Skip to main content

Advertisement

Log in

Antimicrobial resistance and molecular epidemiology using whole-genome sequencing of Neisseria gonorrhoeae in Ireland, 2014–2016: focus on extended-spectrum cephalosporins and azithromycin

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

High-level resistance and treatment failures with ceftriaxone and azithromycin, the first-line agents for gonorrhoea treatment are reported and antimicrobial-resistant Neisseria gonorrhoeae is an urgent public health threat. Our aims were to determine antimicrobial resistance rates, resistance determinants and phylogeny of N. gonorrhoeae in Ireland, 2014–2016. Overall, 609 isolates from four University Hospitals were tested for susceptibility to extended-spectrum cephalosporins (ESCs) and azithromycin by the MIC Test Strips. Forty-three isolates were whole-genome sequenced based on elevated MICs. The resistance rate to ceftriaxone, cefixime, cefotaxime and azithromycin was 0, 1, 2.1 and 19%, respectively. Seven high-level azithromycin-resistant (HLAzi-R) isolates were identified, all susceptible to ceftriaxone. Mosaic penA alleles XXXIV, X and non-mosaic XIII, and G120K plus A121N/D/G (PorB1b), H105Y (MtrR) and A deletion (mtrR promoter) mutations, were associated with elevated ESC MICs. A2059G and C2611T mutations in 23S rRNA were associated with HLAzi-R and azithromycin MICs of 4–32 mg/L, respectively. The 43 whole-genome sequenced isolates belonged to 31 NG-MAST STs. All HLAzi-R isolates belonged to MLST ST1580 and some clonal clustering was observed; however, the isolates differed significantly from the published HLAzi-R isolates from the ongoing UK outbreak. There is good correlation between previously described genetic antimicrobial resistance determinants and phenotypic susceptibility categories for ESCs and azithromycin in N. gonorrhoeae. This work highlights the advantages and potential of whole-genome sequencing to be applied at scale in the surveillance of antibiotic resistant strains of N. gonorrhoeae, both locally and internationally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. World Health Organization (2016) Guidelines for the treatment of Neisseria gonorrhoeae. http://www.who.int/reproductivehealth/publications/rtis/gonorrhoea-treatment-guidelines/en/

  2. Newman L, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M, Low N, Stevens G, Gottlieb S, Kiarie J, Temmerman M (2015) Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS One 12:e0143304

    Article  CAS  Google Scholar 

  3. World Health Organization (2012) Emergence of multi-drug resistant Neisseria gonorrhoeae—threat of global rise in untreatable sexually transmitted infections. Department of Reproductive Health and Research. http://www.who.int/reproductivehealth/publications/rtis/who_rhr_11_14/en/

  4. Wasserheit JN (1992) Epidemiological synergy. Interrelationships between human immunodeficiency virus and other sexually transmitted diseases. Sex Transm Dis 19:61–77

    Article  PubMed  CAS  Google Scholar 

  5. Unemo M, Del Rio C, Schafer WM (2016) Antimicrobial resistance expressed by Neisseria gonorrhoeae: a major global public health problem in the 21st century. Microbiol Spectr 4:EI10-0009-2015

  6. Centers for Disease Control and Prevention. Antibiotic/antimicrobial resistance biggest threats. https://www.cdc.gov/drugresistance/biggest_threats.html

  7. World Health Organization. Global action plan to control the spread and impact of antimicrobial resistance in Neisseria gonorrhoeae. http://www.who.int/reproductivehealth/publications/rtis/9789241503501/en/ Accessed 29 Mar 2018

  8. Bignell C, Unemo M, European STI Guidelines Editorial Board (2013) 2012 European guideline on the diagnosis and treatment of gonorrhoea in adults. Int J STI AIDS 24:85–92

    Article  CAS  Google Scholar 

  9. Centers for Disease Control and Prevention. 2015 Sexually transmitted diseases treatment guidelines—gonococcal infections in adolescents and adults. https://www.cdc.gov/std/tg2015/default.htm. Accessed 29 Mar 2018

  10. Ohnishi M, Golparian D, Shimuta K, Saika T, Hoshina S, Iwasaku K, Nakayama S, Kitawaki J, Unemo M (2011) Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhoea?: detailed characterization of the first strain with high-level resistance to ceftriaxone. Antimicrob Agents Chemother 55:3538–3545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Unemo M, Golparian D, Nicholas R, Ohnishi M, Gallay A, Sednaoui P (2012) High-level cefixime- and ceftriaxone-resistant Neisseria gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob Agents Chemother 56:1273–1280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Cámara J, Serra J, Ayats J, Bastida T, Carnicer-Pont D, Andreu A, Ardanuy C (2012) Molecular characterization of two high-level ceftriaxone-resistant Neisseria gonorrhoeae isolates in Catalonia, Spain. J Antimicrob Chemother 67:1858–1860

    Article  PubMed  CAS  Google Scholar 

  13. Lynagh Y, Mac Aogáin M, Walsh A, Rogers TR, Unemo M, Crowley B (2015) Detailed characterization of the first high-level azithromycin-resistant Neisseria gonorrhoeae cases in Ireland. J Antimicrob Chemother 70:2411–2413

    Article  PubMed  CAS  Google Scholar 

  14. Katz AR, Komeya AY, Soge OO, Kiaha MI, Lee MV, Wasserman G, Maningas EV, Whelen AC, Kirkcaldy RD, Shapiro SJ, Bolan GA, Holmes KK (2012) Neisseria gonorrhoeae with high-level resistance to azithromycin; case report of the first isolate identified in the United States. Clin Infect Dis 54:841–843

    Article  PubMed  CAS  Google Scholar 

  15. Chisholm SA, Neal TJ, Alawattegama AB, Birley HD, Howe RA, Ison CA (2009) Emergence of high-level azithromycin resistance in Neisseria gonorrhoeae in England and Wales. J Antimicrob Chemother 64:353–358

    Article  PubMed  CAS  Google Scholar 

  16. Galarza P, Alcalá B, Salceda C, Canigia LF, Buscemi L, Pagano I, Oveido C, Vázquez JA (2009) Emergence of high level azithromycin-resistant Neisseria gonorrhoeae strain isolated in Argentina. Sex Transm Dis 36:787–788

    Article  PubMed  CAS  Google Scholar 

  17. Stevens K, Zaia A, Tawil S, Bates J, Hicks V, Whiley D, Limnios A, Lahra MM, Howden BP (2015) Neisseria gonorrhoeae isolates with high-level resistance to azithromycin in Australia. J Antimicrob Chemother 70:1267–1268

    PubMed  CAS  Google Scholar 

  18. Unemo M, Golparian D, Hellmark B (2014) First three Neisseria gonorrhoeae isolates with high-level resistance to azithromycin in Sweden: a threat to currently available dual-antimicrobial regimens for treatment of gonorrhea? Antimicrob Agents Chemother 58:624–625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Harris SR, Cole MJ, Spiteri G (2018) European survey of Neisseria gonorrhoeae using whole genome sequencing identified spread of multidrug-resistant clones and provides a foundation for genomic surveillance—an observational study. Lancet Infect Dis 2018:in press

  20. MacAogáin M, Fennelly N, Walsh, Lynagh Y, Bekaert M, Walsh P, Kelly B, Rogers TR, Crowley B (2017) Fourteen draft genome sequences for the first reported cases of azithromycin-resistant Neisseria gonorrhoeae in Ireland. J Antimicrob Chemother 5:e00403–e00417

    Google Scholar 

  21. European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 7.1 Jan 2017, http://www.eucast.org/clinical_breakpoints/. Accessed 29 Mar 2018

  22. European Committee on Antimicrobial Susceptibility Testing. Antimicrobial wild type distributions of microorganisms. Version 5.26. https://mic.eucast.org/Eucast2/. Accessed 29 May 2018

  23. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, Parkhill J, Harris SR (2015) Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 43:e15

    Article  PubMed  CAS  Google Scholar 

  24. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  PubMed  CAS  Google Scholar 

  25. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single cell sequencing. J Comput Biol 19:455–477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M, Landraud L, Rolain JM (2014) ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother 58:212–220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Jolly KA, Maiden MC (2010) BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11:595

    Article  Google Scholar 

  28. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  CAS  Google Scholar 

  29. European Centre for Disease Prevention and Control (2014) Gonococcal antimicrobial surveillance in Europe. https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/gonococcal-antimicrobial-susceptibility-surveillance-Europe-2014.pdf

  30. Cole MJ, Spiteri G, Jacobsson S, Woodford N, Tripodo F, Amato-Gauci AJ, Unemo M, EURO-GASP network (2017) Overall low extended-spectrum cephalosporin resistance but high azithromycin resistance in Neisseria gonorrhoeae in 24 European countries, 2015. BMC Infect Dis 17:617

    Article  PubMed  PubMed Central  Google Scholar 

  31. Regnath T, Mertes T, Ignatius R (2016) Antimicrobial resistance of Neisseria gonorrhoeae isolates in South-West Germany, 2014 to 2015: increasing minimal inhibitory concentrations of tetracycline but no resistance to third-generation cephalosporins. Euro Surveill 21:30335

    Article  PubMed Central  Google Scholar 

  32. Ni C, Xue J, Zhang C, Zhou H, van der Veen S (2016) High prevalence of Neisseria gonorrhoeae with high-level resistance to azithromycin in Hanhzhou, China. J Antimicrob Chemother 71:2355–2357

    Article  PubMed  CAS  Google Scholar 

  33. Cole MJ, Spiteri G, Chisholm SA, Hoffmann S, Ison CA, Unemo M, Van der Laar M (2014) Emerging cephalosporin and multidrug-resistant gonorrhoea in Europe. Euro Surveill 19:20955

    Article  PubMed  CAS  Google Scholar 

  34. Cole MJ, Spiteri G, Jacobsson S, Pitt R, Grigorjev V, Unemo M, Eur-GASP network (2015) Is the tide turning again for cephalosporin resistance in Neisseria gonorrhoeae in Europe? Results from the 2013 European surveillance. BMC Infect Dis 15:321

    Article  PubMed  PubMed Central  Google Scholar 

  35. Allen VG, Seah C, Martin I, Melano RG (2014) Azithromycin resistance is coevolving with reduced susceptibility to cephalosporins in Neisseria gonorrhoeae in Ontario, Canada. Antimicrob Agents Chemother 58:2528–2534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Kirkcaldy RN, Soge O, Papp JR, Hook EW 3rd, del Rio C, Kubin G, Weinstock HS (2015) Analysis of Neisseria gonorrhoeae azithromycin susceptibility in the United States by the Gonococcal Isolate Surveillance Project, 2015 to 2013. Antimicrob Agents Chemother 59:998–1003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Liang JY, Cao WL, Li XD, Bi C, Yang RD, Liang YH, Ye XD, Chen XX, Shang XB (2016) Azithromycin resistant Neisseria gonorrhoeae isolates in Guangzou, China (2009-2013): coevolution with decreased susceptibilities to ceftriaxone and genetic characteristics. BMC Infect Dis 14:152

    Article  CAS  Google Scholar 

  38. Wind CM, van der Loeff MF S, van Dam AP, de Vried HJ, van der Helm JJ (2017) Trends in antimicrobial susceptibility for azithromycin and ceftriaxone in Neisseria gonorrhoeae isolates in Amsterdam, the Netherlands, between 2012 and 2015. Euro Surveill 22:30431

    Article  PubMed  PubMed Central  Google Scholar 

  39. Endimiani A, Guilarte YN, Tinguely R, Hirzberger L, Selvini S, Lupo A, Hauser C, Furrer H (2014) Characterization of Neisseria gonorrhoeae isolates detected in Switzerland (1998–2019): emergence of multidrug-resistant clones less susceptible to cephalosporins. BMC Infect Dis 14:106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Brunner A, Nemes-Nikodem E, Mihalik N, Marschalko M, Karpati S, Ostorhazi E (2014) Incidence and antimicrobial susceptibility of Neisseria gonorrhoeae isolates from patients attending the national Neisseria gonorrhoeae reference laboratory of Hungary. BMC Infect Dis 14:433

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gose S, Nguyen D, Lowenberg D, Samuel M, Bauer H, Pandori M (2013) Neisseria gonorrhoeae and extended-spectrum cephalosporins in California: surveillance and molecular detection of mosaic penA. BMC Infect Dis 13:570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Lee H, Unemo M, Kim HJ, Seo Y, Lee K, Chong Y (2015) Emergence of decreased susceptibility and resistance to extended-spectrum cephalosporins in Neisseria gonorrhoeae in Korea. J Antimicrob Chemother 70:2536–2542

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Nguyen D, Gose S, Castro L, Chung K, Bernstein K, Samuel M, Bauer H, Pandori M (2014) Neisseria gonorrhoeae strain with reduced susceptibilities to extended-spectrum cephalosporins. Emerg Infect Dis 20:1211–1213

    PubMed  PubMed Central  Google Scholar 

  44. de Curraize C, Kumanski S, Micaëlo M, Fournet N, La Ruche G, Meunier F, Amarsy R, Jacquier H, Cambau E, Goubard A, Bercot B (2016) Ceftriaxone-resistant Neisseria gonorrhoeae isolates (2010-2014) in France characterized using whole genome sequencing. Antimicrob Agents Chemother 60:6962–6964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Shimuta K, Watanabe Y, Nakayama S, Morita-Ishihara T, Dorin M, Kawahata T, Ohnishi M (2013) Emergence and evolution of internationally disseminated cephalosporin-resistant Neisseria gonorrhoeae clones from 1995-2005 in Japan. BMC Infect Dis 15:378

    Article  CAS  Google Scholar 

  46. Allen VG, Mitterni L, Seah C, Rebbapragada A, Martin L, Lee C, Siebert H, Towns L, Melano RG, Lowe DE (2013) Neisseria gonorrhoeae treatment failure and susceptibility to cefixime in Toronto, Canada. JAMA 309:163–170

    Article  PubMed  CAS  Google Scholar 

  47. Golparian D, Ohlsson A, Janson H, Lidbrink P, Ekelund O, Fredlund H, Unemo M (2014) Four treatment failures of pharyngeal gonorrhoea with ceftriaxone (500 mg) of cefotaxime (500 mg), Sweden, 2013 and 2014. Euro Surveill 19:20862

    Article  PubMed  Google Scholar 

  48. Lewis D, Sriruttan C, Müller EE, Golparian D, Gumede L, Dick D, de Wer J, Maseko V, Coetzee J, Unemo M (2013) Phenotypic and genetic characterisation of the first two cases of extended-spectrum-cephalosporin-resistant Neisseria gonorrhoeae infection in South Africa and association with cefixime treatment failure. J Antimicrob Chemother 68:1267–1270

    Article  PubMed  CAS  Google Scholar 

  49. Unemo M, Golparian D, Hestner A (2011) Ceftriaxone treatment failure of pharyngeal gonorrhoea verified by international recommendations, Sweden, July 2010. Euro Surveill 16:19792

    PubMed  Google Scholar 

  50. Unemo M, Golparian D, Potočnik M, Jeverica S (2012) Treatment failure of pharyngeal gonorrhoea with internationally recommended first-line ceftriaxone verified in Slovenia, September 2011. Euro Surveill 21:20200

    Google Scholar 

  51. van Dam AP, van Ogtrop ML, Golparian D, Mehrtens J, de Vries HJC, Unemo M (2014) Verified clinical failure with cefotaxime 1g for treatment of gonorrhoea in the Netherlands: a case report. Sex Transm Infect 90:513–514

    Article  PubMed  Google Scholar 

  52. Fifer H, Natarajan U, Jones L, Alexander S, Hughes G, Golparian D, Unemo M (2016) Failure of dual antimicrobial therapy in the treatment of gonorrhoea. N Engl J Med 374:2504–2506

    Article  PubMed  Google Scholar 

  53. Chen SC, Yin YP, Dai XQ, Unemo M, Chen XS (2014) Antimicrobial resistance, genetic resistance determinants for ceftriaxone and molecular epidemiology of Neisseria gonorrhoeae isolates in Nanjing, China. J Antimicrob Chemother 69:2959–2965

    Article  PubMed  CAS  Google Scholar 

  54. Li S, Su XH, Le WJ, Jiang FX, Wang BX, Rice PA (2014) Antimicrobial susceptibility of Neisseria gonorrhoeae isolates from symptomatic men attending the Nanjing sexually transmitted diseases clinic (2011–2012): genetic characteristics of isolates with reduced sensitivity to ceftriaxone. BMC Infect Dis 14:622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Golparian G, Hellmark B, Fredlund H, Unemo M (2010) Emergence and spread of Neisseria gonorrhoeae isolates with in vitro decreased susceptibility and resistance to extended-spectrum cephalosporins in Sweden. Sex Transm Infect 86:454–460

    Article  PubMed  Google Scholar 

  56. Demczuk W, Martina I, Peterson S, Bharat A, Van Domselaar G, Graham M, Lefebvre B, Allen V, Hoang L, Tyrrell G, Horsman G, Wylie J, Haldane D, Archibald C, Wong T, Unemo M, Mulvey MR (2016) Genomic epidemiology and molecular resistance mechanisms of azithromycin resistant Neisseria gonorrhoeae in Canada from 1997 to 2014. J Clin Microbiol 54:1304–1313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Jacobsson S, Golparian D, Cole M, Spiteri G, Martin I, Bergheim T, Borrego MJ, Crowley B, Crucitti T, Van Dam AP, Hoffman S, Jeverica S, Kohl P, Młynarczyk-Bonikowska B, Pakarna G, Start A, Stefanelli P, Pavlik P, Tzelpi E, Abad R, Harris SR, Unemo M (2016) WGS analysis and molecular resistance mechanisms of azithromycin-resistant (MIC >2 mg/L) Neisseria gonorrhoeae isolates in Europe from 2009 to 2014. J Antimicrob Chemother 71:3109–1336

    Article  PubMed  CAS  Google Scholar 

  58. Feifer H, Cole M, Hughes G, Padfield S, Smolarchuk C, Woodford N, Wensley A, Mustafa N, Schaefer U, Myers R, Templeton K, Sheperd J, Underwood A (2018) Sustained transmission of high-level azithromycin-resistant Neisseria gonorrhoeae in England: an observational study. Lancet Infect Dis 18:573–581

    Article  Google Scholar 

  59. Gose SO, Soge OO, Beebe JL, Nguyen D, Stoltey JE, Bauer HM (2015) Failure of azithromycin 2.0 g in the treatment of gonococcal urethritis caused by high-level resistance in California. Sex Transm Dis 42:279–280

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lahra MM, Ward A, Trembizki E, Hermanson J, Clement E, Lawrence A, Whilet D (2017) Treatment guidelines after an outbreak of azithromycin-resistant Neisseria gonorrhoeae in South Australia. Lancet Infect Dis 17:133–134

    Article  PubMed  Google Scholar 

  61. Shigemura K, Osawa K, Miura M, Tanaka K, Arakawa S, Shirakawa T, Fujisawa M (2015) Azithromycin resistance and its mechanism in Neisseria gonorrhoeae strains in Hyogo, Japan. Antimicrob Agents Chemother 59:2695–2699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Wind CM, de Vries E, Schim van der Loeff MF, van Rooijen MS, van Dam AP, Demczuk WH, Martin I, de Vried HJ (2017) Decreased azithromycin susceptibility of Neisseria gonorrhoeae isolates in patients recently treated with azithromycin. Clin Infect Dis 65:37–45

    Article  PubMed  Google Scholar 

  63. Grad YH, Harris SR, Kirkcaldy RD, Green AG, Marks DS, Bentley SD, Trees D, Lipsitch M (2016) Genomic epidemiology of gonococcal resistance to extended-spectrum cephalosporins, macrolides, and fluoroquinolones in the US, 2000-2013. J Infect Dis 15:1579–1587

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to all of the medical laboratory scientists in St. James’s Hospital, as well as to Elaine Phelan (University Hospital Waterford) and Belinda Hanahoe (University Hospital Galway) for help in retrieval of isolates.

Funding

This study was supported by internal funding from the Department of Microbiology. St James’s Hospital, Dublin. M.M.A. was the recipient of an Irish Research Council fellowship (EPSPD/2015/32).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Ryan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Ethics approval was granted by the Tallaght University Hospital/St. James’s Hospital Joint Research Ethics Committee.

Informed consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryan, L., Golparian, D., Fennelly, N. et al. Antimicrobial resistance and molecular epidemiology using whole-genome sequencing of Neisseria gonorrhoeae in Ireland, 2014–2016: focus on extended-spectrum cephalosporins and azithromycin. Eur J Clin Microbiol Infect Dis 37, 1661–1672 (2018). https://doi.org/10.1007/s10096-018-3296-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-018-3296-5

Keywords

Navigation