Skip to main content
Log in

Comparative transcriptomics for mangrove species: an expanding resource

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

We present here the Mangrove Transcriptome Database (MTDB), an integrated, web-based platform providing transcript information from all 28 mangrove species for which information is available. Sequences are annotated, and when possible, GO clustered and assigned to KEGG pathways, making MTDB a valuable resource for approaching mangrove or other extremophile biology from the transcriptomic level. As one example outlining the potential of MTDB, we highlight the analysis of mangrove microRNA (miRNA) precursor sequences, miRNA target sites, and their conservation and divergence compared with model plants. MTDB is available at http://mangrove.illinois.edu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Meyers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones SAM, Marshall M, Matzke M, Ruvkun G, Tuschl T (2003) A uniform system for microRNA annotation. RNA 9:277–279. doi:10.1261/rna.2183803

    Article  CAS  PubMed  Google Scholar 

  • Axtell MJ, Bartel DP (2005) Antiquity of microRNAs and their targets in land plants. Plant Cell 17:1658–1673. doi:10.1105/tpc.105.032185

    Article  CAS  PubMed  Google Scholar 

  • Bari R, Datt Pant B, Stitt M, Scheible W-R (2006) PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141:988–999. doi:10.1104/pp.106.079707

    Article  CAS  PubMed  Google Scholar 

  • Bohnert HJ, Sheveleva E (1998) Plant stress adaptations - making metabolism move. Curr Opin Plant Biol 1:267–274

    Article  CAS  PubMed  Google Scholar 

  • Bonnet E, Wuyts J, Rouze P, Van de Peer Y (2004) Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics 20:2911–2917. doi:10.1093/bioinformatics/bth374

    Article  CAS  PubMed  Google Scholar 

  • Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PloS Biol 3:e85

    Article  PubMed  Google Scholar 

  • Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants. Trends Genet 22:268–280

    Article  CAS  PubMed  Google Scholar 

  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190. doi:10.1126/science.1159151

    Article  CAS  PubMed  Google Scholar 

  • Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205. doi:10.1146/annurev.cellbio.23.090506.123406

    Article  CAS  PubMed  Google Scholar 

  • Cheeseman JM, Lovelock CE (2004) Photosynthetic characteristics of dwarf and fringe Rhizophora mangle in a Belizean mangrove. Plant Cell Environ 27:769–780

    Article  Google Scholar 

  • Cheeseman JM, Clough BF, Carter DR, Lovelock CE, Eong OJ, Sim RG (1991) The analysis of photosynthetic performance in leaves under field conditions: a case study using Bruguiera mangroves. Photosyn Res 29:11–22

    CAS  Google Scholar 

  • Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124

    Article  CAS  PubMed  Google Scholar 

  • Dassanayake M, Haas JS, Bohnert HJ, Cheeseman JM (2009) Shedding light on an extremophile lifestyle through transcriptomics. New Phytol 183:764–775

    Article  CAS  PubMed  Google Scholar 

  • Dezulian T, Remmert M, Palatnik JF, Weigel D, Huson DH (2006) Identification of plant microRNA homologs. Bioinformatics 22:359–360. doi:10.1093/bioinformatics/bti802

    Article  CAS  PubMed  Google Scholar 

  • Feller IC (1995) Effects of nutrient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle). Ecol Monogr 65:477–505

    Article  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Rev Genet 9:102–114

    Article  CAS  PubMed  Google Scholar 

  • Fujii H, Chiou T-J, Lin S-I, Aung K, Zhu J-K (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043

    Article  CAS  PubMed  Google Scholar 

  • Fukaki H, Okushima Y, Tasaka M, Kwang WJ (2007) Auxin-mediated lateral root formation in higher plants. Int Rev Cytol 256:111–137

    Article  CAS  PubMed  Google Scholar 

  • Griffiths-Jones S, Saini HK, Sv D, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158. doi:10.1093/nar/gkm952

    Article  CAS  PubMed  Google Scholar 

  • Gutschick VP, BassiriRad H (2003) Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytol 160:21–42

    Article  Google Scholar 

  • Hogarth P (2007) The biology of mangroves and seagrasses. Oxford University Press, New York

    Book  Google Scholar 

  • Karrenberg S, Widmer A (2008) Ecologically relevant genetic variation from a non-Arabidopsis perspective. Curr Opin Plant Biol 11:156–162. doi:10.1016/j.pbi.2008.01.004

    Article  CAS  PubMed  Google Scholar 

  • Kurihara Y, Takashi Y, Watanabe Y (2006) The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12:206–212. doi:10.1261/rna.2146906

    Article  CAS  PubMed  Google Scholar 

  • Lovelock CE, Ball MC, Choat B, Engelbrecht BMJ, Holbrook NM, Feller IC (2006) Linking physiological processes with mangrove forest structure: phosphorus deficiency limits canopy development, hydraulic conductivity and photosynthetic carbon gain in dwarf Rhizophora mangle. Plant Cell Environ 29:793–802

    Article  CAS  PubMed  Google Scholar 

  • Morin RD, Aksay G, Dolgosheina E, Ebhardt HA, Magrini V, Mardis ER, Sahinalp SC, Unrau PJ (2008) Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa. Genome Res 18:571–584. doi:10.1101/gr.6897308

    Article  CAS  PubMed  Google Scholar 

  • Moxon S, Jing R, Szittya G, Schwach F, Rusholme Pilcher RL, Moulton V, Dalmay T (2008) Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res 18:1602–1609. doi:10.1101/gr.080127.108

    Article  CAS  PubMed  Google Scholar 

  • Osada Y, Saito R, Tomita M (1999) Analysis of base-pairing potentials between 16S rRNA and 5' UTR for translation initiation in various prokaryotes. Bioinformatics 15:578–581

    Article  CAS  PubMed  Google Scholar 

  • Pillai RS, Bhattacharyya SN, Filipowicz W (2007) Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol 17:118–126

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425. doi:10.1101/gad.1476406

    Article  CAS  PubMed  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626. doi:10.1101/gad.1004402

    Article  CAS  PubMed  Google Scholar 

  • Rymarquis LA, Kastenmayer JP, Hüttenhofer AG, Green PJ (2008) Diamonds in the rough: mRNA-like non-coding RNAs. Trends Plant Sci 13:329–334

    Article  CAS  PubMed  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527

    Article  CAS  PubMed  Google Scholar 

  • Schwarzbach AE, Ricklefs RE (2001) The use of molecular data in mangrove plant research. Wetl Ecol Manag 9:205–211

    Article  Google Scholar 

  • Sørensen J, Loeschcke V (2007) Studying stress responses in the post-genomic era: its ecological and evolutionary role. J Bioscience 32:447–456

    Article  Google Scholar 

  • Subramanian S, Fu Y, Sunkar R, Barbazuk WB, Zhu J-K, Yu O (2008) Novel and nodulation-regulated microRNAs in soybean roots. BMC Genomics 9:160

    Article  PubMed  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu J, Zhu J-K (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Zhu J-K (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019. doi:10.1105/tpc.104.022830

    Article  CAS  PubMed  Google Scholar 

  • Young JL, Bornik ZB, Marcotte ML, Charlie KN, Wagner GN, Hinch SG, Cooke SJ (2006) Integrating physiology and life history to improve fisheries management and conservation. Fish Fish 7:262–283

    Google Scholar 

  • Zhang BH, Pan XP, Wang QL, Cobb GP, AT A (2005) Identification and characterization of new plant microRNAs using EST analysis. Cell Res 15:336–360

    Article  PubMed  Google Scholar 

  • Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA (2006) Conservation and divergence of plant microRNA genes. Plant J 46:243–259

    Article  CAS  PubMed  Google Scholar 

  • Zucker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucl Acids Res 31:3406–3415. doi:10.1093/nar/gkg595

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the Smithsonian Caribbean Coral Reef Ecosystem (CCRE) project, and especially to Klaus Rützler, Candy Feller, Mike Carpenter and all the Carrie Bow Cay station managers for continued support for the field work and access to Twin Cays; to the Vice Chancellor for Research at the University of Illinois at Urbana-Champaign for funding the sequencing; to Shahjahan Ali, Jyothi Thimmapuram and Deepika Vulaganthi in the Keck Center for Comparative and Functional Genomics at UIUC for sequencing and assembly; and to Robert Bocchino and Sahan Dissanayake for help with Perl scripts. This is contribution number 870 of the CCRE program, Smithsonian Institution, supported in part by the Hunterdon Oceanographic Research Endowment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Cheeseman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dassanayake, M., Haas, J.S., Bohnert, H.J. et al. Comparative transcriptomics for mangrove species: an expanding resource. Funct Integr Genomics 10, 523–532 (2010). https://doi.org/10.1007/s10142-009-0156-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-009-0156-5

Keywords

Navigation