Skip to main content

Advertisement

Log in

Buried Wood: A Common Yet Poorly Documented Form of Deadwood

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Buried wood (BW: downed deadwood buried more than 50% by soil, litter, or ground vegetation) is a common but understudied part of forest ecosystems. We reviewed the literature and conducted a meta-analysis of BW that included new data from Australia, Belarus, Canada, Germany, Japan, Norway, Russia, Slovakia, Sweden, the USA, and Wales. Buried wood occurred in a wide range of forest types of natural and anthropogenic origin. In some forests, BW was effectively preserved and volumes of BW exceeded the volume of all other live and deadwood combined. Boreal and oroboreal coniferous forests contained large amounts of BW, whereas hardwood forests appeared to contain little BW due to differences in ground vegetation, wood decomposition pathways, and climatic and edaphic conditions. Coniferous forests growing on paludified ground represent areas with a large capacity to store BW. The largest quantity of BW reported was 935 m3 ha−1 in paludified black spruce (Picea mariana (Mill.)) forests, where typically mature live bole volumes are only 150 m3 ha−1. Buried wood can accumulate over several disturbance cycles (centuries), due to greatly reduced rates of decomposition following burial. As such, BW can represent a large forest C pool that is currently not recognized in forest C accounting using field measurements or models. Failing to account for wood burial can lead to underestimates of ecosystem deadwood stocks as well as misinterpretations of ecosystem dynamics. Buried wood and the burial process should be included in forest measurement and models, particularly for boreal and oroboreal ecosystems, to reduce uncertainty and improve accuracy in forest C accounting. This will require improvements to existing field sampling protocols and collection of long-term data on processes creating BW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Aakala T. 2010. Coarse woody debris in late-successional Picea abies forests in northern Europe: variability in quantities and models of decay class dynamics. For Ecol Manage 260:770–9.

    Article  Google Scholar 

  • Ahti T, Hämet-ahti L, Jalas J. 1968. Vegetation zones and their sections in northwestern Europe. Ann Bot Fenn 5:169–211.

    Google Scholar 

  • Andriesse JP. 1988. Nature and management of tropical peat soils. No. 59. Rome: Food & Agriculture Organization.

  • Angers VA, Drapeau P, Bergeron Y. 2010. Snag degradation pathways of four North American boreal tree species. For Ecol Manag 259:246–56.

    Article  Google Scholar 

  • Asada T, Warner B, Banner A. 2003. Growth of mosses in relation to climate factors in a hypermaritime coastal peatland in British Columbia. Bryologist 106:516–27.

    Article  Google Scholar 

  • Arseneault J, Fenton NJ, Bergeron Y. 2012. Effects of variable canopy retention harvest on epixylic bryophytes in boreal black spruce-feathermoss forests of northwestern Québec. Can J For Res 42:1467–76.

    Article  Google Scholar 

  • Augusto L, Dupouey J, Ranger J. 2003. Effects of tree species on understory vegetation and environmental conditions in temperate forests. Ann For Sci 60:823–31.

    Article  Google Scholar 

  • Benscoter BW, Vitt DH. 2007. Evaluating feathermoss growth: a challenge to traditional methods and implications for the boreal carbon budget. J Ecol 95:151–8.

    Article  CAS  Google Scholar 

  • Bona KA, Fyles JW, Shaw C, Kurz WA. 2013. Are mosses required to accurately predict upland black spruce forest soil carbon in National-Scale Forest C accounting models? Ecosystems 16:1071–86.

    Article  CAS  Google Scholar 

  • Brais S, Sadi F, Bergeron Y, Grenier Y. 2005. Coarse woody debris dynamics in a post-fire jack pine chronosequence and its relation with site productivity. For Ecol Manag 220:216–26.

    Article  Google Scholar 

  • Bretz Guby NA, Dobbertin M. 1996. Quantitative estimates of coarse woody debris and standing dead trees in selected Swiss forests. Glob Ecol Biogeogr Lett 5:327–41.

    Article  Google Scholar 

  • Cavard X, Bergeron Y, Chen HYH, Paré D. 2010. Mixed-species effect on tree aboveground carbon pools in the east-central boreal forests. Can J For Res 40:37–47.

    Article  CAS  Google Scholar 

  • Chaieb C, Bergeron Y, Fenton N. 2010. Étude comparée de la structure forestière des pessières et des tourbières boisées classifiées denudes humides au 3ème inventaire décennal, dans l’UAF 85-51 et l’UAF 87-63 au Nord de l’Abitibi. Rapport de la Chaire en aménagement forestier durable.

  • Clark DF, Kneeshaw DD, Burton PJ, Antos JA. 1998. Coarse woody debris in sub-boreal spruce forests of west-central British Columbia. Can J For Res 28:284–90.

    Article  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Allison SD, Eggleton P, Preston C, Scarff F, Weedon JT, Wirth C, Zanne AE. 2009. Plant traits and wood fates across the globe-rotted, burned, or consumed? Glob Chang Biol 15:2431–49.

    Article  Google Scholar 

  • Debeljak M. 2006. Coarse woody debris in virgin and managed forests. Ecol Ind 6:733–42.

    Article  Google Scholar 

  • Deckers J, Spaargaren OC, Nachtergaele FO, Eds. 1998. World reference base for soil resources. International Society of Soil Science Working Group RB, 1st edn., vol. 1 and 2. Acco: KULeuven Academic Press.

  • Dioumaeva I, Trumbore S, Schuur EAG, Goulden ML, Litvak M, Hirsch AI. 2002. Decomposition of peat from upland boreal forest: temperature dependence and sources of respired carbon. J Geophys Res 108(D3):8222.

    Article  Google Scholar 

  • Drobyshev I, Goebel PC, Bergeron Y, Corace RGIII. 2012. Detecting changes in climate forcing on the fire regime of a North American mixed-pine forest: a case study of Seney National Wildlife Refuge, Upper Michigan. Dendrochronologia 30:137–45.

    Article  Google Scholar 

  • Dynesius M, Gibb H, Hjältén J. 2010. Surface covering of downed logs: drivers of a neglected process in dead-wood ecology. PLoS ONE 5:e13237.

    Article  PubMed Central  PubMed  Google Scholar 

  • Eckstein J, Leuschner HH, Bauerochse A, Sass-Klaassen U. 2009. Subfossil bog-pine horizons document climate and ecosystem changes during the Mid-Holocene. Dendrochronologia 27:129–46.

    Article  Google Scholar 

  • Ecological Stratification Working Group (ESWG). 1995. A National Ecological Framework for Canada. Agriculture and Agrifood Canada, Research Branch, Center for Land and Biological Resources Research and Environment Canada, State of the Environment, Ecozone Analysis Branch, Ottawa/Hull. Report and National Map at 1: 7 500 00 scale.

  • Ecoregions Working Group. 1989. Ecoclimatic regions of Canada: first approximation. Report and national map at 1:7,500,000 scale. Ecological Land Classification Series, No. 23. Ottawa (ON): Ecoregions Working Group, Canada Committee on Ecological Land Classification, Sustainable Development Branch, Canadian Wildlife Service, Conservation Protection, Environment Canada.

  • Eden WJ. 1967. Buried soil profile under apron of an earth flow. Geol Soc Am Bull 78:1183–4.

    Article  Google Scholar 

  • Edvardsson J, Linderson H, Rundgren M, Hammarlund D. 2012. Holocene peatland development and hydrological variability inferred from bog-pine dendrochronology and peat stratigraphy—a case study from southern Sweden. J Quat Sci 27:553–63.

    Article  Google Scholar 

  • Elumeeva TG, Soudzilovskaia NA, During HJ, Cornelissen JHC. 2011. The importance of colony structure versus shoot morphology for the water balance of 22 subarctic bryophyte species. J Veg Sci 22:152–64.

    Article  Google Scholar 

  • FAO. 2000. Global Forest Resources Assessment 2000. Rome: Italy.

    Google Scholar 

  • Fasth B, Harmon ME, Sexton J, White PS. 2011. Decomposition of fine woody debris in a deciduous forest in North Carolina. J Torrey Bot Soc 38:192–206.

    Article  Google Scholar 

  • Fenton NJ, Bergeron Y. 2006. Facilitative succession in a boreal bryophyte community driven by changes in available moisture and light. J Veg Sci 17:65–76.

    Article  Google Scholar 

  • Fenton N, Lecomte N, Légaré S, Bergeron Y. 2005. Paludification in black spruce (Picea mariana) forests of eastern Canada: potential factors and management implications. For Ecol Manage 213:151–9.

    Article  Google Scholar 

  • Fenton NJ, Légaré S, Bergeron Y, Paré D. 2006. Soil oxygen within boreal forests across an age gradient. Can J Soil Sci 86:1–9.

    Article  CAS  Google Scholar 

  • Foster DR. 1985. Vegetation development following fire in Picea mariana (black spruce)–Pleurozium forests of south-eastern Labrador, Canada. J Ecol 73:517–34.

    Article  Google Scholar 

  • Fox CA, Tarnocai C. 2011. Organic soils of Canada: Part 2. Upland organic soils. Can J Soil Sci 91:823–42.

    Article  CAS  Google Scholar 

  • Fridman J, Walheim M. 2000. Amount, structure, and dynamics of dead-wood on managed forestland in Sweden. For Ecol Manage 131:23–36.

    Article  Google Scholar 

  • Glebov F, Korzukhin M. 1992. Transitions between boreal forest and wetland. In: Shugart H, Leemans R, Bonan G, Eds. A systems analysis of the global boreal forest. Cambridge: Cambridge University Press. p 241–66.

    Chapter  Google Scholar 

  • Green RN, Trowbridge RL, Klinka K. 1993. Towards a taxonomic classification of humus forms. Forest Sci Monogr 29:1–49.

    Google Scholar 

  • Grosenbaugh LR. 1948. Improved cubic volume computation. J Forest 46:299–301.

    Google Scholar 

  • Hagemann U, Moroni MT, Makeschin F. 2009. Deadwood abundance in Labrador high-boreal black spruce forests. Can J For Res 39:131–42.

    Article  Google Scholar 

  • Hagemann U, Moroni MT, Gleißner J, Makeschin F. 2010a. Accumulation and preservation of dead-wood upon burial by bryophytes. Ecosystems 13:600–11.

    Article  CAS  Google Scholar 

  • Hagemann U, Moroni MT, Shaw CH, Kurz WA, Makeschin F. 2010b. Comparing measured and modelled forest carbon stocks in high-boreal forests of harvest and natural disturbance origin in Labrador, Canada. Ecol Model 221:825–39.

    Article  CAS  Google Scholar 

  • Hall JE, Kirby KJ, Whitbread AM. 2001. National Vegetation Classification: field guide to woodland. Joint Nature Conservation Committee. http://jncc.defra.gov.uk/PDF/fieldguidetowoodland.pdf

  • Hajek T, Ballance S, Limpens J, Zijlstra M, Verhoeven JTA. 2011. Cell-wall polysaccharides play an important role in decay resistance of Sphagnum and actively depressed 15 decomposition in vitro. Biogeochemistry 103:45–57.

    Article  CAS  Google Scholar 

  • Hämet-Ahti L, Ahti T, Koponen T. 1974. A scheme of vegetation zones for Japan and adjacent regions. Ann Bot Fenn 11:59–88.

    Google Scholar 

  • Harden JW, Trumbore SE, Stocks BJ, Hirsch A, Gower ST, O’neill KP, Kasischke ES. 2000. The role of fire in the boreal carbon budget. Glob Change Biol 6(S1):174–84.

    Article  Google Scholar 

  • Harmon ME, Hua C. 1991. Coarse woody debris dynamics in two old-growth ecosystems. Bioscience 41:604–10.

    Article  Google Scholar 

  • Harmon ME, Bond-Lamberty B, Tang J, Vargas R. 2011. Heterotrophic respiration in disturbed forests: a review with examples from North America. J Geophys Res 116:G00K04.

  • Harvey AE, Larsen M, Jurgensen MF. 1976. Distribution of ectomycorrhizae in a mature Douglas-fir/larch forest soil in western Montana. For Sci 22:393–8.

    Google Scholar 

  • Harvey AE, Larsen M, Jurgensen MF. 1981. Rate of woody residue incorporation in to northern Rocky Mountain forest soils. USDA For. Serv. Res. Pap. INT-282.

  • Heinselman M. 1981. Fire succession in the conifer forests of northern North America. In: West D, Shugart H, Botkin D, Eds. Forest succession: concepts and application. New York: Springer-Verlag, p 375–405.

  • Hicks WT, Harmon ME. 2002. Diffusion and seasonal dynamics of O2 in woody debris from the Pacific Northwest, USA. Plant Soil 243:67–79.

    Article  CAS  Google Scholar 

  • Hobbie SE. 1996. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–22.

    Article  Google Scholar 

  • Holeksa J. 2001. Coarse woody debris in a Carpathian subalpine spruce forest. Forstwissenschaftliches Centralblatt 120:256–70.

    Article  Google Scholar 

  • Hunt SL, Gordon AM, Morris DM. 2010. Carbon stocks in managed conifer forests in northern Ontario, Canada. Silva Fennica 44:563–82.

    Article  Google Scholar 

  • Jomura M, Kominami Y, Dannoura M, Kanazawa Y. 2008. Spatial variation in respiration from coarse woody debris in a temperate secondary broad-leaved forest. For Ecol Manage 255:149–55.

    Article  Google Scholar 

  • Jomura M, Kominami Y, Tamai K, Miyama T, Goto Y, Dannoura M, Kanazawa Y. 2007. The carbon budget of coarse woody debris in a temperate broad-leaved secondary forest in Japan. Tellus B 59:211–22.

    Article  Google Scholar 

  • Keenan RJ, Prescott CE, Kimmins JP. 1993. Mass and nutrient content of woody debris and forest floor in western red cedar and western hemlock forests on northern Vancouver Island. Can J For Res 23:1052–9.

    Article  Google Scholar 

  • Kemball KJ, Wang GG, Dang QL. 2005. Response of understory plant community of boreal mixedwood stands to fire, logging, and spruce budworm outbreak. Botany 83:1550–60.

    Google Scholar 

  • Kershaw M, Wiltshire R, Hollstedt C. 1994. Critical silvics of feathermoss as related to vegetation management. Ontario Ministry of Natural Resources, Northwest Region Science and Technology Unit, Technical Note 29

  • Kira K, Hirata K, Baba H. 1998. Utilizing forest in the Island of Yakushima (I): historical fluctuations in the management and utilization of Yakusugi (Cryptomeria japonica). Bull Fac Agri Kagoshima Univ 48:31–9.

    Google Scholar 

  • Klinka K, Green RN, Trowbridge RL, Lowe LE. 1981. Taxonomic classification of humus forms in ecosystems of British Columbia: first approximation. British Columbia, Ministry of Forests. Land Management Report Number 8.

  • Korpel’ Š. 1995. Die Urwälder der Westkarpaten. Stuttgart: G. Fischer.

    Google Scholar 

  • Kurz WA, Dymond CC, White TM, Stinson G, Shaw CH, Rampley GJ, Smyth C, Simpson BN, Neilson ET, Trofymow JA, Metsaranta J, Apps MJ. 2009. CBM-CFS3: a model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecol Model 220:480–504.

    Article  Google Scholar 

  • Kushnevskaya H, Mirin D, Shorohova E. 2007. Patterns of epixylic vegetation on spruce logs in late-successional boreal forests. For Ecol Manage 250:25–33.

    Article  Google Scholar 

  • Lambert RL, Lang GE, Reiners WA. 1980. Loss of mass and chemical change in decaying boles of a subalpine balsam fir forest. Ecology 61:1460–73.

    Article  Google Scholar 

  • Lang GE, Cronan CS, Reiners WA. 1981. Organic matter and major elements of the forest floors and soils in subalpine balsam fir forests. Can J For Res 11:388–99.

    Article  CAS  Google Scholar 

  • Lang SI, Cornelissen JHC, Klahn T, van Logtestijn RSP, Broekman R, Schweikert W, Aerts R. 2009. An experimental comparison of chemical traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species. J Ecol 97:886–900.

    Article  CAS  Google Scholar 

  • Lecomte N, Simard M, Fenton N, Bergeron Y. 2006. Fire severity and long-term ecosystem biomass dynamics in coniferous boreal forest of eastern Canada. Ecosystems 9:1215–30.

    Article  Google Scholar 

  • Lefort P, Harvey B, Parton JG, Smith GKM. 2002. Synthesizing knowledge of the Claybelt to promote sustainable forest management. Forestry Chronicle 78:665–71.

    Article  Google Scholar 

  • Little SN, Ohmann JL. 1988. Estimating nitrogen lost from forest floor during prescribed fires in Douglas-fir/western hemlock clearcuts. Forest Science 34:152–64.

    Google Scholar 

  • Little S. 1959. Silvicultural characteristics of Atlantic White-Cedar (Chamaecyparis thyloides). Northeastern Forest Experiment Station, USDA Forest Service. Upper Darby, PA. Station Paper No. 118

  • Manies K, Harden J, Bond-Lamberty B, O’Neill K. 2005. Woody debris along an upland chronosequence in boreal Manitoba and its impact on long-term carbon storage. Can J For Res 35:472–82.

    Article  Google Scholar 

  • Marshall PL, Davis G, LeMay VM. 2000. Using line intersect sampling for coarse woody debris. British Columbia Ministry of Forests, Vancouver Forest Region, Nanaimo, British Columbia. Technical Report TR-003. http://www.for.gov.bc.ca/rco/research/cwd/tr003.pdf.

  • McFee WW, Stone EL. 1966. The persistence of decaying wood in the humus layers of northern forests. Soil Sci Soc Am J 30:513–16.

    Article  CAS  Google Scholar 

  • MCPFE. 2007. State of Europés forests 2007. The MCPFE report on sustainable forest management in Europe. Liaison Unit Warsaw. http://www.foresteurope.org/documentos/state_of_europes_forests_2007.pdf. Accessed May 26, 2014

  • McRae D, Duchesne L, Freedman B, Lynham T, Woodley S. 2001. Comparisons between wildfire and forest harvesting and their implications in forest management. Environ Rev 9:223–60.

    Article  CAS  Google Scholar 

  • Merganič J, Vorčák J, Merganičová K, Ďurský J, Miková A, Škvarenina J, Tuček J, Minďáš J. 2003. Diversity monitoring in mountain forests of Eastern Orava. EFRA, Tvrdošín. http://www.forim.sk/index_soubory/Merganic_Vorcak_Merganicova_Dursky_Mikova_Skvarenina_Tucek_Mindas_2003.pdf. Accessed April 26, 2013.

  • Merganič J, Quednau HD, Šmelko Š. 2004. Relations between selected geomorphology features and tree species diversity of forest ecosystems and interpolation on a regional level. Eur J Forest Res 123:75–85.

    Article  Google Scholar 

  • Messier C, Kimmins JP. 1992. Growth of western red cedar seedlings in relation to microtopography, forest floor nutrient status, and fireweed and salal on clear-cut sites in coastal British Columbia. Can J For Res 22:273–8.

    Article  Google Scholar 

  • Ministère des Ressources Naturelles du Québec. 1997. Normes d’inventaire forestier. Les placettes échantillons permanentes édition provisoire. Direction de la gestion des stocks forestiers. Service des inventaires forestiers. ftp://www.ftp.mrn.gouv.qc.ca/Public/Bibliointer/Mono/2013/12/1143605.pdf. Accessed May 23, 2014.

  • Miyamoto A, Sano M. 2008. The influence of forest management on landscape structure in the cool-temperate forest region of central Japan. Landsc Urban Plan 86:248–56.

    Article  Google Scholar 

  • Moroni MT. 2006. Disturbance history affects dead-wood abundance in Newfoundland boreal forests. Can J For Res 36:3194–208.

    Article  Google Scholar 

  • Moroni MT, Hagemann U, Beilmann D. 2010. Dead-wood is buried and preserved in a Labrador boreal forest. Ecosystems 13:452–8.

    Article  CAS  Google Scholar 

  • Moroni MT, Ryan DAJ. 2010. Dead-wood abundance in recently harvested and old Nova Scotia tolerant hardwood forests. Forestry 83:219–27.

    Article  Google Scholar 

  • Moroni MT, Carter PQ, Ryan DAJ. 2009. Harvesting and slash piling affects surface respiration, soil temperature, and soil moisture regimes in Newfoundland boreal forests. Can J Soil Sci 89:343–55.

    Article  Google Scholar 

  • Naesset E. 1999. Decomposition rate constants of Picea abies logs in southeastern Norway. Can J For Res 29:372–81.

    Article  Google Scholar 

  • Natural Resources Canada. 2004a. Canada’s National Inventory: Design overview. Version 3.2. https://nfi.nfis.org/documentation/general/Design_overview_v3.2.pdf. Accessed June 1, 2013.

  • Natural Resources Canada. 2004b. Canada’s National Inventory: ground sampling guidelines. Version 4.1. https://nfi.nfis.org/documentation/ground_plot/Gp_guidelines_v4.1.pdf. Accessed June 1, 2013.

  • Natural Resources Canada. 2008. Canada’s National Forest Inventory: Ground Sampling Guidelines. Version 5.0. https://nfi.nfis.org/documentation/ground_plot/Gp_guidelines_v5.0.pdf. Accessed May 31, 2013

  • Natural Resources Canada. 2011. Canada’s National Forest Inventory. National Standard for ground plots, Data dictionary. Version 5.1.1. https://nfi.nfis.org/documentation/ground_plot/Gp_data_dictionary_v5.1.1.pdf. Accessed 31 May, 2013

  • Natural Resources Canada. 2013. Canada’s National Forest Inventory: Online database. http://nfi.nfis.org/. Accessed April 8, 2014

  • Nilsson SGM, Niklasson J, Hedin G, Aronsson JM, Gutowski P, Linder H, Ljungberg G, Mikusinski-Ranius T. 2002. Densities of large living and deadtrees in old-growth temperate and boreal forests. For Ecol Manage 161:189–204.

    Article  Google Scholar 

  • Oechel WC, van Cleve K. 1986. The role of bryophytes in nutrient cycling in the taiga. In: van Cleve K, Chapin III FS, Flanagan PW, Viereck LA, Dyrness CT, Eds. Forest ecosystems in the Alaskan Taiga. New York: Springer. p 121–137.

  • Rheault H, Bélanger L, Grondin P, Ouimet R, Hébert C, Dussault C. 2009. Stand composition and structure as indicators of epixylic diversity in old-growth boreal forests. Ecoscience 16:183–96.

    Article  Google Scholar 

  • Saetre P, Saetre LS, Brandtberg PO, Lundkvist H, Bengtsson J. 1997. Ground vegetation composition and heterogeneity in pure Norway spruce and mixed Norway spruce–birch stands. Can J For Res 27:2034–42.

    Google Scholar 

  • Saucier JP, Robitaille R, Grondin P, Bergeron JF, Gosselin J. 2011. Les régions écologiques du Québec méridional (4 version). Carte à l’échelle de 1 / 1 250 000. Ministère des Ressources naturelles et de la Faune du Québec.

  • Schmidt O. 2006. Wood and tree fungi: biology, damage, protection and use. Heidelberg, Germany: Springer-Verlag.

    Google Scholar 

  • Schmalholz M, Hylander K, Frego K. 2011. Bryophyte species richness and composition in young forests regenerated after clear-cut logging versus after wildfire and spruce budworm outbreak. Biodivers Conserv 20:2575–96.

    Article  Google Scholar 

  • Shaw CH, Boyle JR, Omule AY. 2008. Estimating forest soil carbon and nitrogen stocks with double sampling for stratification. Soil Sci Soc Am J 72:1611–20.

    Article  CAS  Google Scholar 

  • Shetler G, Turetsky MR, Kane E, Kasischke E. 2008. Sphagnum mosses limit total carbon consumption during fire in Alaskan black spruce forests. Can J For Res 38:2328–36.

    Article  CAS  Google Scholar 

  • Soil Classification Working Group (SCWG). 1998. The Canadian system of soil classification. 3rd edn. Agriculture and Agri-Food Canada, Ottawa, ON. Publication Number 1646.

  • Siitonen J. 2001. Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol Bull 49:11–41.

    Google Scholar 

  • Simard M, Lecomte N, Bergeron Y, Bernier PY, Paré D. 2007. Forest productivity decline caused by successional paludification of boreal soils. Ecol Appl 17:1619–37.

    Article  PubMed  Google Scholar 

  • Simard M, Bernier PY, Bergeron Y, Paré D, Guérine L. 2009. Paludification dynamics in the boreal forest of the James Bay Lowlands: effect of time since fire and topography. Can J For Res 39:546–52.

    Article  CAS  Google Scholar 

  • Smithwick EAH, Harmon ME, Remillard SM, Acker SA, Franklin JF. 2002. Potential upper bounds of carbon stores in forests of the Pacific Northwest. Ecol Appl 12:1303–17.

    Article  Google Scholar 

  • Soil Survey Staff. 1992. Keys to soil taxonomy. 5th edition. SMMS Technical Monograph No. 19, Blacksburg, Virginia: Pocahontas Press, Inc.

  • Startsev N, Lieffers VJ, Landhäusser SM. 2008. Effects of leaf litter on the growth of boreal feather mosses: implication for forest floor development. J Veg Sci 19:253–60.

    Article  Google Scholar 

  • Stokland JN. 2001. The coarse woody debris profile: an archive of the recent forest history and an important biodiversity indicator. Ecol Bull 49:71–83.

    Google Scholar 

  • Stokland JN, Eriksen R, Tomter SM, Korhonen K, Tomppo E, Rajaniemi S, Söderberg U, Toet H, Riis-Nielsen T. 2003. Forest biodiversity indicators in the Nordic countries—status based on national forest inventories. TemaNord: Nordic Council of Ministers. 514

    Google Scholar 

  • Stokland JN. 2012. Wood decomposition. In: Stokland JN, Siitonen J, Jonsson BG, Eds. Biodiversity in dead-wood. London: Cambridge University Press. p 10–28.

  • Stocks BJ, Mason JA, Todd JB, Bosch EM, Wotton BM, Amiro BD, Flannigan MD, Hirsh A, Logan KA, Martell DL, Skinner WR. 2003. Large forest fires in Canada, 1959–1997. J Geophys Res 108:1–12.

    Google Scholar 

  • Strukelj M, Brais S, Quideau SA, Angers VA, Kebli H, Drapeau P, Oh SW. 2013. Chemical transformations in downed logs and snags of mixed boreal species during decomposition. Can J For Res 43:785–98.

    Article  CAS  Google Scholar 

  • Swanson RV, Flanagan LB. 2001. Environmental regulation of carbon dioxide exchange at the forest floor in a boreal black spruce ecosystem. Agric For Meteorol 108:165–81.

    Article  Google Scholar 

  • Tamm CO. 1953. Growth, yield and nutrition in carpets of a forest moss (Hylocomium splendens). Meddelanden fran Statens Skogsforskningsinstitut 43:1–140.

    Google Scholar 

  • Tyrrell LE, Crow TR. 1994. Dynamics of dead-wood in old-growth hemlock–hardwood forests of northern Wisconsin and northern Michigan. Can J For Res 24:1672–83.

    Article  Google Scholar 

  • Warren MW, Kauffman JB, Murdiyarso D, Anshari G, Hergoualc’h K, Kurnianto S, Purbopuspito J, Gusmayanti E, Afifudin M, Rahajoe J, Alhamd L, Limin S, Iswandi A. 2012. A cost-efficient method to assess carbon stocks in tropical peat soil. Biogeosciences 9:4477–85.

    Article  CAS  Google Scholar 

  • Weir JMH, Johnson EA, Miyanshi K. 2000. Fire frequency and the spatial age mosaic of the mixed-wood boreal forest of western Canada. Ecol Appl 10:1162–77.

    Article  Google Scholar 

  • Wang C, Bond-Lamberty B, Gower ST. 2003. Carbon distribution of a well- and poorly-drained black spruce fire chronosequence. Glob Change Biol 9:1066–79.

    Article  Google Scholar 

  • Weedon JT, Cornwell WK, Cornelissen JHC, Zanne AE, Wirth C, Coomes DA. 2009. Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecol Lett 12:45–56.

    Article  PubMed  Google Scholar 

  • Wellbrock N, Aydin CT, Block J, Bussian B, Deckert M, Diekmann O, Evers J, Fetzer KD, Gauer J, Gehrmann J, Kölling C, König N, Liesebach M, Martin J, Meiwes KJ, Milbert G, Raben G, Riek W, Schäffer W, Schwerhoff J, Ullrich T, Utermann J, Volz HA, Weigel A, Wolff B. 2006. Bodenzustandserhebung im Wald (BZE II) Arbeitsanleitung für die Außenaufnahmen. Berlin, Germany: Hrsg. BMELV.

  • Woodall CW, Rondeaux J, Verkerk PJ, Ståhl G. 2009. Estimating dead-wood during national forest inventories: a review of inventory methodologies and suggestions for harmonization. Environ Manag 44:624–31.

    Article  Google Scholar 

  • Yamashita S, Hattori T, Tanaka H. 2012. Changes in community structure of wood-inhabiting aphyllophoraceous fungi after clear-cutting in a cool temperate zone of Japan: planted conifer forest versus broad-leaved secondary forest. For Ecol Manag 283:27–34.

    Article  Google Scholar 

  • Zabel RA, Morrell JJ. 1992. Wood microbiology: decay and its prevention. San Diego, CA: Academic Press Inc.

    Google Scholar 

  • Zielonka T, Niklasson M. 2001. Dynamics of dead-wood and regeneration pattern in natural spruce forest in the Tatra Mountains, Poland. Ecol Bull 49:159–63.

    Google Scholar 

  • Zeng N. 2008. Carbon sequestration via wood burial. Carbon Balanc Manage 3:1–12.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Glenda Russo for compiling BW data from the Canadian National Forest Inventory. For helping provide observations of BW, we thank Marie-Charlotte Nilsson for Swedish data, Richard Carrick for data from Wales, UK, Merten Minke for data from Belarus, Ekaterina Shorohova for data from Russia, and M. Hasegawa and S. Yamashita for data from Japan. Japanese observations were supported by the Global Environment Research Fund (S9). Data collection in the Forest School Enterprise (FSE) of the Technical University of Zvolen, Slovakia was supported by the Research and Development Operational Programme funded by ERDF under the project Centre of Excellence “Decision support in forest and country”, ITMS 26220120069. The collection of data from the H. J. Andrews Experimental Forest was supported by a grant from the US National Science Foundation (DEB-0823380).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Moroni.

Additional information

Author contributions

Conceived of or designed study (MM, UH). Performed research (MM, DM, CS, JS, MH, NF, MK, MJ, OK, UH). Analyzed data (MM, DM, CS, JS, MH, NF, MK, MJ, OK, UH). Contributed new methods or models. Wrote the paper (MM, DM, CS, JS, UH, MH).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moroni, M.T., Morris, D.M., Shaw, C. et al. Buried Wood: A Common Yet Poorly Documented Form of Deadwood. Ecosystems 18, 605–628 (2015). https://doi.org/10.1007/s10021-015-9850-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-015-9850-4

Keywords

Navigation