Skip to main content
Log in

Structure and dynamics of human vimentin intermediate filament dimer and tetramer in explicit and implicit solvent models

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Intermediate filaments, in addition to microtubules and microfilaments, are one of the three major components of the cytoskeleton in eukaryotic cells, and play an important role in mechanotransduction as well as in providing mechanical stability to cells at large stretch. The molecular structures, mechanical and dynamical properties of the intermediate filament basic building blocks, the dimer and the tetramer, however, have remained elusive due to persistent experimental challenges owing to the large size and fibrillar geometry of this protein. We have recently reported an atomistic-level model of the human vimentin dimer and tetramer, obtained through a bottom-up approach based on structural optimization via molecular simulation based on an implicit solvent model (Qin et al. in PLoS ONE 2009 4(10):e7294, 9). Here we present extensive simulations and structural analyses of the model based on ultra large-scale atomistic-level simulations in an explicit solvent model, with system sizes exceeding 500,000 atoms and simulations carried out at 20 ns time-scales. We report a detailed comparison of the structural and dynamical behavior of this large biomolecular model with implicit and explicit solvent models. Our simulations confirm the stability of the molecular model and provide insight into the dynamical properties of the dimer and tetramer. Specifically, our simulations reveal a heterogeneous distribution of the bending stiffness along the molecular axis with the formation of rather soft and highly flexible hinge-like regions defined by non-alpha-helical linker domains. We report a comparison of Ramachandran maps and the solvent accessible surface area between implicit and explicit solvent models, and compute the persistence length of the dimer and tetramer structure of vimentin intermediate filaments for various subdomains of the protein. Our simulations provide detailed insight into the dynamical properties of the vimentin dimer and tetramer intermediate filament building blocks, which may guide the development of novel coarse-grained models of intermediate filaments, and could also help in understanding assembly mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K et al. (2002) Molecular biology of the cell. Taylor & Francis, New York

    Google Scholar 

  2. Herrmann H, Bar H, Kreplak L, Strelkov SV, Aebi U (2007) Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol 8(7):562–573

    Article  CAS  Google Scholar 

  3. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260(5111):1124–1127

    Article  CAS  Google Scholar 

  4. Wang N, Stamenovic D (2002) Mechanics of vimentin intermediate filaments. J Muscle Res Cell Motil 23(5–6):535–540

    Article  Google Scholar 

  5. Fudge D, Russell D, Beriault D, Moore W, Lane EB et al. (2008) The intermediate filament network in cultured human keratinocytes is remarkably extensible and resilient. PLoS ONE 3(6):e2327

    Article  Google Scholar 

  6. Qin Z, Buehler MJ, Kreplak L (2010) A multi-scale approach to understand the mechanobiology of intermediate filaments. J Biomech 43(1):15–22

    Article  Google Scholar 

  7. Lewis MK, Nahirney PC, Chen V, Adhikari BB, Wright J et al. (2003) Concentric intermediate filament lattice links to specialized Z-band junctional complexes in sonic muscle fibers of the type I male midshipman fish. J Struct Biol 143(1):56–71

    Article  CAS  Google Scholar 

  8. Kreplak L, Herrmann H, Aebi U (2008) Tensile properties of single desmin intermediate filaments. Biophys J 94(7):2790–2799

    Article  CAS  Google Scholar 

  9. Qin Z, Kreplak L, Buehler MJ (2009) Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments. PLoS ONE 4(10):e7294

    Article  Google Scholar 

  10. Dahl KN, Kahn SM, Wilson KL, Discher DE (2004) The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber. J Cell Sci 117(20):4779–4786

    Article  CAS  Google Scholar 

  11. Wilson KL, Zastrow MS, Lee KK (2001) Lamins and disease: Insights into nuclear infrastructure. Cell 104(5):647–650

    CAS  Google Scholar 

  12. Aebi U, Cohn J, Buhle L, Gerace L (1986) The Nuclear Lamina is a Meshwork of Intermediate-Type Filaments. Nature 323(6088):560–564

    Article  CAS  Google Scholar 

  13. Brenner M, Johnson AB, Boespflug-Tanguy O, Rodriguez D, Goldman JE et al. (2001) Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet 27(1):117–120

    Article  CAS  Google Scholar 

  14. Brown CA, Lanning RW, McKinney KQ, Salvino AR, Cherniske E et al. (2001) Novel and recurrent mutations in lamin A/C in patients with Emery-Dreifuss muscular dystrophy. Am J Med Genet 102(4):359–367

    Article  CAS  Google Scholar 

  15. Bonne G, Mercuri E, Muchir A, Urtizberea A, Becane HM et al. (2000) Clinical and molecular genetic spectrum of autosomal dominant Emery-Dreifuss muscular dystrophy due to mutations of the lamin A/C gene. Ann Neurol 48(2):170–180

    Article  CAS  Google Scholar 

  16. Broers JLV, Hutchison CJ, Ramaekers FCS (2004) Laminopathies. J Pathol 204(4):478–488

    Article  CAS  Google Scholar 

  17. Omary MB, Coulombe PA, McLean WH (2004) Intermediate filament proteins and their associated diseases. N Engl J Med 351(20):2087–2100

    Article  CAS  Google Scholar 

  18. Parry DAD, Strelkov SV, Burkhard P, Aebi U, Herrmann H (2007) Towards a molecular description of intermediate filament structure and assembly. Exp Cell Res 313(10):2204–2216

    Article  CAS  Google Scholar 

  19. Sokolova AV, Kreplak L, Wedig T, Mucke N, Svergun DI et al. (2006) Monitoring intermediate filament assembly by small-angle x-ray scattering reveals the molecular architecture of assembly intermediates. Proc Natl Acad Sci USA 103(44):16206–16211

    Article  CAS  Google Scholar 

  20. Strelkov SV, Herrmann H, Geisler N, Lustig A, Ivaninskii S et al. (2001) Divide-and-conquer crystallographic approach towards an atomic structure of intermediate filaments. J Mol Biol 306(4):773–781

    Article  CAS  Google Scholar 

  21. Parry DAD (2006) Hendecad repeat in segment 2A and linker L2 of intermediate filament chains implies the possibility of a right-handed coiled-coil structure. J Struct Biol 155(2):370–374

    Article  CAS  Google Scholar 

  22. Strelkov SV, Herrmann H, Geisler N, Wedig T, Zimbelmann R et al. (2002) Conserved segments 1A and 2B of the intermediate filament dimer: their atomic structures and role in filament assembly. EMBO J 21(6):1255–1266

    Article  CAS  Google Scholar 

  23. Rafik ME, Doucet J, Briki F (2004) The intermediate filament architecture as determined by X-ray diffraction modeling of hard alpha-keratin. Biophys J 86(6):3893–3904

    Article  Google Scholar 

  24. Luca S, Yau WM, Leapman R, Tycko R (2007) Peptide conformation and supramolecular organization in amylin fibrils: Constraints from solid-state NMR. Biochemistry 46(47):13505–13522

    Article  CAS  Google Scholar 

  25. Goldie KN, Wedig T, Mitra AK, Aebi U, Herrmann H et al. (2007) Dissecting the 3-D structure of vimentin intermediate filaments by cryo-electron tomography. J Struct Biol 158(3):378–385

    Article  CAS  Google Scholar 

  26. Huang A, Stultz CM (2007) Conformational sampling with implicit solvent models: Application to the PHF6 peptide in tau protein. Biophys J 92(1):34–45

    Article  CAS  Google Scholar 

  27. Zhou RH, Berne BJ (2002) Can a continuum solvent model reproduce the free energy landscape of a beta-hairpin folding in water? Proc Natl Acad Sci USA 99(20):12777–12782

    Article  CAS  Google Scholar 

  28. Nymeyer H, Garcia AE (2003) Simulation of the folding equilibrium of alpha-helical peptides: a comparison of the generalized Born approximation with explicit solvent. Proc Natl Acad Sci USA 100(24):13934–13939

    Article  CAS  Google Scholar 

  29. Lazaridis T, Karplus M (1999) Effective energy function for proteins in solution. Protein Struct Funct Genet 35(2):133–152

    Article  CAS  Google Scholar 

  30. Lazaridis T, Karplus M (1997) “New view” of protein folding reconciled with the old through multiple unfolding simulations. Science 278(5345):1928–1931

    Article  CAS  Google Scholar 

  31. Best RB, Merchant KA, Gopich IV, Schuler B, Bax A et al. (2007) Effect of flexibility and cis residues in single-molecule FRET studies of polyproline. Proc Natl Acad Sci USA 104(48):18964–18969

    Article  CAS  Google Scholar 

  32. Paci E, Karplus M (2000) Unfolding proteins by external forces and temperature: the importance of topology and energetics. Proc Natl Acad Sci USA 97(12):6521–6526

    Article  CAS  Google Scholar 

  33. Paci E, Karplus M (1999) Forced unfolding of fibronectin type 3 modules: An analysis by biased molecular dynamics simulations. J Mol Biol 288(3):441–459

    Article  CAS  Google Scholar 

  34. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD et al. (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616

    Article  CAS  Google Scholar 

  35. Nelson MT, Humphrey W, Gursoy A, Dalke A, Kale LV et al. (1996) NAMD: A parallel, object oriented molecular dynamics program. Int J Supercomput Appl 10(4):251–268

    Article  Google Scholar 

  36. Mucke N, Wedig T, Burer A, Marekov LN, Steinert PM et al. (2004) Molecular and biophysical characterization of assembly-starter units of human vimentin. J Mol Biol 340(1):97–114

    Article  CAS  Google Scholar 

  37. Keten S, Buehler MJ (2008) Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale. Nano Lett 8(2):743–748

    Article  CAS  Google Scholar 

  38. Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95–99

    Article  CAS  Google Scholar 

  39. Guzman C, Jeney S, Kreplak L, Kasas S, Kulik AJ et al. (2006) Exploring the mechanical properties of single vimentin intermediate filaments by atomic force microscopy. J Mol Biol 360(3):623–630

    Article  CAS  Google Scholar 

Download references

Acknowledgments

ZQ and MJB acknowledge support by Air Force Office of Scientific Research (AFOSR) (FA9550-08-1-0321) and National Science Foundation (NSF) (MRSEC DMR-081976). This research was supported by an allocation of advanced computing resources supported by the National Science Foundation (TeraGrid, grant # TG-MSS080030). The authors acknowledge support from the TeraGrid Advanced Support Program. The authors declare no conflict of interest of any sort.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus J. Buehler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, Z., Buehler, M.J. Structure and dynamics of human vimentin intermediate filament dimer and tetramer in explicit and implicit solvent models. J Mol Model 17, 37–48 (2011). https://doi.org/10.1007/s00894-010-0696-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0696-6

Keywords

Navigation