Skip to main content

Advertisement

Log in

The Importance of Chitin in the Marine Environment

  • Review
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Chitin is the most abundant renewable polymer in the oceans and is an important source of carbon and nitrogen for marine organisms. The process of chitin degradation is a key step in the cycling of nutrients in the oceans and chitinolytic bacteria play a significant role in this process. These bacteria are autochthonous to both marine and freshwater ecosystems and produce chitinases that degrade chitin, an insoluble polysaccharide, to a biologically useful form. In this brief review, a description of the structure of chitin and diversity of chitinolytic bacteria in the oceans is provided, in the context of the significance of chitin degradation for marine life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150:2029–2035

    Article  PubMed  CAS  Google Scholar 

  • Alldredge AL, Gotschalk CC (1990) The relative contribution of marine snow of different origins to biological processes in coastal waters. Cont Shelf Res 10:41–58

    Article  Google Scholar 

  • Anderson CG, DePablo N, Romo CR (1978) Antactic krill (Euphausia superba Dana) as a source of chitin and chitosan. In: Muzzarelli RAA, Pariser ER (eds) Proceedings of the first international conference chitin/chitosan. M.I.T., Cambridge, pp 5–10

    Google Scholar 

  • Arakane Y, Muthukrishnan S (2010) Insect chitinase and chitinase-like proteins. Cell Mol Life Sci 67:201–216

    Article  PubMed  CAS  Google Scholar 

  • Aumen NG (1981) Microbial succession on a chitinous substrate in a woodland stream. Microb Ecol 6:317–328

    Article  Google Scholar 

  • Aunpad R, Panbangred W (2003) Cloning and characterization of the constitutively expressed chitinase C gene from a marine bacterium, Salinivibrio costicola strain 5SM-1. J Biosci Bioeng 96:529–536

    Article  PubMed  CAS  Google Scholar 

  • Bassler BL, Yu C, Lee CYC, Roseman S (1991) Chitin utilization by marine bacteria. Degradation and catabolism chitin oligosaccharides by Vibrio furnissii. J Biol Chem 266:24276–24286

    PubMed  CAS  Google Scholar 

  • Benton AG (1935) Chitinovorous bacteria: a preliminary survey. J Bacteriol 29:449–465

    PubMed  CAS  Google Scholar 

  • Bernard N (1911) Sur la fonction fungicide des bulbes d’Ophrydeae. Ann Sci Nat Bot Biol 14:221–234

    Google Scholar 

  • Bhattacharya D, Nagpure A, Gupta RK (2007) Bacterial chitinases: properties and potential. Crit Rev Biotechnol 27:21–28

    Article  PubMed  CAS  Google Scholar 

  • Blackwell J, Parker KD, Rudall KM (1965) Chitin in pogonophore tubes. J Mar Biol Assoc UK 45:659–661

    Article  Google Scholar 

  • Blackwell J, Parker KD, Rudall KM (1967) Chitin fibers of the diatoms Thalassiosira fluviatilis and Cyclotella cryptica. J Mol Biol 28:383–385

    Article  PubMed  CAS  Google Scholar 

  • Boot RG, Blommaart EFC, Swart E, van der Vlugt KG, Bijl N, Moe C, Place A, Aerts JMFG (2001) Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J Biol Chem 276:6770–6778

    Article  PubMed  CAS  Google Scholar 

  • Boyer JN (1994) Aerobic and anaerobic degradation and mineralization of 14C-Chitin by water column and sediment inocula of the York River Estuary, Virginia. Appl Environ Microb 60:174–179

    CAS  Google Scholar 

  • Braconnot H (1811) Recherches analytique sur la nature des champignons. Ann Chim 79:265–304

    Google Scholar 

  • Brunner E, Ehrlich H, Schupp P, Hedrich R, Hunoldt S, Kammer M, Machill S, Paasch S, Bazhenov VV, Kurek DV, Arnold T, Brockmann S, Ruhnowg M, Born R (2009) Chitin-based scaffolds are an integral part of the skeleton of the marine demosponge Ianthella basta. J Struct Biol 168:539–547

    Article  PubMed  CAS  Google Scholar 

  • Brzezinska MS, Lalke-Porczyk E, Donderski W, Walczak M (2008) Occurrence and activity of microorganisms in shrimp waste. Curr Microbiol 57:580–587

    Article  PubMed  CAS  Google Scholar 

  • Campbell LL, Williams OB (1951) A study of chitin-decomposing micro-organisms of marine origin. J Gen Microbiol 5:894–905

    PubMed  CAS  Google Scholar 

  • Carlstrom D (1957) The crystal structure of alpha-chitin (poly-N-acetyl-d-glucosamine). J Biophys Biochem Cytol 3:669–683

    Article  PubMed  CAS  Google Scholar 

  • Chang S, Chen W, Wang J, Wu M (2007) Chitinilyticum aquatile gen. nov., sp. nov., a chitinolytic bacterium isolated from a freshwater pond used for Pacific white shrimp culture. Int J Syst Evol Microbiol 57:2854–2860

    Article  PubMed  CAS  Google Scholar 

  • Clarke A (1980) The biochemical composition of krill, Euphausia superba Dana, from South Georgia. J Exp Mar Biol Ecol 43:221–236

    Article  CAS  Google Scholar 

  • Cohen-Kupiec R, Chet I (1998) The molecular biology of chitin digestion. Curr Opin Biotech 9:270–277

    Article  PubMed  CAS  Google Scholar 

  • Colwell RR (1970) Polyphasic taxonomy of the genus Vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species. J Bacteriol 104:410–433

    PubMed  CAS  Google Scholar 

  • Colwell RR (1997) Microbial diversity: the importance of exploration and conservation. J Ind Microbiol Biotechnol 18:302–307

    Article  PubMed  CAS  Google Scholar 

  • Cottrell MT, Wood DN, Yu L, Kirchman DL (2000) Selected chitinase genes in cultured and uncultured marine bacteria in the α- and β- subclasses of the Proteobacteria. Appl Environ Microb 66:1195–1201

    Article  CAS  Google Scholar 

  • Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859

    Article  PubMed  CAS  Google Scholar 

  • Donderski W (1984) Chitinolytic bacteria in water and bottom sediments of two lakes of different trophy. Acta Microbiol Pol 33:163–170

    PubMed  CAS  Google Scholar 

  • Duo-Chuan L (2006) Review of fungal chitinases. Mycopathologia 161:345–360

    Article  PubMed  CAS  Google Scholar 

  • Fenice M, Gallo AM, Juarez-Jimenez B, Gonzalez-Lopez J (2007) Screening for extracellular enzyme activities by bacteria isolated from samples collected in the Tyrrhenian Sea. Ann Microbiol 57:93–99

    Article  CAS  Google Scholar 

  • Finlay BJ, Maberly SC, Ian J (1997) Microbial diversity and ecosystem function. CooperSource, Oikos, pp 209–213

    Google Scholar 

  • Fukasawa S, Arai M, Wada T, Shima H, Kurata M (1992) Some properties of a chitinase from a marine luminous bacterium, Vibrio fischeri strain COT-A136. Chem Pharmaceut Bull 40:1631–1633

    CAS  Google Scholar 

  • Gaill F, Persson J, Sugiyama P, Vuong R, Chanzy H (1992) The chitin system in the tubes of deep sea hydrothermal vent worms. J Struct Biol 109:116–128

    Article  CAS  Google Scholar 

  • Gaill F, Shillito B, Ménard F, Goffinet G, Childress JJ (1997) Rate and process of tube production by the deep-sea hydrothermal vent tubeworm Riftia pachyptila. Mar Ecol Prog Ser 148:135–143

    Article  Google Scholar 

  • Gardner KH, Blackwell J (1975) Refinement of the structure of beta-chitin. Biopolymers 14:1581–1595

    Article  PubMed  CAS  Google Scholar 

  • Goffinet G (1996) Production and biodegradation of chitin in marine environments. In: Giraud-Guille MM (ed) Chitin in life sciences. European Chitin Society, Lyon, pp 53–65

    Google Scholar 

  • Gooday GW (1990) The ecology of chitin degradation. In: Marshall KC (ed) Advances in microbial ecology, vol 11. Plenum, New York, pp 387–430

    Google Scholar 

  • Gooday GW (1995) Diversity of roles of chitinases in nature. In: Abdullah MP, Zakaria MB, Wan Muda WM (eds) Chitin and chitosan. Penerbit Universiti Kebangsaan, Malaysia, pp 191–202

    Google Scholar 

  • Gooday GW, Prosser JI, Hillman K, Cross MG (1991) Mineralization of chitin in estuarine sediment: the importance of the chitosan pathway. Biochem Syst Ecol 19:395–400

    Article  CAS  Google Scholar 

  • Graham LS, Sticklen MB (1994) Plant chitinases. Can J Bot 72:1057–1083

    Article  CAS  Google Scholar 

  • Hackman RH, Goldberg M (1965) Studies on chitin. VI. Nature of alpha- and beta-chitins. Aust J Biol Sci 18:935–941

    PubMed  CAS  Google Scholar 

  • Han Y, Yang B, Zhang F, Miao X, Li Z (2009) Characterization of antifungal chitinase from marine Streptomyces sp. DA11 associated with South China sea sponge Craniella australiensis. Mar Biotechnol 11:132–140

    Article  PubMed  CAS  Google Scholar 

  • Harman GE, Hayes CK, Lorito M, Broadway RM, Di Pietro A, Peterbauer C, Tronsmo A (1993) Chitinolytic enzymes of Trichoderma harzianum: purification of chitobiosidase and endochitinase. Phytopathol 83:313–318

    Article  CAS  Google Scholar 

  • Henrissat BA (1991) Classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    PubMed  CAS  Google Scholar 

  • Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293:781–788

    PubMed  CAS  Google Scholar 

  • Herth W, Mulish M, Zugenmaier P (1986) Comparison of chitin fibril structure and assembly in three unicellular organisms. In: Muzzarelli R, Jeuniaux C, Gooday G (eds) Chitin in nature and technology. Plenum, New York, pp 107–120

    Google Scholar 

  • Herwig RP, Staley JT (1986) Anaerobic bacteria from the digestive tract of North Atlantic fin whales (Balaenoptera physalus). FEMS Microbiol Lett 38:361–371

    Article  CAS  Google Scholar 

  • Herwig RP, Pellerin NB, Irgens RL, Maki JS, Staley JT (1988) Chitinolytic bacteria and chitin mineralization in the marine water and sediments along the Antarctic Peninsula. FEMS Microbiol Ecol 53:101–112

    Article  CAS  Google Scholar 

  • Hillman K, Gooday GW, Prosser JI (1989) The mineralization of chitin in the sediments of the Ythan Estuary, Aberdeenshire, Scotland. Estuar Coast Shelf Sci 29:601–612

    Article  CAS  Google Scholar 

  • Hirono I, Yamashita M, Aoki T (1998) Molecular cloning of chitinase genes from Vibrio anguillarum and V. parahaemolyticus. J Appl Microbiol 84:1175–1178

    Article  PubMed  CAS  Google Scholar 

  • Hjort K, Bergström M, Adesina MF, Jansson JK, Smalla K, Sjöling S (2010) Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen-suppressive soil. FEMS Microbiol Ecol 71:197–207

    Article  PubMed  CAS  Google Scholar 

  • Hobel CF, Marteinsson VT, Hreggvidsson GO, Kristjánsson JK (2005) Investigation of the microbial ecology of intertidal hot springs by using diversity analysis of 16S rRNA and chitinase genes. Appl Environ Microb 71:2771–2776

    Article  CAS  Google Scholar 

  • Hollak CEM, van Weely S, van Oers MHJ, Aerts JMFG (1994) Marked elevation of plasma chitotriosidase activity: a novel Hallmark of Gaucher disease. J Clin Invest 93:1288–1292

    Article  PubMed  CAS  Google Scholar 

  • Howard MB, Ekborg NA, Taylor LE, Weiner RM, Hutcheson SW (2003) Genomic analysis and initial characterization of the chitinolytic system of Microbulbifer degradans strain 2-40. J Bacteriol 185:3352–3360

    Article  PubMed  CAS  Google Scholar 

  • Hunt DE, Gevers D, Vahora NM, Polz MF (2008) Conservation of the chitin utilization pathway in the Vibrionaceae. Appl Environ Microb 74:44–51

    Article  CAS  Google Scholar 

  • Hunter-Cevera J, Karl D, Buckley M (2005) Marine microbial diversity: the key to Earth’s habitability. American Academy of Microbiology, Washington, pp 1–21

    Google Scholar 

  • Itoi S, Kanomata Y, Koyama Y, Kadokura K, Uchida S, Nishio T, Oku T, Sugita H (2007) Identification of a novel endochitinase from a marine bacterium Vibrio proteolyticus strain No. 442. Biochim Biophys Acta 1774:1099–1107

    PubMed  CAS  Google Scholar 

  • Jang M, Kong B, Jeong Y, Lee CH, Nah J-W (2004) Physicochemical characterization of α-chitin, β-chitin, and γ-chitin separated from natural resources. J Polym Sci Pol Chem 42:3423–3432

    Article  CAS  Google Scholar 

  • Jerde CW, Lasker R (1966) Molting of euphausid shrimps: shipboard observations. Limnol Oceanogr 11:120–124

    Article  Google Scholar 

  • Jeuniaux C (1971) Chitinous structures. Compr Biochem 26:595–632

    Google Scholar 

  • Jeuniaux C, Voss-Foucart MF (1991) Chitin biomass and production in the marine environment. Biochem Syst Ecol 19:347–356

    Article  CAS  Google Scholar 

  • Johnstone J (1908) Conditions of life in the sea. University, Cambridge, United Kingdom, p 332

    Google Scholar 

  • Juarez-Jimenez B, Rodelas B, Martinez-Toledo MV, Gonzalez-Lopez J, Crognale S, Gallo AM, Pesciaroli C, Fenice M (2008) Production of chitinolytic enzymes by a strain (BM17) of Paenibacillus pabuli isolated from crab shells samples collected in the east sector of central Tyrrhenian Sea. Int J Biol Macromol 43:27–31

    Article  PubMed  CAS  Google Scholar 

  • Karrer P, Hofmann A (1929) Uber den enzymatischen Abbau von chitin und chitosan. Helv Chim Acta 12:616–637

    Article  CAS  Google Scholar 

  • Keyhani NO, Roseman S (1996) The chitin catabolic cascade in the marine bacterium Vibrio furnissii. Molecular cloning, isolation, and characterization of a periplasmic chitodextrinase. J Biol Chem 271:33414–33424

    Article  PubMed  CAS  Google Scholar 

  • Keyhani NO, Roseman S (1999) Physiological aspects of chitin catabolism in marine bacteria. Biochim Biophys Acta 1473:108–122

    PubMed  CAS  Google Scholar 

  • Keyhani NO, Wang LX, Lee YC, Roseman S (1996) The chitin catabolic cascade in the marine bacterium Vibrio furnissii. Characterization of an N, N′-diacetyl-chitobiose transport system. J Biol Chem 271:33409–33413

    Article  PubMed  CAS  Google Scholar 

  • Kirchman DL, White J (1999) Hydrolysis and mineralization of chitin in the Delaware Estuary. Aquat Microb Ecol 18:187–196

    Article  Google Scholar 

  • Kirchner M (1995) Microbial colonization of copepod body surfaces and chitin degradation in the sea. Helgoland Mar Res 49:2014–2212

    Google Scholar 

  • Krsek M, Wellington EMH (2001) Assessment of chitin decomposer diversity within an upland grassland. Antonie Leeuwenhoek 79:261–267

    Article  PubMed  CAS  Google Scholar 

  • LeCleir GR, Buchan A, Hollibaugh JT (2004) Chitinase gene sequences retrieved from diverse aquatic habitats reveal environment-specific distributions. Appl Environ Microb 70:6977–6983

    Article  CAS  Google Scholar 

  • LeCleir GR, Buchan A, Maurer J, Moran MA, Hollibaugh JT (2007) Comparison of chitinolytic enzymes from an alkaline, hypersaline lake and an estuary. Environ Microbiol 9:197–205

    Article  PubMed  CAS  Google Scholar 

  • Li X, Roseman S (2004) The chitinolytic cascade in Vibrios is regulated by chitin oligosaccharides and a two-component chitin catabolic sensor/kinase. Proc Natl Acad Sci USA 101:627–631

    Article  PubMed  CAS  Google Scholar 

  • Li X, Wang LX, Wang X, Roseman S (2007) The chitin catabolic cascade in the marine bacterium Vibrio cholerae: characterization of a unique chitin oligosaccharide deacetylase. Glycobiology 17:1377–1387

    Article  PubMed  CAS  Google Scholar 

  • Lindsay GJH, Gooday GW (1990) Chitinolytic enzymes and the bacterial microflora in the digestive tract of cod, Gadus morhua. J Fish Biol 26:255–265

    Article  Google Scholar 

  • Lotmar W, Picken LER (1950) A new crystallographic modification of chitin and its distribution. Experientia 6:58–59

    Article  Google Scholar 

  • Meibom KL, Li XB, Nielsen AT, Wu CY, Roseman S, Schoolnik GK (2004) The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci USA 101:2524–2529

    Article  PubMed  CAS  Google Scholar 

  • Merzendorfer H, Zimoch L (2003) Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 206:4393–4412

    Article  PubMed  CAS  Google Scholar 

  • Metcalfe AC, Krsek M, Gooday GW, Prosser JL, Wellington EMH (2002) Molecular analysis of a bacterial chitinolytic community in an upland pasture. Appl Environ Microb 68:5042–5050

    Article  CAS  Google Scholar 

  • Miyamoto K, Okunishi M, Nukui E, Tsuchiya T, Kobayashi T, Imada C, Tsujibo H (2007) The regulator CdsS/CdsR two-component system modulates expression of genes involved in chitin degradation of Pseudoalteromonas piscicida strain O-7. Arch Microbiol 188:619–628

    Article  PubMed  CAS  Google Scholar 

  • Montgomery MT, Welschmeyer NA, Kirchman DL (1990) A simple assay for chitin: application to sediment trap samples from the subarctic Pacific. Mar Ecol Prog Ser 64:301–308

    Article  CAS  Google Scholar 

  • Muzzarelli RAA (1977) Chitin. Pergamon, Oxford, United Kingdom, pp 1–309

    Google Scholar 

  • Nakamura T, Mine S, Hagihara Y, Ishikawa K, Uegaki K (2007) Structure of the catalytic domain of the hyperthermophilic chitinase from Pyrococcus furiosus. Acta Crystallogr F Struct Biol Cryst Commun 63:7–11

    Article  CAS  Google Scholar 

  • Nomenclature Committee of International Union of Biochemistry and Molecular Biology. Enzyme list (1992) In: Enzyme nomenclature. Nomenclature Committee of International Union of Biochemistry and Molecular Biology. Academic Press: San Diego, pp 348–353

  • Odier A (1823) Memoire sur la composition chimique des parties cornees des insects. Mem Soc Hist Nat Paris 1:29–42

    Google Scholar 

  • Ohno T, Armand S, Hata T, Nikaidou N, Henrissat B, Mitsutomi M, Watanabe T (1996) A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037. J Bacteriol 178:5065–5070

    PubMed  CAS  Google Scholar 

  • Orikoshi H, Nakayama S, Miyamoto K, Hanato C, Yasuda M, Inamori Y, Tsujibo H (2005) Roles of four chitinases (ChiA, ChiB, ChiC, and ChiD) in the chitin degradation system of marine bacterium Alteromonas sp. strain O-7. Appl Environ Microb 71:1811–1815

    Article  CAS  Google Scholar 

  • Poulicek M, Jeauniaux C (1989) Chitin biomass in marine sediments. In: Skjak-Braek G, Anthonsen T, Sandford P (eds) Chitin and chitosan. Elsevier Applied Science, London, pp 151–155

    Google Scholar 

  • Poulicek M, Jeuniaux C (1991) Chitin biodegradation in marine environments: an experimental approach. Biochem Syst Ecol 19:385–394

    Article  CAS  Google Scholar 

  • Poulicek M, Gaill F, Goffinet G (1998) Chitin biodegradation in marine environments. In: van Bergen PF, Stankiewicz BA (eds) Nitrogen-containing macromolecules in the bio- and geosphere. American Chemical Society, Washington, pp 163–210

    Chapter  Google Scholar 

  • Prakash NAU, Jayanthi M, Sabarinathan R, Kangueane P, Mathew L, Sekar K (2010) Evolution, homology conservation, and identification of unique sequence signatures in GH19 family chitinases. J Mol Evol 70:466–478

    Article  CAS  Google Scholar 

  • Raabe D, Romano P, Sachs C, Fabritius H, Al-Sawalmih A, Yi SB, Servos G, Hartwig HG (2006) Microstructure and crystallographic texture of the chitin-protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus. Mater Sci Eng, A 421:143–153

    Article  CAS  Google Scholar 

  • Ramaiah N, Hill RT, Chun J, Ravel J, Matté MH, Straube WL, Colwell RR (2000) Use a chiA probe for detection of chitinase genes in bacteria from the Chesapeake Bay. FEMS Microbiol Ecol 34:63–71

    PubMed  CAS  Google Scholar 

  • Ravaux J, Zbinden M, Voss-Foucart MF, Compère P, Goffinet G, Gaill F (2003) Comparative degradation rates of chitinous exoskeletons from deep-sea environments. Mar Biol 143:405–412

    Article  CAS  Google Scholar 

  • Raymont JEG, Srinivasagam RT, Raymont JKB (1971) Biochemical studies on marine zooplankton. IX. The biochemical composition of Euphausia superba. J Mar Biol Assoc UK 51:581–588

    Article  CAS  Google Scholar 

  • Roberts GAF (1992) Chitin chemistry. MacMillan, London, p 350

    Google Scholar 

  • Rogers ME, Hajmová M, Joshi MB, Sadlova J, Dwyer DM, Volf P, Bates PA (2008) Leishmania chitinase facilitates colonization of sand fly vectors and enhances transmission to mice. Cell Microbiol 10:1363–1372

    Article  PubMed  CAS  Google Scholar 

  • Roseman S (2003) A conversation with Saul Roseman. Biochem Biophys Res Commun 300:5–8

    Article  PubMed  Google Scholar 

  • Rudall KM (1969) Chitin and its association with other molecules. J Polym Sci, Part C 28:83–102

    Google Scholar 

  • Rudall KM, Kenchington W (1973) The chitin system. Biol Rev 48:597–633

    Article  CAS  Google Scholar 

  • Sacks DL, Kamhawi S (2001) Molecular aspects of parasite–vector and vector–host interactions in leishmaniasis. Annu Rev Microbiol 55:453–483

    Article  PubMed  CAS  Google Scholar 

  • Sahai AS, Manocha MS (1993) Chitinases of fungi and plants: their involvement in morphogenesis and host-parasite interaction. FEMS Microbiol Rev 11:317–338

    Article  CAS  Google Scholar 

  • Seki H (1965) Microbiological studies on the decomposition of chitin in marine environment. J Oceanog Soc of Japan 21:253–260

    Google Scholar 

  • Shahabuddin M, Kaslow DC (1994) Plasmodium: parasite chitinase and its role in malaria transmission. Exp Parasitol 79:85–88

    Article  PubMed  CAS  Google Scholar 

  • Somerville CC, Colwell RR (1993) Sequence analysis of the β-N-acetylhexosaminidase gene of Vibrio vulnificus: evidence for a common evolutionary origin of hexosaminidases. Proc Natl Acad Sci USA 90:6751–6755

    Article  PubMed  CAS  Google Scholar 

  • Stefanidi E, Vorgias CE (2008) Molecular analysis of the gene encoding a new chitinase from the marine psychrophilic bacterium Moritella marina and biochemical characterization of the recombinant enzyme. Extremophiles 12:541–552

    Article  PubMed  CAS  Google Scholar 

  • Suginta W (2007) Identification of chitin binding proteins and characterization of two chitinase isoforms from Vibrio alginolyticus 283. Enzyme Microb Tech 41:212–220

    Article  CAS  Google Scholar 

  • Svitil AL, Ní Chadhain SM, Moore JA, Kirchman DL (1997) Chitin degradation proteins produced by the marine bacterium Vibrio harveyi on different forms of chitin. Appl Environ Microb 63:408–413

    CAS  Google Scholar 

  • Tanaka H, Ogasawara N, Nakajima T, Tamari K (1970) Cell walls of Piricularia oryzae. I. Selective enzymolysis of Piricularia oryzae walls by wall-lytic enzymes of Bacillus circulans WL-12. J Gen Appl Microbiol 16:39–60

    Article  CAS  Google Scholar 

  • Tsujibo H, Orikoshi H, Tanno H, Fujimoto K, Miyamoto K, Imada C, Okami Y, Inamori Y (1993) Cloning, sequence, and expression of a chitinase gene from a marine bacterium, Alteromonas sp. Strain O-7. J Bacteriol 175:176–181

    PubMed  CAS  Google Scholar 

  • Wang SL, Chang W (1997) Purification and characterization of two bifunctional chitinases/lysozymes extracellularly produced by Pseudomonas aeruginosa K-187 in a shrimp and crab shell powder medium. Appl Environ Microb 63:380–386

    CAS  Google Scholar 

  • Watanabe T, Kanai R, Kawase T, Tanabe T, Mitsutomi M, Sakuda S, Miyashita K (1999) Family 19 chitinases of Streptomyces species: characterization and distribution. Microbiology 145:3353–3363

    Article  PubMed  CAS  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    Article  PubMed  CAS  Google Scholar 

  • Wortman AT, Somerville CC, Colwell RR (1986) Chitinase determinants of Vibrio vulnificus: gene cloning and applications of a chitinase probe. Appl Environ Microbiol 52:142–145

    PubMed  CAS  Google Scholar 

  • Xiao X, Yin X, Lin J, Sun L, You Z, Wang P, Wang F (2005) Chitinase genes in lake sediments of Ardley Island, Antarctica. Appl Environ Microb 71:7904–7909

    Article  CAS  Google Scholar 

  • Yu C, Lee AM, Bassler BL, Roseman S (1991) Chitin utilization by marine bacteria. A physiological function for bacterial adhesion to immobilized carbohydrates. J Biol Chem 266:24260–24267

    PubMed  CAS  Google Scholar 

  • Yu C, Bassler BL, Roseman S (1993) Chemotaxis of the marine bacterium Vibrio furnissii to sugars. A potential mechanism for initiating the chitin catabolic cascade. J Biol Chem 266:9405–9409

    Google Scholar 

  • Zobell CE, Rittenberg SC (1938) The occurrence and characteristics of chitinoclastic bacteria in the sea. J Bacteriol 35:275–287

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to FAPESP and CNPq for the financial support. C.P.S. acknowledges a postdoctoral fellowship from FAPESP (Fundação de Amparo a Pesquisa do Estado de São Paulo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irma N. G. Rivera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souza, C.P., Almeida, B.C., Colwell, R.R. et al. The Importance of Chitin in the Marine Environment. Mar Biotechnol 13, 823–830 (2011). https://doi.org/10.1007/s10126-011-9388-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-011-9388-1

Keywords

Navigation