Skip to main content
Log in

Ecosystem Consequences of Changing Inputs of Terrestrial Dissolved Organic Matter to Lakes: Current Knowledge and Future Challenges

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Lake ecosystems and the services that they provide to people are profoundly influenced by dissolved organic matter derived from terrestrial plant tissues. These terrestrial dissolved organic matter (tDOM) inputs to lakes have changed substantially in recent decades, and will likely continue to change. In this paper, we first briefly review the substantial literature describing tDOM effects on lakes and ongoing changes in tDOM inputs. We then identify and provide examples of four major challenges which limit predictions about the implications of tDOM change for lakes, as follows: First, it is currently difficult to forecast future tDOM inputs for particular lakes or lake regions. Second, tDOM influences ecosystems via complex, interacting, physical-chemical-biological effects and our holistic understanding of those effects is still rudimentary. Third, non-linearities and thresholds in relationships between tDOM inputs and ecosystem processes have not been well described. Fourth, much understanding of tDOM effects is built on comparative studies across space that may not capture likely responses through time. We conclude by identifying research approaches that may be important for overcoming those challenges in order to provide policy- and management-relevant predictions about the implications of changing tDOM inputs for lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Adin A, Katzhendler J, Alkaslassy D, Rav-Acha D. 1991. Trihalomethane formation in chlorinated drinking water: a kinetic model. Water Res 25:797–805.

    CAS  Google Scholar 

  • Aitkenhead-Peterson J, McDowell W, Neff J, Stuart E, Robert L. 2003. Sources, production, and regulation of allochthonous dissolved organic matter inputs to surface waters. San Diego: Academic Press.

    Google Scholar 

  • Ask J, Karlsson J, Persson L, Ask P, Bystrom P, Jansson M. 2009. Terrestrial organic matter and light penetration: effects on bacterial and primary production in lakes. Limnol Oceanogr 54:2034–40.

    Google Scholar 

  • Barichivich J, Briffa KR, Myneni RB, Osborn TJ, Melvin TM, Ciais P, Piao SL, Tucker C. 2013. Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011. Global Change Biol 19:3167–83.

    Google Scholar 

  • Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ. 2009. The boundless carbon cycle. Nat Geosci 2:598–600.

    CAS  Google Scholar 

  • Belyea LR, Malmer N. 2004. Carbon sequestration in peatland: patterns and mechanisms of response to climate change. Global Change Biol 10:1043–52.

    Google Scholar 

  • Berggren M, Strom L, Laudon H, Karlsson J, Jonsson A, Giesler R, Bergstrom AK, Jansson M. 2010. Lake secondary production fueled by rapid transfer of low molecular weight organic carbon from terrestrial sources to aquatic consumers. Ecol Lett 13:870–80.

    CAS  PubMed  Google Scholar 

  • Bragée P, Mazier F, Rosén P, Fredh D, Broström A, Granéli W, Hammarlund D. 2013. Forcing mechanisms behind variations in total organic carbon (TOC) concentration of lake waters during the past eight centuries; palaeolimnological evidence from southern Sweden. Biogeosci Discuss 10:19969–20003.

    Google Scholar 

  • Brett MT, Kainz MJ, Taipale SJ, Seshan H. 2009. Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production. Proc Natl Acad Sci USA 106:21197–201.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brothers S, Köhler J, Attermeyer K, Grossart HP, Mehner T, Meyer N, Scharnweber K, Hilt S. 2014. A feedback loop links brownification and anoxia in a temperate, shallow lake. Limnol Oceanogr 59:1388–98.

    CAS  Google Scholar 

  • Canham CD, Pace ML, Papaik MJ, Primack AGB, Roy KM, Maranger RJ, Curran RP, Spada DM. 2004. A spatially explicit watershed-scale analysis of dissolved organic carbon in Adirondack lakes. Ecol Appl 14:839–54.

    Google Scholar 

  • Carpenter SR, Cole JJ, Kitchell JF, Pace ML. 1998. Impact of dissolved organic carbon, phosphorus, and grazing on phytoplankton biomass and production in experimental lakes. Limnol Oceanogr 43:73–80.

    CAS  Google Scholar 

  • Clark JM, Ashley D, Wagner M, Chapman PJ, Lane SN, Evans CD, Heathwaite AL. 2009. Increased temperature sensitivity of net DOC production from ombrotrophic peat due to water table draw-down. Global Change Biol 15:794–807.

    Google Scholar 

  • Clark JM, Bottrell SH, Evans CD, Monteith DT, Bartlett R, Rose R, Newton RJ, Chapman PJ. 2010. The importance of the relationship between scale and process in understanding long-term DOC dynamics. Sci Total Environ 408:2768–75.

    CAS  PubMed  Google Scholar 

  • Clark JM, Chapman PJ, Adamson JK, Lane SN. 2005. Influence of drought-induced acidification on the mobility of dissolved organic carbon in peat soils. Global Change Biol 11:791–809.

    Google Scholar 

  • Cole JJ, Carpenter SR, Kitchell JF, Pace ML, Solomon CT, Weidel BC. 2011. Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen. Proc Natl Acad Sci USA 108:1975–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J. 2007. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–84.

    CAS  Google Scholar 

  • Cole L, Bardgett RD, Ineson P, Adamson JK. 2002. Relationships between enchytraeid worms (Oligochaeta), climate change, and the release of dissolved organic carbon from blanket peat in northern England. Soil Biol Biochem 34:599–607.

    CAS  Google Scholar 

  • Davidson EA, Janssens IA. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–73.

    CAS  PubMed  Google Scholar 

  • De Wit HA, Mulder J, Hindar A, Hole L. 2007. Long-term increase in dissolved organic carbon in streamwaters in Norway is response to reduced acid deposition. Environ Sci Technol 41:7706–13.

    PubMed  Google Scholar 

  • del Giorgio PA, Peters RH. 1994. Patterns in planktonic P: R ratios in lakes: influence of lake trophy and dissolved organic carbon. Limnol Oceanogr 39:772–87.

    Google Scholar 

  • Erlandsson M, Buffam I, Folster J, Laudon H, Temnerud J, Weyhenmeyer GA, Bishop K. 2008. Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate. Global Change Biol 14:1191–8.

    Google Scholar 

  • Estlander S, Nurminen L, Olin M, Vinni M, Immonen S, Rask M, Ruuhijarvi J, Horppila J, Lehtonen H. 2010. Diet shifts and food selection of perch Perca fluviatilis and roach Rutilus rutilus in humic lakes of varying water colour. J Fish Biol 77:241–56.

    CAS  PubMed  Google Scholar 

  • Evans CD, Chapman PJ, Clark JM, Monteith DT, Cresser MS. 2006. Alternative explanations for rising dissolved organic carbon export from organic soils. Global Change Biol 12:2044–53.

    Google Scholar 

  • Evans CD, Monteith DT, Cooper DM. 2005. Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. Environ Pollut 137:55–71.

    CAS  PubMed  Google Scholar 

  • Fee EJ, Hecky RE, Kasian SEM, Cruikshank DR. 1996. Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes. Limnol Oceanogr 41:912–20.

    CAS  Google Scholar 

  • Finstad AG, Helland IP, Ugedal O, Hesthagen T, Hessen DO. 2014. Unimodal response of fish yield to dissolved organic carbon. Ecol Lett 17:36–43.

    PubMed  Google Scholar 

  • Fork ML, Heffernan JB. 2013. Direct and indirect effects of dissolved organic matter source and concentration on denitrification in northern Florida rivers. Ecosystems 17(1):14–28.

    Google Scholar 

  • Freeman C, Evans CD, Monteith DT, Reynolds B, Fenner N. 2001a. Export of organic carbon from peat soils. Nature 412:785.

    CAS  PubMed  Google Scholar 

  • Freeman C, Ostle N, Kang H. 2001b. An enzymic ‘latch’ on a global carbon store—a shortage of oxygen locks up carbon in peatlands by restraining a single enzyme. Nature 409:149.

    CAS  PubMed  Google Scholar 

  • Frey KE, McClelland JW. 2009. Impacts of permafrost degradation on arctic river biogeochemistry. Hydrol Process 23:169–82.

    CAS  Google Scholar 

  • Futter MN, Butterfield D, Cosby BJ, Dillon PJ, Wade AJ, Whitehead PG. 2007. Modeling the mechanisms that control in-stream dissolved organic carbon dynamics in upland and forested catchments. Water Res 43:W02424.

    Google Scholar 

  • Geller A. 1986. Comparison of mechanisms enhancing biodegradbility of refractory lake water constituents. Limnol Oceanogr 31:755–64.

    CAS  Google Scholar 

  • Gergel SE, Turner MG, Kratz TK. 1999. Dissolved organic carbon as an indicator of the scale of watershed influence on lakes and rivers. Ecol Appl 9:1377–90.

    Google Scholar 

  • Grey J, Jones RI, Sleep D. 2001. Seasonal changes in the importance of the source of organic matter to the diet of zooplankton in Loch Ness, as indicated by stable isotope analysis. Limnol Oceanogr 46:505–13.

    Google Scholar 

  • Haaland S, Hongve D, Laudon H, Riise G, Vogt RD. 2010. Quantifying the drivers of the increasing colored organic matter in boreal surface waters. Environ Sci Technol 44:2975–80.

    CAS  PubMed  Google Scholar 

  • Haei M, Oquist MG, Buffam I, Agren A, Blomkvist P, Bishop K, Lofvenius MO, Laudon H. 2010. Cold winter soils enhance dissolved organic carbon concentrations in soil and stream water. Geophys Res Lett 37:L08501.

    Google Scholar 

  • Hanson PC, Bade DL, Carpenter SR, Kratz TK. 2003. Lake metabolism: relationships with dissolved organic carbon and phosphorus. Limnol Oceanogr 48:1112–19.

    CAS  Google Scholar 

  • Hanson PC, Carpenter SR, Cardille JA, Coe MT, Winslow LA. 2007. Small lakes dominate a random sample of regional lake characteristics. Freshw Biol 52:814–22.

    Google Scholar 

  • Hessen DO. 1998. Food webs and carbon cycling in humic lakes. In: Tranvik LJ, Hessen DO, Eds. Aquatic humic substances: ecology and biochemistry. Berlin: Springer. p 285–315.

    Google Scholar 

  • Hongve D, Riise G, Kristiansen JF. 2004. Increased colour and organic acid concentrations in Norwegian forest lakes and drinking water—a result of increased precipitation? Aquat Sci 66:231–8.

    CAS  Google Scholar 

  • Hope D, Kratz TK, Riera JL. 1996. Relationship between P-CO2 and dissolved organic carbon in northern Wisconsin lakes. J Environ Qual 25:1442–5.

    CAS  Google Scholar 

  • Houser JN. 2006. Water color affects the stratification, surface temperature, heat content, and mean epilimnetic irradiance of small lakes. Can J Fish Aquat Sci 63:2447–55.

    Google Scholar 

  • Hughes S, Freeman C, Reynolds B, Hudson JA. 1998. The effects of increased drought frequency on sulphate and dissolved organic carbon in peatland dominated ecosystems. Proceedings of the 2nd international conference on climate and water. Helsinki: Edita Limited. pp 311–319.

  • Imberger J. 1998. Flux paths in a stratified lake. Coast Estuar Stud 54:1–18.

    Google Scholar 

  • Jackson TA, Hecky RE. 1980. Depression of primary productivity by humic matter in lake and reservoir waters of the boreal forest zone. Can J Fish Aquat Sci 37:2300–17.

    Google Scholar 

  • Jansson M, Hickler T, Jonsson A, Karlsson J. 2008. Links between terrestrial primary production and bacterial production and respiration in lakes in a climate gradient in subarctic Sweden. Ecosystems 11:367–76.

    CAS  Google Scholar 

  • Jansson M, Karlsson J, Jonsson A. 2012. Carbon dioxide supersaturation promotes primary production in lakes. Ecol Lett 15:527–32.

    PubMed  Google Scholar 

  • Jones RI. 1992. The influence of humic substances on lacustrine planktonic food-chains. Hydrobiologia 229:73–91.

    CAS  Google Scholar 

  • Jones SE, Solomon CT, Weidel BC. 2012. Subsidy or subtraction: how do terrestrial inputs influence consumer production in lakes? Freshw Rev 5:37–49.

    Google Scholar 

  • Jonsson M, Hedström P, Stenroth K, Hotchkiss ER, Vasconcelos FR, Karlsson J, Bystrom P. 2015. Climate change modifies the size structure of assemblages of emerging aquatic insects. Freshw Biol 60(1):78–88.

    Google Scholar 

  • Karlsson J, Bystrom P, Ask J, Ask P, Persson L, Jansson M. 2009. Light limitation of nutrient-poor lake ecosystems. Nature 460:506–9.

    CAS  PubMed  Google Scholar 

  • Karlsson J, Jonsson A, Meili M, Jansson M. 2003. Control of zooplankton dependence on allochthonous organic carbon in humic and clear-water lakes in northern Sweden. Limnol Oceanogr 48:269–76.

    Google Scholar 

  • Kelly PT, Solomon CT, Weidel BC, Jones SE. 2014. Terrestrial carbon is a resource, but not a subsidy, for lake zooplankton. Ecology 95:1236–42.

    PubMed  Google Scholar 

  • Kenny JF, Barber NL, Huston SS, Linsey KS, Lovelace JK, Maupin, MA. 2009. Estimated use of water in the United States in 2005. U.S.G. Survey, editor. p 52.

  • Kirk JTO. 1994. Light and photosynthesis in aquatic ecosystems. 2nd edn. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kirschbaum MUF. 2006. The temperature dependence of organic-matter decomposition—still a topic of debate. Soil Biol Biochem 38:2510–18.

    CAS  Google Scholar 

  • Kling GW. 1988. Comparative transparency, depth of mixing, and stability of stratification in lakes of Cameroon, West Africa. Limnol Oceanogr 33:27–40.

    CAS  Google Scholar 

  • Kohler SJ, Kothawala D, Futter MN, Liungman O, Tranvik L. 2013. In-lake processes offset increased terrestrial inputs of dissolved organic carbon and color to lakes. PLoS ONE 8(8):e70598.

    PubMed Central  PubMed  Google Scholar 

  • Krasner SW, Sclimenti MJ, Means EG. 1994. Quality degradation: implications for DBP formation. J Am Water Works Assoc 86:34–47.

    CAS  Google Scholar 

  • Kritzberg ES, Ekstrom SM. 2012. Increasing iron concentrations in surface waters—a factor behind brownification? Biogeosciences 9:1465–78.

    CAS  Google Scholar 

  • Kritzberg ES, Granéli W, Björk J, Brönmark C, Hallgren P, Nicolle A, Persson A, Hansson LA. 2014. Warming and browning of lakes: consequences for pelagic carbon metabolism and sediment delivery. Freshw Biol 59:325–36.

    CAS  Google Scholar 

  • Kullberg A, Bishop KH, Hargeby A, Jansson M, Petersen RC. 1993. The ecological significance of dissolved organic carbon in acidified waters. Ambio 22:331–7.

    Google Scholar 

  • Lapierre J-F, Guillemette F, Berggren M, del Giorgio PA. 2013. Increases in terrestrially derived carbon stimulate organic carbon processing and CO2 emissions in boreal aquatic ecosystems. Nat Commun 4:2972.

    PubMed  Google Scholar 

  • Larsen S, Andersen T, Hessen DO. 2011a. Climate change predicted to cause severe increase of organic carbon in lakes. Global Change Biol 17:1186–92.

    Google Scholar 

  • Larsen S, Andersen T, Hessen DO. 2011b. The pCO2 in boreal lakes: organic carbon as a universal predictor? Global Biogeochem Cycles 25(8):1–8.

    Google Scholar 

  • Ledesma JLJ, Kohler SJ, Futter MN. 2012. Long-term dynamics of dissolved organic carbon: implications for drinking water supply. Sci Total Environ 432:1–11.

    CAS  PubMed  Google Scholar 

  • MacIntyre S, Sickman JO, Goldthwait SA, Kling GW. 2006. Physical pathways of nutrient supply in a small, ultraoligotrophic arctic lake during summer stratification. Limnol Oceanogr 51:1107–24.

    CAS  Google Scholar 

  • Matilainen A, Sillanpaa M. 2010. Removal of natural organic matter from drinking water by advanced oxidation processes. Chemosphere 80:351–65.

    CAS  PubMed  Google Scholar 

  • Matilainen A, Vepsalainen M, Sillanpaa M. 2010. Natural organic matter removal by coagulation during drinking water treatment: a review. Adv Colloid Interface Sci 159:189–97.

    CAS  PubMed  Google Scholar 

  • Matthews B, Mazumder A. 2006. Habitat specialization and the exploitation of allochthonous carbon by zooplankton. Ecology 87:2800–12.

    PubMed  Google Scholar 

  • Mattsson T, Kortelainen P, Raike A. 2005. Export of DOM from boreal catchments: impacts of land use cover and climate. Biogeochemistry 76:373–94.

    CAS  Google Scholar 

  • McDonald AT, Mitchell GN, Naden PS, Martin DSJ. 1991. Discoloured water investigations. Report to Yorkshire Water.

  • McDonald S, Bishop AG, Prenzler PD, Robards K. 2004. Analytical chemistry of freshwater humic substances. Anal Chim Acta 527:105–24.

    CAS  Google Scholar 

  • McKnight DM, Aiken GR. 1998. Sources and age of aquatic humus. In: Hessen DO, Tranvik LJ, Eds. Aquatic humic substances. Berlin: Springer.

    Google Scholar 

  • Minor EC, Swenson MM, Mattson BM, Oyler AR. 2014. Structural characterization of dissolved organic matter: a review of current techniques for isolation and analysis. Environ Sci Process Impacts 16(9):2064–79.

    PubMed  Google Scholar 

  • Mitchell G, McDonald AT. 1992. Discoloration of water by peat following induced drought and rainfall simulation. Water Res 26:321–6.

    CAS  Google Scholar 

  • Monteith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Hogasen T, Wilander A, Skjelkvale BL, Jeffries DS, Vuorenmaa J, Keller B, Kopacek J, Vesely J. 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:U537–9.

    Google Scholar 

  • Moran MA, Hodson RE. 1990. Bacterial production on humic and nonhumic components of dissolved organic carbon. Limnol Oceanogr 35:1744–56.

    CAS  Google Scholar 

  • Morris DP, Zagarese H, Williamson CE, Balseiro EG, Hargreaves BR, Modenutti B, Moeller R, Queimalinos C. 1995. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol Oceanogr 40:1381–91.

    CAS  Google Scholar 

  • Mulholland PJ. 2003. Large-scale patterns in dissolved organic carbon concentration, flux, and sources. In: Findlay S, Sinsabaugh RL, Eds. Aquatic ecosystems: interactivity of dissolved organic matter. Amsterdam: Elsevier.

    Google Scholar 

  • Neff JC, Asner GP. 2001. Dissolved organic carbon in terrestrial ecosystems: synthesis and a model. Ecosystems 4:29–48.

    CAS  Google Scholar 

  • Olin M, Vinni M, Lehtonen H, Rask M, Ruuhijärvi J, Saulamo K, Ala-Opas P. 2010. Environmental factors regulate the effects of roach Rutilus rutilus and pike Esox lucius on perch Perca fluviatilis populations in small boreal forest lakes. J Fish Biol 76:1277–93.

    CAS  PubMed  Google Scholar 

  • Pace ML, Cole JJ, Carpenter SR, Kitchell JF, Hodgson JR, Van de Bogert MC, Bade DL, Kritzberg ES, Bastviken D. 2004. Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature 427:240–3.

    CAS  PubMed  Google Scholar 

  • Palmer ME, Yan ND, Somers KM. 2014. Climate change drives coherent trends in physics and oxygen content in North American lakes. Clim Change 124:285–99.

    CAS  Google Scholar 

  • Pastor J, Solin J, Bridgham SD, Updegraff K, Harth C, Weishampel P, Dewey B. 2003. Global warming and the export of dissolved organic carbon from boreal peatlands. Oikos 100:380–6.

    Google Scholar 

  • Pérez-Fuentetaja A, Dillon P, Yan N, McQueen D. 1999. Significance of dissolved organic carbon in the prediction of thermocline depth in small Canadian shield lakes. Aquat Ecol 33:127–33.

    Google Scholar 

  • Prairie YT. 2008. Carbocentric limnology: Looking back, looking forward. Can J Fish Aquat Sci 65:543–8.

    Google Scholar 

  • Pregitzer KS, Zak DR, Burton AJ, Ashby JA, MacDonald NW. 2004. Chronic nitrate additions dramatically increase the export of carbon and nitrogen from northern hardwood ecosystems. Biogeochemistry 68:179–97.

    CAS  Google Scholar 

  • Read JS, Hamilton DP, Desai AR, Rose KC, MacIntyre S, Lenters JD, Smyth RL, Hanson PC, Cole JJ, Staehr PA, Rusak JA, Pierson DC, Brookes JD, Laas A, Wu CH. 2012. Lake-size dependency of wind shear and convection as controls on gas exchange. Geophys Res Lett 39:L09405.

    Google Scholar 

  • Read JS, Rose KC. 2013. Physical responses of small temperate lakes to variation in dissolved organic carbon concentrations. Limnol Oceanogr 58:921–31.

    CAS  Google Scholar 

  • Rouillard A, Rosen P, Douglas MSV, Pienitz R, Smol JP. 2011. A model for inferring dissolved organic carbon (DOC) in lakewater from visible-near-infrared spectroscopy (VNIRS) measures in lake sediment. J Paleolimnol 46:187–202.

    Google Scholar 

  • Roulet N, Moore TR. 2006. Environmental chemistry—browning the waters. Nature 444:283–4.

    CAS  PubMed  Google Scholar 

  • SanClements MD, Oelsner GP, McKnight DM, Stoddard JL, Nelson SJ. 2012. New insights into the source of decadal increases of dissolved organic matter in acid-sensitive lakes of the Northeastern United States. Environ Sci Technol 46:3212–19.

    CAS  PubMed  Google Scholar 

  • Schindler DW, Curtis PJ, Bayley SE, Parker BR, Beaty KG, Stainton MP. 1997. Climate-induced changes in the dissolved organic carbon budgets of boreal lakes. Biogeochemistry 36:9–28.

    CAS  Google Scholar 

  • Skjelkvale BL, Stoddard JL, Jeffries DS, Torseth K, Hogasen T, Bowman J, Mannio J, Monteith DT, Mosello R, Rogora M, Rzychon D, Vesely J, Wieting J, Wilander A, Worsztynowicz A. 2005. Regional scale evidence for improvements in surface water chemistry 1990–2001. Environ Pollut 137:165–76.

    CAS  PubMed  Google Scholar 

  • Sleighter RL, Hatcher PG. 2007. The application of electrospray ionization coupled to ultrahigh resolution mass spectrometry for the molecular characterization of natural organic matter. J Mass Spectrom 42:559–74.

    CAS  PubMed  Google Scholar 

  • Snucins E, Gunn J. 2000. Interannual variation in the thermal structure of clear and colored lakes. Limnol Oceanogr 45:1639–46.

    Google Scholar 

  • Sobek S, Algesten G, Bergstrom AK, Jansson M, Tranvik LJ. 2003. The catchment and climate regulation of pCO(2) in boreal lakes. Global Change Biol 9:630–41.

    Google Scholar 

  • Sobek S, Tranvik LJ, Cole JJ. 2005. Temperature independence of carbon dioxide supersaturation in global lakes. Global Biogeochem Cycles 19:GB2003.

  • Solomon CT, Bruesewitz DA, Richardson DC, Rose KC, Van de Bogert MC, Hanson PC, Kratz TK, Larget B, Adrian R, Babin BL, Chiu CY, Hamilton DP, Gaiser EE, Hendricks S, Istvánovics V, Laas A, O’Donnell DM, Pace ML, Ryder E, Staehr PA, Torgersen T, Vanni MJ, Weathers KC, Zhu G. 2013. Ecosystem respiration: drivers of daily variability and background respiration in lakes around the globe. Limnol Oceanogr 58:849–66.

    CAS  Google Scholar 

  • Solomon CT, Carpenter SR, Clayton MK, Cole JJ, Coloso JJ, Pace ML, Vander Zanden MJ, Weidel BC. 2011. Terrestrial, benthic, and pelagic resource use in lakes: results from a three-isotope Bayesian mixing model. Ecology 92:1115–25.

    PubMed  Google Scholar 

  • Sondergaard M, Phillips G, Hellsten S, Kolada A, Ecke F, Maemets H, Mjelde M, Azzella MM, Oggioni A. 2013. Maximum growing depth of submerged macrophytes in European lakes. Hydrobiologia 704:165–77.

    Google Scholar 

  • Stanley EH, Powers SM, Lottig NR, Buffam I, Crawford JT. 2012. Contemporary changes in dissolved organic carbon (DOC) in human-dominated rivers: is there a role for DOC management? Freshw Biol 57:26–42.

    Google Scholar 

  • Stasko AD, Gunn JM, Johnston TA. 2012. Role of ambient light in structuring north-temperate fish communities: potential effects of increasing dissolved organic carbon concentration with a changing climate. Environ Rev 20:173–90.

    CAS  Google Scholar 

  • Steinberg CEW, Kamara S, Prokhotskaya VY, Manusadzianas L, Karasyova TA, Timofeyev MA, Jie Z, Paul A, Meinelt T, Farjalla VF, Matsuo AYO, Burnison BK, Menzel R. 2006. Dissolved humic substances—ecological driving forces from the individual to the ecosystem level? Freshw Biol 51:1189–210.

    CAS  Google Scholar 

  • Striegl RG, Aiken GR, Dornblaser MM, Raymond PA, Wickland KP. 2005. A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophys Res Lett 32:L21413

    Google Scholar 

  • Taipale S, Kankaala P, Tiirola M, Jones RI. 2008. Whole-lake dissolved inorganic C-13 additions reveal seasonal shifts in zooplankton diet. Ecology 89:463–74.

    PubMed  Google Scholar 

  • Tanentzap AJ, Szkokan-Emilson EJ, Kielstra BW, Arts MT, Yan ND, Gunn JM. 2014. Forests fuel fish growth in freshwater deltas. Nat Commun 5:9.

    Google Scholar 

  • Tanentzap AJ, Yan ND, Keller B, Girard R, Heneberry J, Gunn JM, Hamilton DP, Taylor PA. 2008. Cooling lakes while the world warms: effects of forest regrowth and increased dissolved organic matter on the thermal regime of a temperate, urban lake. Limnol Oceanogr 53:404–10.

    CAS  Google Scholar 

  • Thurman, E. M. 1985. Organic geochemistry of natural waters. Springer.

  • Tranvik LJ. 1990. Bacterioplankton growth on fractions of dissolved organic carbon of different molecular weights from humic and clear waters. Appl Environ Microbiol 56:1672–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tranvik LJ. 1998. Degradation of dissolved organic matter in humic waters by bacteria. Aquatic humic substances. Berlin: Springer. pp 259–83.

    Google Scholar 

  • Tranvik LJ, Bertilsson S. 2001. Contrasting effects of solar UV radiation on dissolved organic sources for bacterial growth. Ecol Lett 4:458–63.

    Google Scholar 

  • Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutser T, Larsen S, Laurion I, Leech DM, McCallister SL, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie Y, Renwick WH, Roland F, Sherman BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, von Wachenfeldt E, Weyhenmeyer GA. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–314.

    CAS  Google Scholar 

  • Tranvik LJ, Jansson M. 2002. Climate change - Terrestrial export of organic carbon. Nature 415:861–2.

    CAS  Google Scholar 

  • Volk CJ, Volk CB, Kaplan LA. 1997. Chemical composition of biodegradable dissolved organic matter in streamwater. Limnol Oceanogr 42:39–44.

    CAS  Google Scholar 

  • von Lutzow M, Kogel-Knabner I. 2009. Temperature sensitivity of soil organic matter decomposition-what do we know? Biol Fertil Soils 46:1–15.

    Google Scholar 

  • Weidman PR, Schindler DW, Thompson PL, Vinebrooke RD. 2014. Interactive effects of higher temperature and dissolved organic carbon on planktonic communities in fishless mountain lakes. Freshw Biol 59:889–904.

    CAS  Google Scholar 

  • Weyhenmeyer GA, Prairie YT, Tranvik LJ. 2014. Browning of boreal freshwaters coupled to carbon-iron interactions along the aquatic continuum. PLoS ONE 9(2):e88104.

    PubMed Central  PubMed  Google Scholar 

  • Williamson CE, Morris DP, Pace ML, Olson AG. 1999. Dissolved organic carbon and nutrients as regulators of lake ecosystems: resurrection of a more integrated paradigm. Limnol Oceanogr 44:795–803.

    CAS  Google Scholar 

  • Williamson CE, Stemberger RS, Morris DP, Frost TM, Paulsen SG. 1996. Ultraviolet radiation in North American lakes: attenuation estimates from DOC measurements and implications for plankton communities. Limnol Oceanogr 41:1024–34.

    CAS  Google Scholar 

  • Winterdahl M, Erlandsson M, Futter MN, Weyhenmeyer GA, Bishop K. 2014. Intra-annual variability of organic carbon concentrations in running waters: drivers along a climatic gradient. Global Biogeochem Cycles 28:451–64.

    CAS  Google Scholar 

  • Wu ZT, Dijkstra P, Koch GW, Penuelas J, Hungate BA. 2011. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Global Change Biol 17:927–42.

    Google Scholar 

  • Wüest A, Lorke A. 2003. Small-scale hydrodynamics in lakes. Ann Rev Fluid Mech 35:373–412.

    Google Scholar 

  • Young KC, Docherty KM, Maurice PA, Bridgham SD. 2005. Degradation of surface-water dissolved organic matter: influences of DOM chemical characteristics and microbial populations. Hydrobiologia 539:1–11.

    CAS  Google Scholar 

Download references

Acknowledgments

This paper arose from a special session at the 2012 meeting of the Ecological Society of America. Our work on it was supported by grants from the Natural Sciences and Engineering Research Council of Canada, the U.S. National Science Foundation (including DEB-0842441 to JTL and SEJ), the Norwegian Research Council (Grant No. 224779/E10 to D. Hessen), and the Andrew W. Mellon Foundation. This article is contribution 1901 of the USGS Great Lakes Science Center. D. Monteith and collaborators graciously provided data from the ICP Waters program for Figure 1B. Comments from M. Pace and the anonymous reviewers improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher T. Solomon.

Additional information

Author contribution

CTS, SEJ, and BCW conceived this review, and all the authors contributed to designing, conducting, and writing it.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solomon, C.T., Jones, S.E., Weidel, B.C. et al. Ecosystem Consequences of Changing Inputs of Terrestrial Dissolved Organic Matter to Lakes: Current Knowledge and Future Challenges. Ecosystems 18, 376–389 (2015). https://doi.org/10.1007/s10021-015-9848-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-015-9848-y

Keywords

Navigation