Skip to main content
Log in

Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Grapes are grown in semiarid environments, where drought and salinity are common problems. Microarray transcript profiling, quantitative reverse transcription-PCR, and metabolite profiling were used to define genes and metabolic pathways in Vitis vinifera cv. Cabernet Sauvignon with shared and divergent responses to a gradually applied and long-term (16 days) water-deficit stress and equivalent salinity stress. In this first-of-a-kind study, distinct differences between water deficit and salinity were revealed. Water deficit caused more rapid and greater inhibition of shoot growth than did salinity at equivalent stem water potentials. One of the earliest responses to water deficit was an increase in the transcript abundance of RuBisCo activase (day 4), but this increase occurred much later in salt-stressed plants (day 12). As water deficit progressed, a greater number of affected transcripts were involved in metabolism, transport, and the biogenesis of cellular components than did salinity. Salinity affected a higher percentage of transcripts involved in transcription, protein synthesis, and protein fate than did water deficit. Metabolite profiling revealed that there were higher concentrations of glucose, malate, and proline in water-deficit-treated plants as compared to salinized plants. The metabolite differences were linked to differences in transcript abundance of many genes involved in energy metabolism and nitrogen assimilation, particularly photosynthesis, gluconeogenesis, and photorespiration. Water-deficit-treated plants appear to have a higher demand than salinized plants to adjust osmotically, detoxify free radicals (reactive oxygen species), and cope with photoinhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    PubMed  CAS  Google Scholar 

  • Alexandersson E, Fraysse L, Sjovall-Larsen S, Gustavsson S, Fellert M, Karlsson M, Johanson U, Kjellbom P (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59:469–484

    PubMed  CAS  Google Scholar 

  • Aradhya MK, Dangl GS, Prins BH, Boursiquot JM, Walker MA, Meredith CP, Simon CJ (2003) Genetic structure and differentiation in cultivated grape, Vitis vinifera L. Genet Res 81:179–192

    PubMed  CAS  Google Scholar 

  • Atienza SG, Faccioli P, Perrotta G, Dalfino G, Zschiesche W, Humbeck K, Stanca AM, Cattivelli L (2004) Large scale analysis of transcripts abundance in barley subjected to several single and combined abiotic stress conditions. Plant Sci 167:1359–1365

    CAS  Google Scholar 

  • Bacon MA, Wilkinson S, Davies WJ (1998) pH-regulated leaf cell expansion in droughted plants is abscisic acid dependent. Plant Physiol 118:1507–1515

    PubMed  CAS  Google Scholar 

  • Bairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O’Donovan C, Redaschi N, Yeh LS (2005) The Universal Protein Resource (UniProt). Nucleic Acids Res 33:D154–159

    PubMed  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  • Bernstein L, Hayward HE (1958) Physiology of salt tolerance. Annu Rev Plant Physiol 9:25–46

    CAS  Google Scholar 

  • Bisson LF, Waterhouse AL, Ebeler SE, Walker MA, Lapsley JT (2002) The present and future of the international wine industry. Nature 418:696–699

    PubMed  CAS  Google Scholar 

  • Blein J-P, Coutos-Thevenot P, Marion D, Ponchet M (2002) From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defence mechanisms. Trends Plant Sci 7:293–296

    PubMed  CAS  Google Scholar 

  • Bohnert HJ, Cushman JC (2002) Plant and environmental stress adaptation strategies. In: Oksman-Caldentey K-M, Barz WH (eds) Plant biotechnology and transgenic plants. Marcel Dekker, New York, pp 635–664

    Google Scholar 

  • Bouche N, Fait A, Bouchez D, Moller SG, Fromm H (2003) Mitochondrial succinic-semialdehyde dehydrogenase of the gamma-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proc Natl Acad Sci USA 100:6843–6848

    PubMed  CAS  Google Scholar 

  • Broeckling CD, Huhman DV, Farag MA, Smith JT, May GD, Mendes P, Dixon RA, Sumner LW (2005) Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J Exp Bot 56:323–336

    PubMed  CAS  Google Scholar 

  • Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574

    PubMed  CAS  Google Scholar 

  • Chen H, Rosin FM, Prat S, Hannapel DJ (2003) Interacting transcription factors from the three-amino acid loop extension superclass regulate tuber formation. Plant Physiol 132:1391–1404

    PubMed  CAS  Google Scholar 

  • Choi D, Kim JH, Kende H (2004) Whole genome analysis of the OsGRF gene family encoding plant-specific putative transcription activators in rice (Oryza sativa L.). Plant Cell Physiol 45:897–904

    PubMed  CAS  Google Scholar 

  • Corpas FJ, Barroso JB, del Rio LA (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6:145–150

    PubMed  CAS  Google Scholar 

  • Cramer GR, Bowman DC (1991) Kinetics of maize leaf elongation. I. Increased yield threshold limits short-term, steady-state elongation rates after exposure to salinity. J Exp Bot 42:1417–1426

    Google Scholar 

  • Cutler JM, Rains DW, Loomis RS (1977) Role of changes in solute concentration in maintaining favorable water balance in field-grown cotton. Agron J 69:773–779

    Article  Google Scholar 

  • da Costa e Silva O, Lorbiecke R, Garg P, Muller L, Wassmann M, Lauert P, Scanlon M, Hsia AP, Schnable PS, Krupinska K, Wienand U (2004) The Etched1 gene of Zea mays (L.) encodes a zinc ribbon protein that belongs to the transcriptionally active chromosome (TAC) of plastids and is similar to the transcription factor TFIIS. Plant J 38:923–939

    PubMed  Google Scholar 

  • da Silva FG, Iandolino A, Al-Kayal F, Bohlman MC, Cushman MA, Lim H, Ergul A, Figueroa R, Kabuloglu EK, Osborne C, Rowe J, Tattersall E, Leslie A, Xu J, Baek J-M, Cramer GR, Cushman JC, Cook DR (2005) Characterizing the grape transcriptome: analysis of ESTs from multiple Vitis species and development of a compendium of gene expression during berry development. Plant Physiol 139:574–597

    PubMed  Google Scholar 

  • Davies C, Robinson SP (2000) Differential screening indicates a dramatic change in mRNA profiles during grape berry ripening. Cloning and characterization of cDNAs encoding putative cell wall and stress response proteins. Plant Physiol 122:803–812

    PubMed  CAS  Google Scholar 

  • DeBolt S, Cook DR, Ford CM (2006) L-tartaric acid synthesis from vitamin C in higher plants. Proc Natl Acad Sci USA 103:5608–5613

    PubMed  CAS  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    CAS  Google Scholar 

  • Deuschle K, Funck D, Forlani G, Stransky H, Biehl A, Leister D, van der Graaff E, Kunze R, Frommer WB (2004) The role of [Delta]1-pyrroline-5-carboxylate dehydrogenase in proline degradation. Plant Cell 16:3413–3425

    PubMed  CAS  Google Scholar 

  • Dixon RA, Xie DY, Sharma SB (2005) Proanthocyanidins—a final frontier in flavonoid research? New Phytol 165:9–28

    PubMed  CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    PubMed  CAS  Google Scholar 

  • Espinoza C, Vega A, Medina C, Schlauch K, Cramer G, Arce-Johnson P (2006) Gene expression associated with compatible viral diseases in grapevine cultivars. Funct Integr Genomics (in press) DOI 10.1007/s10142-006-0031-6

  • Esteban MA, Villanueva MJ, Lissarrague JR (1999) Effect of irrigation on changes in berry composition of Tempranillo during maturation. Sugars, organic acids, and mineral elements. Am J Enol Vitic 50:418–434

    Google Scholar 

  • Esteban MA, Villanueva MJ, Lissarrague JR (2001) Effect of irrigation on changes in the anthocyanin composition of the skin of cv Tempranillo (Vitis vinifera L.) grape berries during ripening. J Sci Food Agric 81:409–420

    CAS  Google Scholar 

  • FAO (2005) Global network on integrated soil management for sustainable use of salt-affected soils. FAO, Rome

    Google Scholar 

  • Fernandez-Ballester G, Cerdá A, Martínez V (1997) Role of calcium in short-term responses of bean plants to osmotic or saline shocks. J Plant Physiol 151:741–747

    CAS  Google Scholar 

  • Fiorani F, Umbach AL, Siedow JN (2005) The alternative oxidase of plant mitochondria is involved in the acclimation of shoot growth at low temperature. A study of Arabidopsis AOX1a transgenic plants. Plant Physiol 139:1795–1805

    PubMed  CAS  Google Scholar 

  • Fricke W (2002) Biophysical limitation of leaf cell elongation in source-reduced barley. Planta 215:327–338

    PubMed  CAS  Google Scholar 

  • Fricke W, Peters WS (2002) The biophysics of leaf growth in salt-stressed barley. A study at the cell level. Plant Physiol 129:374–388

    PubMed  CAS  Google Scholar 

  • Fricke W, Leigh RA, Tomos AD (1996) The intercellular distribution of vacuolar solutes in the epidermis and mesophyll of barley leaves changes in response to NaCl. J Exp Bot 47:1413–1426

    CAS  Google Scholar 

  • Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LS, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39:863–876

    PubMed  CAS  Google Scholar 

  • Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) affy-analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20:307–315

    PubMed  CAS  Google Scholar 

  • German JB, Walzem RL (2000) The health benefits of wine. Annu Rev Nutr 20:561–593

    PubMed  CAS  Google Scholar 

  • Gibeaut DM, Hulett J, Cramer GR, Seemann JR (1997) Maximal biomass of Arabidopsis thaliana using a simple, low-maintenance hydroponic method and favorable environmental conditions. Plant Physiol 115:317–319

    PubMed  CAS  Google Scholar 

  • Gong Q, Li P, Ma S, Indu Rupassara S, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839

    PubMed  CAS  Google Scholar 

  • Grallath S, Weimar T, Meyer A, Gumy C, Suter-Grotemeyer M, Neuhaus J-M, Rentsch D (2005) The AtProT family: compatible solute transporters with similar substrate specificity but differential expression patterns. Plant Physiol 137:117–126

    PubMed  CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190

    CAS  Google Scholar 

  • Gu R, Fonseca S, Pushkas LG, Hackler L Jr, Zvara A, Dudits D, Pais MS (2004) Transcript identification and profiling during salt stress and recovery of Populus euphratica. Tree Physiol 24:265–276

    PubMed  CAS  Google Scholar 

  • Guo H, Ecker JR (2004) The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7:40–49

    PubMed  CAS  Google Scholar 

  • Hartung W, Radin JW, Hendrix DL (1988) Abscisic acid movement into the apoplastic solution of water-stressed cotton leaves: role of apoplastic pH. Plant Physiol 86:908–913

    PubMed  CAS  Google Scholar 

  • Hawker JS, Walker RR (1978) The effect of sodium chloride on the growth and fruiting of Cabernet Sauvignon vines. Am J Enol Vitic 29:172–176

    CAS  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    PubMed  Google Scholar 

  • Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333

    PubMed  CAS  Google Scholar 

  • Jeong ML, Jiang H, Chen H-S, Tsai C-J, Harding SA (2004) Metabolic profiling of the sink-to-source transition in developing leaves of quaking aspen. Plant Physiol 136:3364–3375

    PubMed  CAS  Google Scholar 

  • Kamada T, Nito K, Hayashi H, Mano S, Hayashi M, Nishimura M (2003) Functional differentiation of peroxisomes revealed by expression profiles of peroxisomal genes in Arabidopsis thaliana. Plant Cell Physiol 44:1275–1289

    PubMed  CAS  Google Scholar 

  • Kavi Kishor PB, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Overexpression of delta1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–906

    PubMed  CAS  Google Scholar 

  • Kennedy JA, Matthews MA, Waterhouse AL (2000) Changes in grape seed polyphenols during fruit ripening. Phytochemistry 55:77–85

    PubMed  CAS  Google Scholar 

  • Kerr MK, Martin M, Churchill GA (2000) Analysis of variance for gene expression microarray data. J Comput Biol 7:819–837

    PubMed  CAS  Google Scholar 

  • Kim CY, Liu Y, Thorne ET, Yang H, Fukushige H, Gassmann W, Hildebrand D, Sharp RE, Zhang S (2003) Activation of a stress-responsive mitogen-activated protein kinase cascade induces the biosynthesis of ethylene in plants. Plant Cell 15:2707–2718

    PubMed  CAS  Google Scholar 

  • Kiyosue T, Yoshiba Y, Yamaguchi-Shinozaki K, Shinozaki K (1996) A nuclear gene encoding mitochondrial proline dehydrogenase, and enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell 8:1323–1335

    PubMed  CAS  Google Scholar 

  • Kliewer WM, Nassar AR (1966) Changes in concentration of organic acids, sugars, and amino acids in grape leaves. Am J Enol Vitic 17:48–57

    CAS  Google Scholar 

  • Kocsy G, Laurie R, Szalai G, Szilagyi V, Simon-Sarkadi L, Galiba G, de Ronde JA (2005) Genetic manipulation of proline levels affects antioxidants in soybean subjected to simultaneous drought and heat stresses. Physiol Plant 124:227–235

    CAS  Google Scholar 

  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141

    PubMed  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    PubMed  CAS  Google Scholar 

  • Loveys BR, During H (1984) Diurnal changes in water relations and abscisic acid in field-grown Vitis vinifera cultivars II. Abscisic acid changes under semi-arid conditions. New Phytol 97:37–47

    CAS  Google Scholar 

  • Maas EV, Hoffman GJ (1977) Crop salt tolerance—current assessment. J Irrig Drain Div ASCE 103:115–134

    Google Scholar 

  • Maathuis FJ, Filatov V, Herzyk P, Krijger GC, Axelsen KB, Chen S, Green BJ, Li Y, Madagan KL, Sanchez-Fernandez R, Forde BG, Palmgren MG, Rea PA, Williams LE, Sanders D, Amtmann A (2003) Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant J 35:675–692

    PubMed  CAS  Google Scholar 

  • Matthews MA, Anderson MM (1988) Fruit ripening in Vitis vinifera L.: responses to seasonal water deficits. Am J Enol Vitic 39:313–320

    Google Scholar 

  • Matthews MA, Ishii R, Anderson MM, O’Mahony M (1990) Dependence of wine sensory attributes on vine water status. J Sci Food Agric 51:321–335

    CAS  Google Scholar 

  • McCutchan J, Shackel KA (1992) Stem-water potential as a sensitive indicator of water stress in prune trees (Prunus domestica L. cv. French). J Am Soc Hortic Sci 117:607–611

    Google Scholar 

  • Medrano H, Escalona JM, Bota J, Gulias J, Flexas J (2002) Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Ann Bot (Lond) 89:895–905

    CAS  Google Scholar 

  • Millar AH, Heazlewood JL (2003) Genomic and proteomic analysis of mitochondrial carrier proteins in Arabidopsis. Plant Physiol 131:443–453

    PubMed  CAS  Google Scholar 

  • Miller G, Stein H, Honig A, Kapulnik Y, Zilberstein A (2005) Responsive modes of Medicago sativa proline dehydrogenase genes during salt stress and recovery dictate free proline accumulation. Planta 222:70–79

    PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    PubMed  CAS  Google Scholar 

  • Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    PubMed  CAS  Google Scholar 

  • Moreno JI, Martin R, Castresana C (2005) Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. Plant J 41:451–463

    PubMed  CAS  Google Scholar 

  • Moser C, Segala C, Fontana P, Salakhudtinov I, Gatto P, Pindo M, Zyprian E, Toepfer R, Grando MS, Velasco R (2005) Comparative analysis of expressed sequence tags from different organs of Vitis vinifera L. Funct Integr Genomics 5:208–217

    PubMed  CAS  Google Scholar 

  • Mott KA, Woodrow IE (2000) Modelling the role of Rubisco activase in limiting non-steady-state photosynthesis. J Exp Bot 51:399–406 (Spec No)

    PubMed  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    PubMed  CAS  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    PubMed  CAS  Google Scholar 

  • Niyogi KK, Grossman AR, Björkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–1134

    PubMed  CAS  Google Scholar 

  • Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L, Foyer CH (2002) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Ann Bot (Lond) 89:841–850 (Spec No)

    CAS  Google Scholar 

  • Olsen LJ, Harada JJ (1995) Peroxisomes and their assembly in higher plants. Annu Rev Plant Physiol Plant Mol Biol 46:123–146

    CAS  Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87

    PubMed  CAS  Google Scholar 

  • Ozturk ZN, Talamé V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ (2002) Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol Biol 48:551–573

    CAS  Google Scholar 

  • Parry MA, Andralojc PJ, Khan S, Lea PJ, Keys AJ (2002) Rubisco activity: effects of drought stress. Ann Bot (Lond) 89:833–839 (Spec No)

    CAS  Google Scholar 

  • Parry MA, Andralojc PJ, Mitchell RA, Madgwick PJ, Keys AJ (2003) Manipulation of Rubisco: the amount, activity, function and regulation. J Exp Bot 54:1321–1333

    PubMed  CAS  Google Scholar 

  • Passioura JB, Munns R (2000) Rapid environmental changes that affect leaf water status induce transient surges or pauses in leaf expansion rate. Aust J Plant Physiol 27:941–948

    Google Scholar 

  • Patakas A (2000) Changes in the solutes contributing to osmotic potential during leaf ontogeny in grapevine leaves. Am J Enol Vitic 51:223–226

    CAS  Google Scholar 

  • Patakas A, Noitsakis B (1999) Osmotic adjustment and partitioning of turgor responses to drought in grapevines leaves. Am J Enol Vitic 50:76–80

    Google Scholar 

  • Patakas A, Nikolaou N, Zioziou E, Radoglou K, Noitsakis B (2002) The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines. Plant Sci 163:361–367

    CAS  Google Scholar 

  • Peng Z, Lu Q, Verma DPS (1996) Reciprocal regulation of delta 1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants. Mol Gen Genet 253:334–341

    PubMed  CAS  Google Scholar 

  • Prior LD, Grieve AM, Cullis BR (1992) Sodium chloride and soil texture interactions in irrigated field grown Sultana grapevines. 1. Yield and fruit quality. Aust J Agric Res 43:1051–1066

    CAS  Google Scholar 

  • Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

    PubMed  CAS  Google Scholar 

  • Rassam M, Laing WA (2004) Purification and characterization of phytocystatins from kiwifruit cortex and seeds. Phytochemistry 65:19–30

    PubMed  CAS  Google Scholar 

  • Raven JA (1985) Regulation of pH and generation of osmolarity in vascular plants: a cost–benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytol 101:25–77

    CAS  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    CAS  Google Scholar 

  • Rentsch D, Hirner B, Schmelzer E, Frommer WB (1996) Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant. Plant Cell 8:1437–1446

    PubMed  CAS  Google Scholar 

  • Rhodes D, Nadloska-Orczyk A, Rich PJ (2002) Salinity, osmolytes and compatible solutes. In: Lauchli A, Luttge U (eds) Salinity: environment–plants–molecules. Kluwer, Boston, pp 181–204

    Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  • Scheibe R (2004) Malate valves to balance cellular energy supply. Physiol Plant 120:21–26

    PubMed  CAS  Google Scholar 

  • Schultz HR, Matthews MA (1988) Resistance to water transport in shoots of Vitis vinifera L.: relation to growth at low water potential. Plant Physiol 88:718–724

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    PubMed  CAS  Google Scholar 

  • Shani U, Waisel Y, Eshel A, Xue S, Ziv G (1993) Responses to salinity of grapevine plants with split root systems. New Phytol 124:695–701

    CAS  Google Scholar 

  • Shin D, Koo YD, Lee J, Lee HJ, Baek D, Lee S, Cheon CI, Kwak SS, Lee SY, Yun DJ (2004) Athb-12, a homeobox-leucine zipper domain protein from Arabidopsis thaliana, increases salt tolerance in yeast by regulating sodium exclusion. Biochem Biophys Res Commun 323:534–540

    PubMed  CAS  Google Scholar 

  • Sipiora MJ, Granda MJG (1998) Effects of pre-veraison irrigation cutoff and skin contact time on the composition, color, and phenolic content of young Cabernet Sauvignon wines in Spain. Am J Enol Vitic 49:152–162

    CAS  Google Scholar 

  • Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman R, Carey V, Huber W, Irizarry R, Dudoit S (eds) Bioinformatics and computational biology solutions using R and bioconductor. Springer, Berlin Heildelberg New York, pp 397–420

    Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    PubMed  CAS  Google Scholar 

  • Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426

    PubMed  CAS  Google Scholar 

  • Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135:1697–1709

    PubMed  CAS  Google Scholar 

  • Tang AC, Boyer JS (2002) Growth-induced water potentials and the growth of maize leaves. J Exp Bot 53:489–503

    PubMed  CAS  Google Scholar 

  • Tattersall EAR, Ergul A, Al-Kayal F, Cushman JC, Cramer GR (2005) A comparison of methods for isolating RNA from leaves of grapevine (Vitis vinifera). Am J Enol Vitic 56:400–406

    CAS  Google Scholar 

  • Terrier N, Ageorges A, Abbal P, Romieu C (2001) Generation of ESTs from grape berry at various developmental stages. J Plant Physiol 158:1575–1583

    CAS  Google Scholar 

  • Terrier N, Glissant D, Grimplet J, Barrieu F, Abbal P, Couture C, Ageorges A, Atanassova R, Leon C, Renaudin JP, Dedaldechamp F, Romieu C, Delrot S, Hamdi S (2005) Isogene specific oligo arrays reveal multifaceted changes in gene expression during grape berry (Vitis vinifera L.) development. Planta 222:832–847

    PubMed  CAS  Google Scholar 

  • Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW (1999) Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401:914–917

    CAS  Google Scholar 

  • Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    PubMed  CAS  Google Scholar 

  • Ueda A, Kathiresan A, Inada M, Narita Y, Nakamura T, Shi W, Takabe T, Bennett J (2004) Osmotic stress in barley regulates expression of a different set of genes than salt stress does. J Exp Bot 55:2213–2218

    PubMed  CAS  Google Scholar 

  • Umbach AL, Fiorani F, Siedow JN (2005) Characterization of transformed Arabidopsis with altered alternative oxidase levels and analysis of effects on reactive oxygen species in tissue. Plant Physiol 139:1806–1820

    PubMed  CAS  Google Scholar 

  • Verslues PE, Sharp RE (1999) Proline accumulation in maize (Zea mays L.) primary roots at low water potentials. II. Metabolic source of increased proline deposition in the elongation zone. Plant Physiol 119:1349–1360

    PubMed  CAS  Google Scholar 

  • Vivier MA, Pretorius IS (2002) Genetically tailored grapevines for the wine industry. Trends Biotechnol 20:472–478

    Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wanamaker SI, Mandal J, Xu J, Cui X, Close TJ (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol 139:822–835

    PubMed  CAS  Google Scholar 

  • Walker RR, Torokfalvy E, Steele Scott N, Kriedemann PE (1981) An analysis of photosynthetic response to salt treatment in Vitis vinifera. Aust J Plant Physiol 8:359–374

    Article  Google Scholar 

  • Walker RR, Blackmore DH, Clingeleffer PR, Correll RL (2002) Rootstock effects of salt tolerance of irrigated field-grown grapevines (Vitis vinifera L. cv. Sultana) I. Yield and vigour inter-relationships. Aust J Grape Wine Res 8:3–14

    Google Scholar 

  • Walker RR, Blackmon DH, Clingeleffer PR, Correll RL (2004) Rootstock effects on salt tolerance of irrigated field-grown grapevines (Vitis vinifera L. cv. Sultana) 2. Ion concentration in leaves and juice. Aust J Grape Wine Res 10:90–99

    CAS  Google Scholar 

  • Waters DL, Holton TA, Ablett EM, Lee LS, Henry RJ (2005) cDNA microarray analysis of developing grape (Vitis vinifera cv. Shiraz) berry skin. Funct Integr Genomics 5:40–58

    PubMed  CAS  Google Scholar 

  • Whittaker A, Bochicchio A, Vazzana C, Lindsey G, Farrant J (2001) Changes in leaf hexokinase activity and metabolite levels in response to drying in the desiccation-tolerant species Sporobolus stapfianus and Xerophyta viscosa. J Exp Bot 52:961–969

    PubMed  CAS  Google Scholar 

  • Wilkinson S, Davies WJ (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ 25:195–210

    PubMed  CAS  Google Scholar 

  • Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Philos Trans R Soc Lond B Biol Sci 355:1517–1529

    Google Scholar 

  • Wyn Jones RG, Brady CJ, Speirs J (1979) Ionic and osmotic relations in plant cells. In: Recent advances in the biochemistry of cereals. Academic, New York, pp 63–103

    Google Scholar 

  • Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 56:1975–1981

    PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    PubMed  CAS  Google Scholar 

  • Yanhui C, Xiaoyuan Y, Kun H, Meihua L, Jigang L, Zhaofeng G, Zhiqiang L, Yunfei Z, Xiaoxiao W, Xiaoming Q, Yunping S, Li Z, Xiaohui D, Jingchu L, Xing-Wang D, Zhangliang C, Hongya G, Li-Jia Q (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60:107–124

    PubMed  Google Scholar 

  • Yeo AR (1983) Salinity resistance: physiologies and prices. Physiol Plant 58:214–222

    CAS  Google Scholar 

  • Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38:1095–1102

    PubMed  CAS  Google Scholar 

  • Zhao XC, Schaller GE (2004) Effect of salt and osmotic stress upon expression of the ethylene receptor ETR1 in Arabidopsis thaliana. FEBS Lett 562:189–192

    PubMed  CAS  Google Scholar 

  • Zhu BC, Su J, Chan MC, Verma DPS, Fan YL, Wu R (1998) Overexpression of a Delta1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water- and salt-stress in transgenic rice. Plant Sci 139:41–48

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the American Viticulture Foundation, the USDA Viticulture Consortium, the National Science Foundation (NSF) Plant Genome program (DBI-0217653) to G.R.C. and J.C.C. and the Bioinformatics program (DBI-0136561) to K.A.S., a graduate student fellowship to E.A.R. Tattersall from the NSF EPSCoR Integrated Approaches to Abiotic Stress program (EPS-0132556), and a TUBITAK–NATO B1 fellowship to Dr. A. Ergul. The Nevada Genomics Center is supported by grants from the NIH Biomedical Research Infrastructure Network (NIH-NCRR, P20 RR16464) and NIH IDeA Network of Biomedical Research Excellence (INBRE, RR-03-008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant R. Cramer.

Additional information

Grant R. Cramer and John C. Cushman contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table S1

Pearson and Spearman correlation coefficients across biological triplicate microarray experiments for each experimental state (JPEG 576 kb)

Supplemental Table S2

Genes of water-deficit-treated plants with significantly different expression relative to control plants on day 8 (XLS 26 kb)

Supplemental Table S3

Genes of water-deficit-treated plants with significantly different expression relative to control plants on day 12 (XLS 1 mg)

Supplemental Table S4

Genes of salt-stressed plants with significantly different expression relative to control plants on day 12 (XLS 540 kb)

Supplemental Table S5

Genes of water-deficit-treated plants with significantly different expression relative to control plants on day 16 (XLS 3 mb)

Supplemental Table S6

Genes of salt-stressed plants with significantly different expression relative to control plants on day 16 (XLS 3 mb)

Supplemental Table S7

The top 10% genes of water-deficit-treated plants with significantly different expression relative to control plants on day 12. The gene order is arranged according to hierarchical clustering (XLS 137 kb)

Supplemental Table S8

The top 10% genes of salinity-treated plants with significantly different expression relative to control plants on day 12. The gene order is arranged according to hierarchical clustering (XLS 73 kb)

Supplemental Table S9

The top 10% genes of water-deficit-treated plants with significantly different expression relative to control plants on day 16. The gene order is arranged according to hierarchical clustering (XLS 384 kb)

Supplemental Table S10

The top 10% genes of salinity-treated plants with significantly different expression relative to control plants on day 16. The gene order is arranged according to hierarchical clustering (XLS 381 kb)

Supplemental Table S11

All genes with significantly different expression between water-deficit-treated and salinity-treated plants on day 16. The gene order is arranged according to hierarchical clustering (XLS 522 kb)

Supplemental Fig. S1

Boxplots of PM probe-level intensity levels of all 44 oligonucleotide microarrays after RMA preprocessing and normalization (JPEG 79 KB)

Supplemental Fig. S2

RNA degradation plots of PM hybridization signal intensities across probe sets for all 44 microarrays. The log-transformed preprocessed values of the 10,251 probes having 16 probe pair sets on the arrays are presented in the 5′ to 3′ orientation. Note that differences on the y-axis are relatively small (JPEG 599 KB)

Supplemental Fig. S3

Scatterplot of log-transformed, normalized expression values of biological replicates of water-deficit-treated plants harvested on day 8. The correlation between all three pairs of replications was 0.998, as seen in Supplemental Table S1 (JPEG 466 KB)

Supplemental Fig. S4

Comparison of gene expression levels determined by real time RT-PCR and the GeneChip microarray for five genes assessed in this study. Left: transcript abundance as measured by real time RT-PCR; right: real time RT-PCR transcript abundance correlation with microarray results (JPEG 161 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cramer, G.R., Ergül, A., Grimplet, J. et al. Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7, 111–134 (2007). https://doi.org/10.1007/s10142-006-0039-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-006-0039-y

Keywords

Navigation