Skip to main content

Advertisement

Log in

Gene Expression Patterns During the Larval Development of European Sea Bass (Dicentrarchus Labrax) by Microarray Analysis

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

During the larval period, marine teleosts undergo very fast growth and dramatic changes in morphology, metabolism, and behavior to accomplish their metamorphosis into juvenile fish. Regulation of gene expression is widely thought to be a key mechanism underlying the management of the biological processes required for harmonious development over this phase of life. To provide an overall analysis of gene expression in the whole body during sea bass larval development, we monitored the expression of 6,626 distinct genes at 10 different points in time between 7 and 43 days post-hatching (dph) by using heterologous hybridization of a rainbow trout cDNA microarray. The differentially expressed genes (n = 485) could be grouped into two categories: genes that were generally up-expressed early, between 7 and 23 dph, and genes up-expressed between 25 and 43 dph. Interestingly, among the genes regulated during the larval period, those related to organogenesis, energy pathways, biosynthesis, and digestion were over-represented compared with total set of analyzed genes. We discuss the quantitative regulation of whole-body contents of these specific transcripts with regard to the ontogenesis and maturation of essential functions that take place over larval development. Our study is the first utilization of a transcriptomic approach in sea bass and reveals dynamic changes in gene expression patterns in relation to marine finfish larval development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baldessari D, Shin Y, Krebs O, Konig R, Koide T, Vinayagam A, Fenger U, Mochii M, Terasaka C, Kitayama A, Peiffer D, Ueno N, Eils R, Cho KW, Niehrs C (2005) Global gene expression profiling and cluster analysis in Xenopus laevis. Mech Dev 122:441–475

    Article  PubMed  CAS  Google Scholar 

  • Baron D, Houlgatte R, Fostier A, Guiguen Y (2005) Large-scale temporal gene expression profiling during gonadal differentiation and early gametogenesis in rainbow trout. Biol Reprod 73:959–966

    Article  PubMed  CAS  Google Scholar 

  • Bobe J, Montfort J, Nguyen T, Fostier A (2006) Identification of new participants in the rainbow trout (Oncorhynchus mykiss) oocyte maturation and ovulation processes using cDNA microarrays. Reprod Biol Endocrinol 4:39–55

    Article  PubMed  CAS  Google Scholar 

  • Bonnet E, Fostier A, Bobe J (2007) Microarray-based analysis of fish egg quality after natural or controlled ovulation. BMC Genomics 8:55–72

    Article  PubMed  CAS  Google Scholar 

  • Buckley BA (2007) Comparative environmental genomics in non-model species: using heterologous hybridization to DNA-based microarrays. J Exp Biol 210:1602–1606

    Article  PubMed  CAS  Google Scholar 

  • Cahu CL, Zambonino Infante JL (1994) Early weaning of sea bass (Dicentrarchus labrax) larvae with a compound diet: effect on digestive enzymes. Comp Biochem Physiol 109A:213–222

    Article  CAS  Google Scholar 

  • Cathelin R, Lopez F, Klopp C (2007) AGScan: a pluggable microarray image quantification software based on the ImageJ library. Bioinformatics 23:247–248

    Article  PubMed  CAS  Google Scholar 

  • Cohen R, Chalifa-Caspi V, Williams TD, Auslander M, George SG, Chipman JK, Tom M (2007) Estimating the efficiency of fish cross-species cDNA microarray hybridisation. Mar Biotechnol 9:491–499

    Article  PubMed  CAS  Google Scholar 

  • Conceiçao LEC, Verreth JAJ, Verstegen MWA, Huisman EA (1998) A preliminary model for dynamic simulation of growth in fish larvae: application to the African catfish (Clarias gariepinus) and turbot (Scophthalmus maximus). Aquaculture 163:215–235

    Article  Google Scholar 

  • Darias MJ, Murray HM, Martinez-Rodriguez G, Cardenas S, Yufera M (2005) Gene expression of pepsinogen during the larval development of red porgy (Pagrus pagrus). Aquaculture 248:245–252

    Article  CAS  Google Scholar 

  • Darias MJ, Murray HM, Gallant JW, Astola A, Douglas SE, Yufera M, Martinez-Rodriguez G (2006) Characterization of a partial alpha-amylase clone from red porgy (Pagrus pagrus): expression during larval development. Comp Biochem Physiol B Biochem Mol Biol 143:209–218

    Article  PubMed  CAS  Google Scholar 

  • Darias MJ, Murray HM, Gallant JW, Douglas SE, Yufera M, Martinez-Rodriguez G (2007a) The spatiotemporal expression pattern of trypsinogen and bile salt-activated lipase during the larval development of red porgy (Pagrus pagrus, Pisces, Sparidae). Mar Biol 152:109–118

    Article  CAS  Google Scholar 

  • Darias MJ, Murray HM, Gallant JW, Douglas SE, Yufera M, Martinez-Rodriguez G (2007b) Ontogeny of pepsinogen and gastric proton pump expression in red porgy (Pagrus pagrus): determination of stomach functionality. Aquaculture 270:369–378

    Article  CAS  Google Scholar 

  • Deane EE, Woo NY (2003) Ontogeny of thyroid hormones, cortisol, hsp70 and hsp90 during silver sea bream larval development. Life Sci 72:805–818

    Article  PubMed  CAS  Google Scholar 

  • de Jesus EG, Hirano T (1992) Changes in whole body concentrations of cortisol, thyroid hormones, and sex steroids during early development of the chum salmon, Oncorhynchus keta. Gen Comp Endocrinol 85:55–61

    Article  PubMed  Google Scholar 

  • Erwin WM, Ashman K, O'Donnel P, Inman RD (2006) Nucleus pulposus notochord cells secrete connective tissue growth factor and up-regulate proteoglycan expression by intervertebral disc chondrocytes. Arthritis Rheum 54:3859–3867

    Article  PubMed  CAS  Google Scholar 

  • Falk-Petersen IB (2005) Comparative organ differentiation during early life stages of marine fish. Fish Shellfish Immunol 19:397–412

    Article  PubMed  CAS  Google Scholar 

  • Galloway TF, Kjorsvik E, Kryvi H (1999) Muscle growth and development in Atlantic cod larvae (Gadus morhua L.), related to different somatic growth rates. J Exp Biol 202:2111–2120

    PubMed  CAS  Google Scholar 

  • Gibb AC, Swanson BO, Wesp H, Landels C, Liu C (2006) Development of the escape response in teleost fishes: do ontogenetic changes enable improved performance? Physiol Biochem Zool 79:7–19

    Article  PubMed  Google Scholar 

  • Govoni JJ, Boehlert GW, Watanabe Y (1986) The physiology of digestion in fish larvae. Env Biol Fish 16:59–77

    Article  Google Scholar 

  • Govoroun M, Le Gac F, Guiguen Y (2006) Generation of a large scale repertoire of Expressed Sequence Tags (ESTs) from normalised rainbow trout cDNA libraries. BMC Genomics 7:196–203

    Article  PubMed  Google Scholar 

  • Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H, Toyama Y, Bonewald LF, Kudo A (1999) Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res 14:1239–1249

    Article  PubMed  CAS  Google Scholar 

  • Hosack DA, Dennis G Jr, Sherman BT, Lane HC, Lempicki RA (2003) Identifying biological themes within lists of genes with EASE. Genome Biol 4:R70

    Article  PubMed  Google Scholar 

  • Jamers A, Van der Ven K, Moens L, Robbens J, Potters G, Guisez Y, Blust R, De Coen W (2006) Effect of copper exposure on gene expression profiles in Chlamydomonas reinhardtii based on microarray analysis. Aquat Toxicol 80:249–260

    Article  PubMed  CAS  Google Scholar 

  • Jenny MJ, Chapman RW, Mancia A, Chen YA, McKillen DJ, Trent H, Lang P, Escoubas JM, Bachere E, Boulo V, Liu ZJ, Gross PS, Cunningham C, Cupit PM, Tanguy A, Guo X, Moraga D, Boutet I, Huvet A, De Guise S, Almeida JS, Warr GW (2007) A cDNA microarray for Crassostrea virginica and C. gigas. Mar Biotechnol 9:577–591

    Article  PubMed  CAS  Google Scholar 

  • Kassahn KS, Caley MJ, Ward AC, Connolly AR, Stone G, Crozier RH (2007) Heterologous microarray experiments used to identify the early gene response to heat stress in a coral reef fish. Mol Ecol 16:1749–1763

    Article  PubMed  CAS  Google Scholar 

  • Mascarello F, Rowlerson A, Radaelli G, Scapolo PA, Veggetti A (1995) Differentiation and growth of muscle in the fish Sparus aurata (L): I. Myosin expression and organization of fibre types in lateral muscle from hatching to adult. J Muscle Res Cell Motil 16:213–222

    Article  PubMed  CAS  Google Scholar 

  • Mazurais D, Montfort J, Delalande C, Gac FL (2005) Transcriptional analysis of testis maturation using trout cDNA macroarrays. Gen Comp Endocrinol 142:143–154

    Article  PubMed  CAS  Google Scholar 

  • Meyer RA, Sweeney HL, Kushmerick MJ (1984) A simple analysis of the “phosphocreatine shuttle”. Am J Physiol 246:365–377

    Google Scholar 

  • Mori T, Hiraka I, Kurata Y, Kawachi H, Mano N, Devlin RH, Nagoya H, Araki K (2007) Changes in hepatic gene expression related to innate immunity, growth and iron metabolism in GH-transgenic amago salmon (Oncorhynchus masou) by cDNA subtraction and microarray analysis, and serum lysozyme activity. Gen Comp Endocrinol 151:42–54

    Article  PubMed  CAS  Google Scholar 

  • Moriya S, Urawa S, Suzuki O, Urano A, Abe S (2004) DNA microarray for rapid detection of mitochondrial DNA haplotypes of chum salmon. Mar Biotechnol 6:430–434

    Article  PubMed  CAS  Google Scholar 

  • Moriya S, Sato S, Azumaya T, Suzuki O, Urawa S, Urano A, Abe S (2007) Genetic stock identification of chum salmon in the Bering Sea and North Pacific Ocean using mitochondrial DNA microarray. Mar Biotechnol 9:179–191

    CAS  Google Scholar 

  • Murray HM, Perez-Casanova JC, Gallant JW, Johnson SC, Douglas SE (2004) Trypsinogen expression during the development of the exocrine pancreas in winter flounder (Pleuronectes americanus). Comp Biochem Physiol A Mol Integr Physiol 138:53–59

    Article  PubMed  CAS  Google Scholar 

  • Nguyen C, Rocha D, Granjeaud S, Baldit M, Bernard K, Naquet P, Jordan BR (1995) Differential gene expression in the murine thymus assayed by quantitative hybridization of arrayed cDNA clones. Genomics 29:207–216

    Article  PubMed  CAS  Google Scholar 

  • Parra G, Yufera M (2001) Comparative energetics during early development of two marine fish species, Solea senegalensis (Kaup) and Sparus aurata (L.). J Exp Biol 204:2175–2183

    PubMed  CAS  Google Scholar 

  • Person-LeRuyet J, Fischer C, Mugnier C (1991) Potentiel de croissance du bar (Dicentrarchus labrax) pendant la phase ecloserie: relation tailles/poids. CIEM F 38:16–31

    Google Scholar 

  • Renn SC, Aubin-Horth N, Hofmann HA (2004) Biologically meaningful expression profiling across species using heterologous hybridization to a cDNA microarray. BMC Genomics 5:42–55

    Article  PubMed  CAS  Google Scholar 

  • Riva A, Carpentier AS, Torrésani B, Hénaut A (2005) Comments on selected fundamental aspects of microarray analysis. Comput Biol Chem 29:319–336

    Article  PubMed  CAS  Google Scholar 

  • Ronnestad I, Thorsen A, Finn RN (1999) Fish larval nutrition: a review of recent advances in the roles of amino acids. Aquaculture 177:201–216

    Article  CAS  Google Scholar 

  • Sapede D, Gompel N, Dambly-Chaudiere C, Ghysen A (2002) Cell migration in the postembryonic development of the fish lateral line. Development 129:605–615

    PubMed  CAS  Google Scholar 

  • Sarropoulou E, Kotoulas G, Power DM, Geisler R (2005) Gene expression profiling of gilthead sea bream during early development and detection of stress-related genes by the application of cDNA microarray technology. Physiol Genomics 23:182–191

    Article  PubMed  CAS  Google Scholar 

  • Segner H, Storch V, Reinecke M, Kloas W, Hanke W (1994) The development of functional digestive and metabolic organs in turbot, Scophthalmus maximus. Mar Biol 119:471–486

    Article  Google Scholar 

  • Srivastava AS, Kurokawa T, Suzuki T (2002) mRNA expression of pancreatic enzyme precursors and estimation of protein digestibility in first feeding larvae of the Japanese flounder, Paralichthys olivaceus. Comp Biochem Physiol A Mol Integr Physiol 132:629–635

    Article  PubMed  Google Scholar 

  • Szisch V, Papandroulakis N, Fanouraki E, Pavlidis M (2005) Ontogeny of the thyroid hormones and cortisol in the gilthead sea bream, Sparus aurata. Gen Comp Endocrinol 142:186–192

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Kawai S, Seikai T, Burke JS (1996) Development of the digestive organ system in Japanese flounder in relation to metamorphosis and settlement. Mar Fresh Behav Physiol 28:19–31

    Article  Google Scholar 

  • Tanaka TS, Jaradat SA, Lim MK, Kargul GJ, Wang X, Grahovac MJ, Pantano S, Sano Y, Piao Y, Nagaraja R, Doi H, Wood WH 3rd, Becker KG, Ko MS (2000) Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray. Proc Natl Acad Sci U S A 97:9127–9132

    Article  PubMed  Google Scholar 

  • Ton C, Stamatiou D, Dzau VJ, Liew CC (2002) Construction of a zebrafish cDNA microarray: gene expression profiling of the zebrafish during development. Biochem Biophys Res Commun 296:1134–1142

    Article  PubMed  CAS  Google Scholar 

  • Villeneuve LA, Gisbert E, Moriceau J, Cahu CL, Zambonino-Infante JL (2006) Intake of high levels of vitamin A and polyunsaturated fatty acids during different developmental periods modifies the expression of morphogenesis genes in European sea bass (Dicentrarchus labrax). Br J Nutr 95:677–687

    Article  PubMed  CAS  Google Scholar 

  • Von Schalburg KR, Rise ML, Cooper GA, Brown GD, Gibbs AR, Nelson CC, Davidson WS, Koop BF (2005) Fish and chips: various methodologies demonstrate utility of a 16,006-gene salmonid microarray. BMC Genomics 6:126–133

    Article  CAS  Google Scholar 

  • Wang B, Li F, Dong B, Zhang X, Zhang C, Xiang J (2006) Discovery of the genes in response to white spot syndrome virus (WSSV) infection in Fenneropenaeus chinensis through cDNA microarray. Mar Biotechnol 8:491–500

    Article  PubMed  CAS  Google Scholar 

  • Weiner S, Traub W (1986) Organization of hydroxyapatite crystals within collagen fibrils. FEBS Lett 206:262–266

    Article  PubMed  CAS  Google Scholar 

  • White KP, Rifkin SA, Hurban P, Hogness DS (1999) Microarray analysis of Drosophila development during metamorphosis. Science 286:2179–2184

    Article  PubMed  CAS  Google Scholar 

  • Wieser W (1995) Energetics of fish larvae, the smallest vertebrates. Acta Physiol Scand 154:279–290

    PubMed  CAS  Google Scholar 

  • Wullimann MF, Puelles L, Wicht H (1999) Early postembryonic neural development in the zebrafish: a 3-D reconstruction of forebrain proliferation zones shows their relation to prosomeres. Eur J Morphol 37:117–121

    Article  PubMed  CAS  Google Scholar 

  • Zambonino Infante JL, Cahu CL (2001) Ontogeny of the gastrointestinal tract of marine fish larvae. Comp Biochem Physiol C Toxicol Pharmacol 130:477–487

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank INRA-GADIE resource center for providing microarrays (Jouy en Josas, France) and Genofish program for financial and scientific support. We also thank A. Le Cam and J. Montfort from INRA-SCRIBE genomic platform (Rennes, France) for excellent technical assistance, SIGENAE team (INRA Toulouse, France) for bioinformatic tools development, P. Quazuguel, and Gabriela Hortopan for larval rearing and real-time PCR analysis, respectively, and Helen McCombie for correcting the English. M. J. Darias was supported by a postdoctoral fellowship from the Fundación Ramón Areces (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Mazurais.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darias, M.J., Zambonino-Infante, J.L., Hugot, K. et al. Gene Expression Patterns During the Larval Development of European Sea Bass (Dicentrarchus Labrax) by Microarray Analysis. Mar Biotechnol 10, 416–428 (2008). https://doi.org/10.1007/s10126-007-9078-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-007-9078-1

Keywords

Navigation