • Monnier A (1916) Sur l’emploi du blue de méthylène comme réactif dans l’analyse chimique et application du procédé à la recherche et au dosage des perchlorates dans le salpêtre du Chili. Arch Sci Phys Nat (Genève) 42:210–216

    CAS  Google Scholar 

  • Okeke BC, Giblin T, Frankenberger WT Jr (2002) Reduction of perchlorate and nitrate by salt tolerant bacteria. Environ Pollut 118:357–363

    Article  CAS  PubMed  Google Scholar 

  • Oren A (1991) Anaerobic growth of halophilic archaebacteria by reduction of fumarate. J Gen Microbiol 137:1387–1390

    Article  CAS  Google Scholar 

  • Oren A (2013) Life at high salt and low oxygen: how do the Halobacteriaceae cope with low oxygen concentrations in their environment? In: Seckbach J, Oren A, Stan-Lotter H (eds) Polyextremophiles—organisms living under multiple stress. Springer, Dordrecht (in press)

  • Oren A, Trüper HG (1990) Anaerobic growth of halophilic archaeobacteria by reduction of dimethylsulfoxide and trimethylamine N-oxide. FEMS Microbiol Lett 70:33–36

    Article  CAS  Google Scholar 

  • Parro V, de Diego Castilla G, Moreno-Paz M, Blanco Y, Cruz-Gil P, Rodríguez-Manfredi JA, Fernández-Remolar D, Gómez F, Gómez MJ, Rivas LA, Demergasso C, Echeverria A, Urtuvia VN, Ruiz-Bermejo M, García- Villagangos M, Postigo M, Sánchez-Román M, Chong-Díaz G, Gómez-Elvira J (2011) A microbial oasis in the hypersaline Atacama subsurface discovered by a life detector chip: implications for the search for life on Mars. Astrobiology 11:969–996

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rennó NO, Bos BJ, Catling D, Clark BC, Drube L, Fisher D, Goetz W, Hviid SF, Keller HU, Kok JF, Kounaves SP, Leer K, Lemmon M, Madsen MB, Karkiewicz WJ, Marshall J, McKay C, Metha M, Smith M, Zorzano MP, Smith PH, Stoker C, Young SM (2009) Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site. J Geophys Res 114:E00–E03

    Google Scholar 

  • Rothschild LJ (1990) Earth analogs for Martian life. Microbes in evaporites, a new model system for life on Mars. Icarus 88:246–260

    Article  CAS  PubMed  Google Scholar 

  • Zent AP, Fanale FP (1986) Possible Mars brines: equilibrium and kinetic considerations. J Geophys Res 91:D439–D445

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant no. 1103/10 from the Israel Science Foundation. This study was performed in the framework of the activities of the Minerva Center on The Emergence and Evolution of Early Life under Extreme Planetary Conditions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aharon Oren.

Additional information

Communicated by M. da Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oren, A., Elevi Bardavid, R. & Mana, L. Perchlorate and halophilic prokaryotes: implications for possible halophilic life on Mars. Extremophiles 18, 75–80 (2014). https://doi.org/10.1007/s00792-013-0594-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-013-0594-9

Keywords

Navigation