Skip to main content

Advertisement

Log in

Radiological assessment of hydrocephalus: new theories and implications for therapy

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

It is almost a century since Dandy made the first experimental studies on hydrocephalus, but its underlying mechanism has been unknown up to now. The conventional view is that cerebrospinal fluid (CSF) malabsorption due to hindrance of the CSF circulation causes either obstructive or communicating hydrocephalus. Analyses of the intracranial hydrodynamics related to the pulse pressure show that this is an over-simplification. The new hydrodynamic concept presented here divides hydrocephalus into two main groups, acute hydrocephalus and chronic hydrocephalus. It is still accepted that acute hydrocephalus is caused by an intraventricular CSF obstruction, in accordance with the conventional view. Chronic hydrocephalus consists of two subtypes, communicating hydrocephalus and chronic obstructive hydrocephalus. The associated malabsorption of CSF is not involved as a causative factor in chronic hydrocephalus. Instead, it is suggested that increased pulse pressure in the brain capillaries maintains the ventricular enlargement in chronic hydrocephalus. Chronic hydrocephalus is due to decreased intracranial compliance, causing restricted arterial pulsations and increased capillary pulsations. The terms “restricted arterial pulsation hydrocephalus” or “increased capillary pulsation hydrocephalus” can be used to stress the hydrodynamic origin of both types of chronic hydrocephalus. The new hydrodynamic theories explain why third ventriculostomy may cure patients with communicating hydrocephalus, a treatment incompatible with the conventional view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3a, b
Fig. 4a–c
Fig. 5
Fig. 6a–c
Fig. 7
Fig. 8a, b

Similar content being viewed by others

References

  1. Dandy WE, Blackfan KD (1914) Internal hydrocephalus. An experimental, clinical and pathological study. Am J Dis Child 8:406–481

    Google Scholar 

  2. O’Connel JEA (1943) The vascular factor in intracranial pressure and the maintenance of the CSF circulation. Brain 66:204–228

    Google Scholar 

  3. Hakim S, Adams R (1965) The special clinical problems of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. J Neurol Sci 2:307–327

    Article  CAS  PubMed  Google Scholar 

  4. Vanneste JA (1994) Three decades of normal pressure hydrocephalus: are we wiser now? J Neurol Neurosurg Psychiatry 57:1021–1025

    CAS  PubMed  Google Scholar 

  5. Vanneste JA (2000) Diagnosis and management of normal-pressure hydrocephalus. J Neurol 247:5–14

    Article  CAS  PubMed  Google Scholar 

  6. Greitz D (1993) Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography. Acta Radiol 34:1–23

    Google Scholar 

  7. Greitz D, Franck A, Nordell B (1993) On the pulsatile nature of the intracranial and spinal CSF-circulation demonstrated by MR imaging. Acta Radiol 34:321–328

    CAS  PubMed  Google Scholar 

  8. Greitz D, Jan Hannerz J (1996) A proposed model of cerebrospinal fluid circulation: observations with radionuclide cisternography. Am J Neuroradiol 17:431–438

    CAS  Google Scholar 

  9. Greitz D, Greitz T, Hindmarsh TV (1997) A new view on the CSF-circulation with the potential for pharmacological treatment of childhood hydrocephalus. Acta Paediatr 86:125–132

    CAS  PubMed  Google Scholar 

  10. Greitz D, Greitz T (1997) The pathogenesis and hemodynamics of hydrocephalus. A proposal for a new understanding. Int J Neuroradiol 3:367–375

    Google Scholar 

  11. Zmajevic M, Klarica M, Varda R, Kudelic N, Bulat M (2002) Elimination of phenolsulfonphthalein from the cerebrospinal fluid via capillaries in central nervous system in cats by active transport. Neurosci Lett 321:123–125

    Article  CAS  PubMed  Google Scholar 

  12. McComb JG (1983) Recent research into the nature of the cerebrospinal fluid formation and absorption. J Neurosurg 59:369–383

    CAS  PubMed  Google Scholar 

  13. Welch K, Friedman V (1960) The cerebrospinal fluid valves. Brain 83:454–469

    CAS  Google Scholar 

  14. Di Chiro G (1966) Observation on the circulation of the cerebrospinal fluid. Acta Radiol Diagn 5:988–1002

    Google Scholar 

  15. Starling EH (1896) On the absorption of fluids from the connective tissue spaces. J Physiol 19:312–326

    Google Scholar 

  16. Grände PO, Asgeirsson B, Nordström CH (2002) Volume-targeted therapy of increased intracranial pressure: the Lund concept unifies surgical and non-surgical treatments. Acta Anaesthesiol Scand 46:929–941

    Article  PubMed  Google Scholar 

  17. Greitz D, Wirestam R, Franck A, Nordell B, Thomsen C, Ståhlberg F (1992) Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging. The Monro–Kellie doctrine revisited. Neuroradiology 34:370–380

    CAS  PubMed  Google Scholar 

  18. Greitz D (2002) On the active vascular absorption of plasma proteins from tissue: rethinking the role of the lymphatic system. Med Hypoth 59:696–702

    Article  CAS  PubMed  Google Scholar 

  19. Stephensen H, Tisell M, Wikkelsö C (2002) There is no transmantle pressure gradient in communicating or noncommunicating hydrocephalus. Neurosurgery 50:763–771

    PubMed  Google Scholar 

  20. Conner EC, Foley L, Black PM (1984) Experimental normal-pressure hydrocephalus is accompanied by increased transmantle pressure. J Neurosurg 61:322–327

    CAS  PubMed  Google Scholar 

  21. Guinane JE (1977) Why does hydrocephalus progress? J Neurol Sci 32:1–8

    Article  CAS  PubMed  Google Scholar 

  22. Greitz D, Hannerz J, Rähn T, Bolander H, Ericsson A (1994) MR imaging of cerebrospinal fluid dynamics in health and disease. On the vascular pathogenesis of communicating hydrocephalus and benign intracranial hypertension. Acta Radiol 35:204–211

    CAS  PubMed  Google Scholar 

  23. Greitz D, Hannerz J, Bellander B-M, Hindmarsh T (1995) Restricted arterial expansion as a universal causative factor in communicating hydrocephalus. In: Takahashi M, Korogi Y, Moseley I (eds) Proceedings of the XV Symposium Neuroradiologicum. Neuroradiology 37:14–18

    Google Scholar 

  24. Greitz T, Grepe A, Kalmer M, Lopez J (1969) Pre- and postoperative evaluation of cerebral blood flow in low-pressure hydrocephalus. J Neurosurg 31:644–651

    CAS  PubMed  Google Scholar 

  25. Jindal A, Mahapatra AK (1998) Correlation of ventricular size and transcranial Doppler findings before and after ventricular peritoneal shunt in patients with hydrocephalus. J Neurol Neurosurg Psychiatry 65:269–271

    CAS  PubMed  Google Scholar 

  26. Rainov NG, Weise JB, Burkert W (2000) Transcranial Doppler sonography in adult hydrocephalic patients. Neurosurg Rev 23:34–38

    Article  CAS  PubMed  Google Scholar 

  27. Egnor M, Rosiello A, Zheng L (2001) A model of intracranial pulsations. Pediatr Neurosurg 35:284–298

    Article  CAS  PubMed  Google Scholar 

  28. Egnor M, Zheng L, Rosiello A, Gutman F, Davis R (2002) A model of pulsations in communicating hydrocephalus. Pediatr Neurosurg 36:281–303

    Article  PubMed  Google Scholar 

  29. Katayama S, Asari S, Ohmoto T (1993) Quantitative measurement of normal and hydrocephalic fluid flow using phase contrast cine MR imaging. Acta Med Okayama 47:157–168

    CAS  PubMed  Google Scholar 

  30. Ekstedt J, Friden H (1984) CSF hydrodynamics for the study of adult hydrocephalus syndrome. In: Shapiro K, Marmarou A, Portnoy H (eds) Hydrocephalus. Raven, New York, pp 363–382

  31. Sklar FH, Diehl JT, Beyer CW, Ramanathan M, Clark WK (1980) Brain elasticity changes with ventriculomegaly. J Neurosurg 53:173–179

    CAS  PubMed  Google Scholar 

  32. Sklar FH, Linder M (1984) The role of the pressure–volume relationship of brain elasticity and treatment of hydrocephalus. In: Shapiro K, Marmarou A, Portnoy H (eds) Hydrocephalus. Raven, New York, pp 323–337

  33. Borgesen SE, Gjerris F (1987) Relationships between intracranial pressure, ventricular size, and resistance to CSF outflow. J Neurosurg 67:535–539

    PubMed  Google Scholar 

  34. Fukuhara T, Luciano MG (2001) Clinical features of late-onset idiopathic aqueductal stenosis. Surg Neurol 55:132–136

    Article  CAS  PubMed  Google Scholar 

  35. Mitchell P, Mathew B (1999) Third ventriculostomy in normal pressure hydrocephalus. Br J Neurosurg 13:382–385

    Article  CAS  PubMed  Google Scholar 

  36. Schroeder HWS, Niendorf WR, Gaab MR (2002) Complications of endoscopic third ventriculostomy. J Neurosurg 96:1032–1040

    PubMed  Google Scholar 

  37. Savoiardo M, Grisoli M (2001) Imaging dementias. Eur Radiol 11:484–492

    Article  CAS  PubMed  Google Scholar 

  38. Holodny AI, Waxman R, George AE, Rusinek H Kalnin AJ, de Leon M (1998) MR differential diagnosis of normal-pressure hydrocephalus and Alzheimer disease: significance of perihippocampal fissures. Am J Neuroradiol 89:813–819

    Google Scholar 

  39. Sjaastad O, Skalpe IO, Engeset A (1969) The width of the temporal horn in the differential diagnosis between pressure hydrocephalus and hydrocephalus ex vacuo. Neurology 19:1087–1093

    CAS  PubMed  Google Scholar 

  40. Greitz T, Grepe A (1971) Encephalography in the diagnosis of convexity block hydrocephalus. Acta Radiol 11:232–241

    CAS  Google Scholar 

  41. Barkovich AJ (2000) Hydrocephalus. In: Barkovich AJ (ed) Pediatric neuroimaging, 3rd edn. Lippincott Williams & Williams, Philadelphia, pp 581–620

  42. Pena A, Bolton MD, Whitehouse H, Pickard JD (1999) Effects of brain ventricular shape on periventricular biomechanics: a finite-element analysis. Neurosurgery 45:107–116

    CAS  PubMed  Google Scholar 

  43. Jinkins JR (1991) Clinical manifestations of hydrocephalus caused by impingement of the corpus callosum on the falx: an MR study in 40 patients. Am J Neuroradiol 12:331–340

    CAS  PubMed  Google Scholar 

  44. Fischbein NJ, Ciricillo SF, Barr RM, McDermott M, Edwards MS, Geary S, Barkovich AJ (1998) Endoscopic third ventriculocisternostomy: MR assessment of patency with 2-D cine phase-contrast versus T2-weighted fast spin echo technique. Pediatr Neurosurg 28:70–78

    Article  CAS  PubMed  Google Scholar 

  45. Laitt RD, Mallucci CL, Jaspan T, McConachie NS, Vloeberghs M, Punt J (1999) Constructive interference in steady-state 3D Fourier-transform MRI in the management of hydrocephalus and third ventriculostomy. Neuroradiology 41:117–123

    Article  CAS  PubMed  Google Scholar 

  46. Aleman J, Jokura H, Higano S, Akabane A, Shirane R, Yoshimoto T (2001) Value of constructive interference in steady-state, three-dimensional, Fourier transformation (CISS) magnetic resonance imaging for the neuroendoscopic treatment of hydrocephalus and intracranial cysts. Neurosurgery 48:1291–1295

    CAS  PubMed  Google Scholar 

  47. Murphy BP, Inder TE, Rooks V, Taylor GA, Anderson NJ, Mogridge N, Horwood LJ, Volpe JJ (2002) Posthaemorrhagic ventricular dilatation in the premature infant: natural history and predictors of outcome. Arch Dis Child [Fetal Neonatal Ed] 87:F37–F41

    Article  CAS  PubMed  Google Scholar 

  48. Taylor AG, Peter JC (2001) Advantages of delayed VP shunting in post-haemorrhagic hydrocephalus seen in low-birth-weight infants. Childs Nerv Syst 17:328–333

    Article  CAS  PubMed  Google Scholar 

  49. Kim DS, Oi S, Hidaka M, Sato O, Choi JU (1999) A new experimental model of obstructive hydrocephalus in the rat: the micro-balloon technique. Childs Nerv Syst 15:250–255

    Article  CAS  PubMed  Google Scholar 

  50. Cosan TE, Guner AI, Akcar N, Uzuner K, Tel E (2002) Progressive ventricular enlargement in the absence of high ventricular pressure in an experimental neonatal rat model. Child Nerv Syst 18:10–14

    Article  PubMed  Google Scholar 

  51. Bradley WG, Whittemore AR, Watanabe AS, Davis SJ, Teresi LM, Homyak M (1991) Association of deep white matter infarction with chronic communicating hydrocephalus: implications regarding the possible origin of normal-pressure hydrocephalus. Am J Neuroradiol 12:31–39

    PubMed  Google Scholar 

  52. Kraus JK, Regel JP, Vach W, Droste DW, Borremans JJ, Mergner T (1996) Vascular risk factors and arteriosclerotic disease in idiopathic normal pressure hydrocephalus in elderly. Stroke 27:24–29

    PubMed  Google Scholar 

  53. Cinalli G (1999) Alternatives to shunting. Child Nerv Syst 15:718–731

    Article  CAS  PubMed  Google Scholar 

  54. Buxton N, Macarthur D, Mallucci C, Punt J, Vloeberghs M (1998) Neuroendoscopic third ventriculostomy in patients less than 1 year old. Pediatr Neurosurg 29:73–76

    CAS  PubMed  Google Scholar 

  55. Mohanty A, Vasudev MK, Sampath S, Radhesh S, Sastry Kolluri VR (2002) Failed endoscopic third ventriculostomy in children: management options. Pediatr Neurosurg 37:304–309

    Article  PubMed  Google Scholar 

  56. Siomin V, Cinalli G, Grotenhuis A, Golash A, Oi S, Kothbauer K, Weiner H, Roth J, Beni-Adani L, Pierre-Kahn A, Takahashi Y, Mallucci C, Abbott R, Wisoff J, Constantini S (2002) Endoscopic third ventriculostomy in patients with cerebrospinal fluid infection and/or hemorrhage. J Neurosurg 97:519–524

    PubMed  Google Scholar 

  57. Buxton N, Punt J (1998) Failure to follow patients with hydrocephalus can lead to death. Br J Neurosurg 12:399–401

    Article  CAS  PubMed  Google Scholar 

  58. Larsson A, Stephensen H, Wikkelsö C (1999) Adult patients with “asymptomatic” and “compensated” hydrocephalus benefit from surgery. Acta Neurol Scand 99:81–90

    CAS  Google Scholar 

  59. Shapiro K, Fried A, Marmarou A (1985) Biomechanical and hydrodynamic characterization of the hydrocephalic infant. J Neurosurg 63:69–75

    CAS  PubMed  Google Scholar 

  60. Shapiro K, Marmarou A, Shulman K (1993) Abnormal brain biomechanics in the hydrocephalic child. In: Concepts in pediatric neurosurgery 1982, vol 2. Pediatr Neurosurg 19:216–222

    CAS  PubMed  Google Scholar 

  61. Marmarou A, Foda MA, Bandoh K, Yoshihara M, Yamamoto T, Tsuji O, Zasler N, Ward JD, Young HF (1996) Posttraumatic ventriculomegaly: hydrocephalus or atrophy? A new approach for diagnosis using CSF dynamics. J Neurosurg 85:1026–1035

    CAS  PubMed  Google Scholar 

  62. Pollay M (1984) Research into human hydrocephalus: a review. In: Shapiro K, Marmarou A, Portnoy H (eds) Hydrocephalus. Raven, New York, pp 363–382

  63. Foltz EL, Aine C (1981) Diagnosis of hydrocephalus by CSF pulse-wave analysis: a clinical study. Surg Neurol 15:283–93

    CAS  PubMed  Google Scholar 

  64. Foltz EL (1984) Hydrocephalus and CSF pulsatility: clinical and laboratory studies. In: Shapiro K, Marmarou A, Portnoy H (eds) Hydrocephalus. Raven, New York, pp 337–362

  65. Fukuhara T, Luciano MG, Brant CL, Klauscie J (2001) Effects of ventriculoperitoneal shunt removal on cerebral oxygenation and brain compliance in chronic obstructive-hydrocephalus. J Neurosurg 94:573–581

    CAS  PubMed  Google Scholar 

  66. Taylor GA, Madsen JR (1996) Neonatal hydrocephalus: hemodynamic response to fontanelle compression—correlation with intracranial pressure and need for shunt placement. Radiology 210:685–689

    Google Scholar 

  67. Westra SJ, Lazareff J, Curran JG, Sayre JW, Kawamoto H Jr (1998) Transcranial Doppler ultrasonography to evaluate need for cerebrospinal fluid drainage in hydrocephalic children. J Ultrasound Med 17:561–569

    CAS  PubMed  Google Scholar 

  68. Gonzalez-Darder JM, Barcia-Salorio JL (1989) Pulse amplitude and volume–pressure relationships in experimental hydrocephalus. Acta Neurochir (Wien) 97:166

    Google Scholar 

  69. Di Rocco C, Pettorossi VE, Caldarelli M, Mancinelli R, Velardi F (1978) Communicating hydrocephalus induced by mechanically increased amplitude of the intraventricular cerebrospinal fluid pressure: experimental studies. Exp Neurol 59:40–52

    PubMed  Google Scholar 

  70. Bering EA Jr (1962) Circulation of the cerebrospinal fluid. Demonstration of the choroid plexuses as the generator of the force for flow of fluid and ventricular enlargement. J Neurosurg 19:405–413

    PubMed  Google Scholar 

  71. White DN, Wilson KC, Curry GR, Stevenson RJ (1979) The limitation of pulsatile flow through the aqueduct of Sylvius as a cause of hydrocephalus. J Neurol Sci 42:11–51

    Article  CAS  PubMed  Google Scholar 

  72. Feinberg DA, Mark AS (1987) Human brain motion and cerebrospinal fluid circulation demonstrated with MR velocity imaging. Radiology 163:793–799

    CAS  PubMed  Google Scholar 

  73. Poncelet BP, Wedeen VJ, Weisskoff RM, Cohen MS (1992) Brain parenchyma motion: measurement with cine echo-planar MR imaging. Radiology 185:645–651

    CAS  PubMed  Google Scholar 

  74. Enzmann DR, Pelc NJ (1992) Brain motion: measurement with phase-contrast MR imaging. Radiology 185:653–660

    CAS  PubMed  Google Scholar 

  75. Bergstrand G, Bergström M, Nordell B, Ståhlberg F, Ericsson A, Hemmingsson A, Sperber G, Thuomas KA, Jung B (1985) Cardiac gated MR imaging of cerebrospinal fluid flow. J Comput Assist Tomogr 9:1003–1006

    Google Scholar 

  76. Bradley WG, Kortman KE, Burgoyne B (1986) Flowing cerebrospinal fluid in normal and hydrocephalic states: appearance on MR images. Radiology 159:611–616

    PubMed  Google Scholar 

  77. Bradley WG, Whittemore AR, Kortman KE, Watanabe AS, Homyak M, Teresi LM, Davis SJ (1991) Marked cerebrospinal fluid void: indicator of successful shunt in patients with suspected normal-pressure hydrocephalus. Radiology 178:459–466

    PubMed  Google Scholar 

  78. Bradley WG Jr, Scalzo D, Queralt J, Nitz WN, Atkinson DJ, Wong P (1996) Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology 198:523–529

    PubMed  Google Scholar 

  79. Kraus JK, Regel JP, Vach W, Jungling FD, Droste D, Wakloo AK (1997) Flow void of cerebrospinal fluid in idiopathic normal pressure hydrocephalus: can it predict outcome after surgery? Neurosurgery 40:67–74

    PubMed  Google Scholar 

  80. Dixon GR, Friedman JA, Luetmer PH, Quast LM, McClelland RL, Petersen RC, Maher CO, Ebersold MJ (2002) Use of cerebrospinal fluid flow rates measured by phase-contrast MR to predict outcome of ventriculoperitoneal shunting for idiopathic normal-pressure hydrocephalus. Mayo Clin Proc 77:509–514

    PubMed  Google Scholar 

  81. Bateman GA (2000) Vascular compliance in normal pressure hydrocephalus. Am J Neuroradiol 21:1574–1585

    CAS  Google Scholar 

  82. Bateman GA (2002) Pulse-wave encephalopathy: a comparative study of the hydrodynamics of leukoaraiosis and normal-pressure hydrocephalus. Neuroradiology 44:740–748

    CAS  PubMed  Google Scholar 

  83. Bateman GA (2003) The reversibility of reduced cortical vein compliance in normal-pressure hydrocephalus following shunt insertion. Neuroradiology 45:65–70

    CAS  PubMed  Google Scholar 

  84. Ertl-Wagner BB, Lienemann A, Reith W, Reiser MF (2001) Demonstration of periventricular brain motion during a Valsalva maneuver: description of technique, evaluation in healthy volunteers and first results in hydrocephalic patients. Eur Radiol 11:1998–2003

    Article  CAS  PubMed  Google Scholar 

  85. Conrad WA (1969) Pressure–flow relationships in collapsible tubes. IEEE Trans Bio Med Eng 16:284–295

    CAS  Google Scholar 

Download references

Acknowledgement

This article was financed in part by a grant from Stiftelsen för Medicinsk Bildering till Erik Lysholms Minne (The Foundation for Medical Imaging in Memory of Erik Lysholm).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Greitz.

Additional information

Commentaries on this paper are available at http://dx.doi.org/10.1007/s10143-004-0327-8 and http://dx.doi.org/10.1007/s10143-004-0328-7

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greitz, D. Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev 27, 145–165 (2004). https://doi.org/10.1007/s10143-004-0326-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-004-0326-9

Keywords

Navigation