Skip to main content

Rho-modifying C3-like ADP-ribosyltransferases

  • Chapter
  • First Online:

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 152))

Abstract

C3-like exoenzymes comprise a family of seven bacterial ADP-ribosyltransferases, which selectively modify RhoA, B, and C at asparagine-41. Crystal structures of C3 exoenzymes are available, allowing novel insights into the structure-function relationships of these exoenzymes. Because ADP-ribosylation specifically inhibits the biological functions of the low-molecular mass GTPases, C3 exoenzymes are established pharmacological tools to study the cellular functions of Rho GTPases. Recent studies, however, indicate that the functional consequences of C3-induced ADP-ribosylation are more complex than previously suggested. In the present review the basic properties of C3 exoenzymes are briefly summarized and new findings are reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi T, Vita R, Sannohe S, Stafford S, Alam R, Kayaba H, Chihara J (2001) The functional role of rho and rho-associated coiled-coil forming protein kinase in eotaxin signaling of eosinophils. J Immunol 167:4609–4615

    PubMed  CAS  Google Scholar 

  • Aepfelbacher M, Essler M, Huber E, Czech A, Weber PC (1996) Rho is a negative regulator of human monocyte spreading. J Immunol 157:5070–5075

    PubMed  CAS  Google Scholar 

  • Ahnert-Hilger G, Holtje M, Grosse G, Pickert G, Mucke C, Nixdorf-Bergweiler B, Boquet P, Hofmann F, Just I (2004) Differential effects of Rho GTPases on axonal and dendritic development in hippocampal neurones. J Neurochem 90:9–18

    PubMed  CAS  Google Scholar 

  • Aktories K (1997a) Bacterial toxins that target Rho proteins. J Clin Invest 99:827–829

    PubMed  CAS  Google Scholar 

  • Aktories K (1997b) Rho proteins: targets for bacterial toxins. Trends Microbiol 5:282–288

    PubMed  CAS  Google Scholar 

  • Aktories K (2000) Bacterial protein toxins as tools in cell biology and pharmacology. In: Cossart P, Boquet P, Normark S, Rappuoli R (eds) Cellular microbiology. ASM Press, Washington, pp 221–237

    Google Scholar 

  • Aktories K, Bärmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E (1986) Botulinum C2 toxin ADP-ribosylates actin. Nature 322:390–392

    PubMed  CAS  Google Scholar 

  • Aktories K, Weller U, Chhatwal GS (1987) Clostridium botulinum type C produces a novel ADP-ribosyltransferase distinct from botulinum C2 toxin. FEBS Lett 212:109–113

    PubMed  CAS  Google Scholar 

  • Aktories K, Rösener S, Blaschke U, Chhatwal GS (1988) Botulinum ADP-ribosyltransferase C3. Purification of the enzyme and characterization of the ADP-ribosylation reaction in platelet membranes. Eur J Biochem 172:445–450

    PubMed  CAS  Google Scholar 

  • Aktories K, Braun U, Rösener S, Just I, Hall A (1989) The rho gene product expressed in E. coli is a substrate of botulinum ADP-ribosyltransferase C3. Biochem Biophys Res Commun 158:209–213

    PubMed  CAS  Google Scholar 

  • Aktories K, Mohr C, Koch G (1992) Clostridium botulinum C3 ADP-ribosyltransferase. Curr Top Microbiol Immunol 175:115–131

    PubMed  CAS  Google Scholar 

  • Alberts AS, Geneste O, Treisman R (1998) Activation of SRF-regulated chromosomal templates by Rho-family GTPases requires a signal that also induces H4 hyperacetylation. Cell 92:475–487

    PubMed  CAS  Google Scholar 

  • Anderson SI, Hotchin NA, Nash GB (2000) Role of the cytoskeleton in rapid activation of CD11b/CD18 function and its subsequent downregulation in neutrophils. J Cell Sci 113(15):2737–2745

    PubMed  CAS  Google Scholar 

  • Aullo P, Giry M, Olsnes S, Popoff MR, Kocks C, Boquet P (1993) A chimeric toxin to study the role of the 21 kDa GTP binding protein rho in the control of actin microfilament assembly. EMBO J 12:921–931

    PubMed  CAS  Google Scholar 

  • Balboa MA, Insel PA (1995) Nuclear phospholipase D in Madin-Darby canine kidney cells—Guanosine 5′-O-(thiotriphosphate)-stimulated activation is mediated by RhoA and is downstream of protein kinase C. J Biol Chem 270:29843–29847

    PubMed  CAS  Google Scholar 

  • Barbieri JT, Riese MJ, Aktories K (2002) Bacterial toxins that modify the actin cytoskeleton. Annu Rev Cell Dev Biol 18:315–344

    PubMed  CAS  Google Scholar 

  • Barry ST, Flinn HM, Humphries MJ, Critchley DR, Ridley AJ (1997) Requirement for Rho in integrin signalling. Cell Adhes Commun 4:387–398

    PubMed  CAS  Google Scholar 

  • Barth H, Hofmann F, Olenik C, Just I, Aktories K (1998) The N-terminal part of the enzyme component (C2I) of the binary Clostridium botulinum C2 toxin interacts with the binding component C2II and functions as a carrier system for a Rho ADP-ribosylating C3-like fusion toxin. Infect Immun 66:1364–1369

    PubMed  CAS  Google Scholar 

  • Barth H, Olenik C, Sehr P, Schmidt G, Aktories K, Meyer DK (1999) Neosynthesis and activation of Rho by Escherichia coli cytotoxic necrotizing factor (CNF1) reverse cytopathic effects of ADP-ribosylated Rho. J Biol Chem 274:27407–27414

    PubMed  CAS  Google Scholar 

  • Barth H, Blöcker D, Behlke J, Bergsma-Schutter W, Brisson A, Benz R, Aktories K (2000) Cellular uptake of Clostridium botulinum C2 toxin requires oligomerization and acidification. J Biol Chem 275:18704–18711

    PubMed  CAS  Google Scholar 

  • Barth H, Blöcker D, Aktories K (2002) The uptake machinery of clostridial actin ADP-ribosylating toxins—a cell delivery system for fusion proteins and polypeptide drugs. Naunyn-Schmiedeberg’s Arch Pharmacol 366:501–512

    CAS  Google Scholar 

  • Bayles KW, Wesson CA, Liou LE, Fox LK, Bohach GA, Trumble WR (1998) Intracellular Staphylococcus aureus escapes the endosome and induces apoptosis in epithelial cells. Infect Immun 66:336–342

    PubMed  CAS  Google Scholar 

  • Bell CE, Eisenberg D (1996) Crystal structure of diphtheria toxin bound to nicotinamide adenine dinucleotide. Biochemistry 35:1137–1149

    PubMed  CAS  Google Scholar 

  • Bishop AL, Hall A (2000) Rho GTPases and their effector proteins. Biochem J 348:241–255

    PubMed  CAS  Google Scholar 

  • Bobak DA (1999) Clostridial toxins: Molecular probes of Rho-dependent signaling and apoptosis. Mol Cell Biochem 193:37–42

    PubMed  CAS  Google Scholar 

  • Böhmer J, Jung M, Sehr P, Fritz G, Popoff M, Just I, Aktories K (1996) Active site mutation of the C3-like ADP-ribosyltransferase from Clostridium limosum—analysis of glutamic acid 174. Biochemistry 35:282–289

    PubMed  Google Scholar 

  • Boquet P, Munro P, Fiorentini C, Just I (1998) Toxins from anaerobic bacteria: specificity and molecular mechanisms of action. Curr Opin Microbiol 1:66–74

    PubMed  CAS  Google Scholar 

  • Borroto A, Gil D, Delgado P, Vicente-Manzanares M, Alcover A, Sanchez-Madrid F, Alarcon B (2000) Rho regulates T cell receptor ITAM-induced lymphocyte spreading in an integrin-independent manner. Eur J Immunol 30:3403–3410

    PubMed  CAS  Google Scholar 

  • Braun U, Habermann B, Just I, Aktories K, Vandekerckhove J (1989) Purification of the 22 kDa protein substrate of botulinum ADP-ribosyltransferase C3 from porcine brain cytosol and its characterization as a GTP-binding protein highly homologous to the rho gene product. FEBS Lett 243:70–76

    PubMed  CAS  Google Scholar 

  • Buhl AM, Johnson NL, Dhanasekaran N, Johnson GL (1995) Gα12 and Gα13 stimulate Rho-dependent stress fiber formation and focal adhesion assembly. J Biol Chem 270:24631–24634

    PubMed  CAS  Google Scholar 

  • Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179

    PubMed  CAS  Google Scholar 

  • Caron E, Hall A (1998) Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282:1717–1721

    PubMed  CAS  Google Scholar 

  • Chardin P, Boquet P, Madaule P, Popoff MR, Rubin EJ, Gill DM (1989) The mammalian G protein rho C is ADP-ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilament in Vero cells. EMBO J 8:1087–1092

    PubMed  CAS  Google Scholar 

  • Chen LY, Zuraw BL, Liu FT, Huang S, Pan ZK (2002) IL-1 receptor-associated kinase and low molecular weight GTPase RhoA signal molecules are required for bacterial lipopolysaccharide-induced cytokine gene transcription. J Immunol 169:3934–3939

    PubMed  CAS  Google Scholar 

  • Choe S, Bennett MJ, Fujii G, Curmi PMG, Kantardjieff KA, Collier RJ, Eisenberg D (1992) The crystal structure of diphtheria toxin. Nature 357:216–222

    PubMed  CAS  Google Scholar 

  • Chong LD, Traynor-Kaplan A, Bokoch GM, Schwartz MA (1994) The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell 79:507–513

    PubMed  CAS  Google Scholar 

  • Dergham P, Ellezam B, Essagian C, Avedissian H, Lubell WD, McKerracher L (2002) Rho signaling pathway targeted to promote spinal cord repair. J Neurosci 22:6570–6577

    PubMed  CAS  Google Scholar 

  • Doussau F, Gasman S, Humeau Y, Vitiello F, Popoff M, Boquet P, Bader M-F, Poulain B (2000) A Rho-related GTPase is involved in Ca2+-dependent neurotransmitter exocytosis. J Biol Chem 275:7764–7779

    PubMed  CAS  Google Scholar 

  • Dreikhausen U, Varga G, Hofmann F, Barth H, Aktories K, Resch K, Szamel M (2001) Regulation by rho family GTPases of IL-1 receptor-induced signaling: C3-like chimeric toxin and Clostridium difficile toxin B inhibit signaling pathways involved in IL-2 gene expression. Eur J Immmunol 31:1610–1619

    CAS  Google Scholar 

  • Dubreuil CI, Winton MJ, McKerracher L (2003) Rho activation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system. J Cell Biol 162:233–243

    PubMed  CAS  Google Scholar 

  • Eckhardt M, Barth H, Blöcker D, Aktories K (2000) Binding of Clostridium botulinum C2 toxin to asparagine-linked complex and hybrid carbohydrates. J Biol Chem 275:2328–2334

    PubMed  CAS  Google Scholar 

  • Eda M, Yonemura S, Kato T, Watanabe N, Ishizaki T, Madaule P, Narumiya S (2001) Rho-dependent transfer of Citron-kinase to the cleavage furrow of dividing cells. J Cell Sci 114:3273–3284

    PubMed  CAS  Google Scholar 

  • Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635

    PubMed  CAS  Google Scholar 

  • Evans HR, Sutton JM, Holloway DE, Ayriss J, Shone CC, Acharya KR (2003) The crystal structure of C3stau2 from Staphylococcus aureus and its complex with NAD. J Biol Chem 278:45924–45930

    PubMed  CAS  Google Scholar 

  • Feig LA, Urano T, Cantor S (1996) Evidence for a Ras/Ral signaling cascade. Trends Biochem Sci 21:438–441

    PubMed  CAS  Google Scholar 

  • Fiorentini C, Gauthier M, Donelli G, Boquet P (1998) Bacterial toxins and the Rho GTP-binding protein: what microbes teach us about cell regulation. Cell Death Differ 5:720–728

    PubMed  CAS  Google Scholar 

  • Flatau G, Lemichez E, Gauthier M, Chardin P, Paris S, Fiorentini C, Boquet P (1997) Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature 387:729–733

    PubMed  CAS  Google Scholar 

  • Foster R, Hu K-Q, Lu Y, Nolan KM, Thissen J, Settleman J (1996) Identification of a novel human Rho protein with unusual properties: GTPase deficiency and in vivo farnesylation. Mol Cell Biol 16:2689–2699

    PubMed  CAS  Google Scholar 

  • Fromm C, Coso OA, Montaner S, Xu N, Gutkind JS (1997) The small GTP-binding protein Rho links G protein-coupled receptors and Gα12 to the serum response element and to cellular transformation. Proc Natl Acad Sci 94:10098–10103

    PubMed  CAS  Google Scholar 

  • Fu Y, Galán JE (1999) A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401:293–297

    PubMed  CAS  Google Scholar 

  • Fujihara H, Walker LA, Gong MC, Lemichez E, Boquet P, Somlyo AV, Somlyo AP (1997) Inhibition of RhoA translocation and calcium sensitization by in vivo ADP-ribosylation with the chimeric toxin DC3B. Mol Biol Cell 8:2437–2447

    PubMed  CAS  Google Scholar 

  • Genth H, Gerhard R, Maeda A, Amano M, Kaibuchi K, Aktories K, Just I (2003a) Entrapment of Rho ADP-ribosylated by Clostridium botulinum C3 exoenzyme in the Rho-GDI-1 complex. J Biol Chem 278:28523–28527

    PubMed  CAS  Google Scholar 

  • Genth H, Schmidt M, Gerhard R, Aktories K, Just I (2003b) Activation of phospholipase D1 by ADP-ribosylated RhoA. Biochem Biophys Res Commun 302:127–132

    PubMed  CAS  Google Scholar 

  • Goehring U-M, Schmidt G, Pederson KJ, Aktories K, Barbieri JT (1999) The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J Biol Chem 274:36369–36372

    PubMed  CAS  Google Scholar 

  • Gohla A, Schultz G, Offermanns S (2000) Role for G12/G13 in agonist-induced vascular smooth muscle cell contraction. Circ Res 87:221–227

    PubMed  CAS  Google Scholar 

  • Grunwald IC, Klein R (2002) Axon guidance: receptor complexes and signaling mechanisms. Curr Opin Neurobiol 12:250–259

    PubMed  CAS  Google Scholar 

  • Guasch RM, Scambler P, Jones GE, Ridley AJ (1998) RhoE regulates actin cytoskeleton organization and cell migration. Mol Cell Biol 18:4761–4771

    PubMed  CAS  Google Scholar 

  • Hall A (1994) Small GTP-binding proteins and the regulation of the actin cytoskeleton. Annu Rev Cell Biol 10:31–54

    PubMed  CAS  Google Scholar 

  • Han S, Tainer JA (2002) The ARTT motif and a unified structural understanding of substrate recognition in ADP-ribosylating bacterial toxins and eukaryotic ADP-ribosyltransferases. Int J Med Microbiol 291:523–529

    PubMed  CAS  Google Scholar 

  • Han S, Craig JA, Putnam CD, Carozzi NB, Tainer JA (1999) Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. Nat Struct Biol 6:932–936

    PubMed  CAS  Google Scholar 

  • Han S, Arvai AS, Clanc y SB, Tainer JA (2001) Crystal structure and novel recognition motif of Rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: Structural insights for recognition specificity and catalysis. J Mol Biol 305:95–107

    PubMed  CAS  Google Scholar 

  • Hardt W-D, Chen L-M, Schuebel KE, Bustelo XR, Galán JE (1998) S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93:815–826

    PubMed  CAS  Google Scholar 

  • Heath JP, Holifield BF (1991) Cell locomotion: new research tests old ideas on membrane and cytoskeletal flow. Cell Motil Cytoskeleton 18:245–257

    PubMed  CAS  Google Scholar 

  • Henning SW, Cantrell DA (1998) GTPases in antigen receptor signalling. Curr Opin Immunol 10:322–329

    PubMed  CAS  Google Scholar 

  • Henning SW, Galandrini R, Hall A, Cantrell DA (1997) The GTPase Rho has a critical regulatory role in thymus development. EMBO J 16:2397–2407

    PubMed  CAS  Google Scholar 

  • Hilal-Dandan R, Means CK, Gustafsson AB, Morissette MR, Adams JW, Brunton LL, Heller BJ (2004) Lysophosphatidic acid induces hypertrophy of neonatal cardiac myocytes via activation of Gi and Rho. J Mol Cell Cardiol 36:481–493

    PubMed  CAS  Google Scholar 

  • Hill CS, Wynne J, Treisman R (1995) The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell 81:1159–1170

    PubMed  CAS  Google Scholar 

  • Hippenstiel S, Schmeck B, N’Guessan PD, Seybold J, Krüll M, Preissner K, Von Eichel-Streiber C, Suttorp N (2002) Rho protein inactivation induced apoptosis of cultured human endothelial cells. Am J Physiol Lung Cell Mol Physiol 283:L830–838

    PubMed  CAS  Google Scholar 

  • Hoffmann C, Pop M, Leemhuis J, Schirmer J, Aktories K, Schmidt G (2004) The Yersinia pseudotuberculosis cytotoxic necrotizing factor (CNFY) selectively activates RhoA. J Biol Chem 279(16):16026–10632

    PubMed  CAS  Google Scholar 

  • Inoue S, Sugai M, Murooka Y, Paik S-Y, Hong Y-M, Ohgai H, Suginaka H (1991) Molecular cloning and sequencing of the epidermal cell differentiation inhibitor gene from Staphylococcus aureus. Biochem Biophys Res Commun 174:459–464

    PubMed  CAS  Google Scholar 

  • Jaffe AB, Hall A (2002) Rho GTPases in transformation and metastasis. Adv Cancer Res 84:57–80

    PubMed  CAS  Google Scholar 

  • Jalink K, Van Corven EJ, Hengeveld T, Morii N, Narumiya S, Moolenaar WH (1994) Inhibition of lysophosphatidate-and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J Cell Biol 126:801–810

    PubMed  CAS  Google Scholar 

  • Jiang H, Luo J-Q, Urano T, Frankel P, Lu Z, Foster DA, Feig LA (1995) Involvement of Ral GTPase in v-Src-induced phospholipase D activation. Nature 378:409–412

    PubMed  CAS  Google Scholar 

  • Jullien-Flores V, Dorseuil O, Romero F, Letourneur F, Saragosti S, Berger R, Tavitian A, Gacon G, Camonis JH (1995) Bridging Ral GTPase to Rho pathways—RLIP76, a Ral effector with CDC42/Rac GTPase-activating protein activity. J Biol Chem 270:22473–22477

    PubMed  CAS  Google Scholar 

  • Just I, Mohr C, Schallehn G, Menard L, Didsbury JR, Vandekerckhove J, van Damme J, Aktories K (1992) Purification and characterization of an ADP-ribosyltransferase produced by Clostridium limosum. J Biol Chem 267:10274–10280

    PubMed  CAS  Google Scholar 

  • Just I, Selzer J, Jung M, van Damme J, Vandekerckhove J, Aktories K (1995a) Rho-ADP-ribosylating exoenzyme from Bacillus cereus—purification, characterization and identification of the NAD-binding site. Biochemistry 34:334–340

    PubMed  CAS  Google Scholar 

  • Just I, Selzer J, Wilm M, Von Eichel-Streiber C, Mann M, Aktories K (1995b) Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375:500–503

    PubMed  CAS  Google Scholar 

  • Just I, Selzer J, Hofmann F, Green GA, Aktories K (1996) Inactivation of Ras by Clostridium sordellii lethal toxin-catalyzed glucosylation. J Biol Chem 271:10149–10153

    PubMed  CAS  Google Scholar 

  • Just I, Hofmann F, Genth H, Gerhard R (2001) Bacterial protein toxins inhibiting low-molecular-mass GTP-binding proteins. Int J Med Microbiol 291:243–250

    PubMed  CAS  Google Scholar 

  • Kanumilli S, Toms NJ, Venkateswarlu K, Mellor H, Roberts PJ (2002) Functional coupling of rat metabotropic glutamate 1a receptors to phospholipase D in CHO cells: involvement of extracellular Ca2+, protein kinase C, tyrosine kinase and Rho-A. Neuropharmacology 42:1–8

    PubMed  CAS  Google Scholar 

  • Kato T, Watanabe N, Morishima Y, Fujita A, Ishizaki T, Narumiya S (2001) Localization of a mammalian homolog of diaphanous, mDia1, to the mitotic spindle in HeLa cells. J Cell Sci 114:775–784

    PubMed  CAS  Google Scholar 

  • Klages B, Brandt U, Simon MI, Schultz G, Offermanns S (1999) Activation of G12/G13 results in shape change and Rho/Rho-kinase-mediated myosin light chain phosphorylation in mouse platelets. J Cell Biol 144:745–754

    PubMed  CAS  Google Scholar 

  • Kozma R, Ahmed S, Best A, Lim L (1995) The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol Cell Biol 15:1942–1952

    PubMed  CAS  Google Scholar 

  • Kuribara H, Tago K, Yokozeki T, Sasaki T, Takai Y, Morii N, Narumiya S, Katada T, Kanaho Y (1995) Synergistic activation of rat brain phospholipase D by ADP-ribosylation factor and rhoA p21, and its inhibition by Clostridium botulinum C3 exoenzyme. J Biol Chem 270:25667–25671

    PubMed  CAS  Google Scholar 

  • Kusama T, Mukai M, Iwasaki T, Tatsuta M, Matsumoto Y, Akedo H, Nakamura H (2001) Inhibition of epidermal growth factor-induced RhoA translocation and invasion of human pancreatic cancer cells by 3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibitors. Cancer Res 61:4885–4891

    PubMed  CAS  Google Scholar 

  • Lamaze C, Chuang TH, Terlecky LJ, Bokoch GM, Schmid SL (1996) Regulation of receptor-mediated endocytosis by Rho and Rac. Nature 382:177–179

    PubMed  CAS  Google Scholar 

  • Lang P, Guizani L, Vitté-Mony I, Stancou R, Dorseuil O, Gacon G, Bertoglio J (1992) ADP-ribosylation of the ras-related, GTP-binding protein RhoA inhibits lymphocyte-mediated cytotoxicity. J Biol Chem 267:11677–11680

    PubMed  CAS  Google Scholar 

  • Laudanna C, Campbell JJ, Butcher EC (1996) Role of Rho in chemoattractant-activated leukocyte adhesion through integrins. Science 271:981–983

    PubMed  CAS  Google Scholar 

  • Laudanna C, Campbell JJ, Butcher EC (1997) Elevation of intracellular cAMP inhibits RhoA activation and integrin-dependent leukocyte adhesion induced by chemoattractants. J Biol Chem 272:24141–24144

    PubMed  CAS  Google Scholar 

  • Lehmann M, Fournier A, Selles-Navarro I, Dergham P, Sebock A, Leclerc N, Tigyi G, McKerracher, L (1999). Inactivation of Rho signaling pathway promotes CNS axon regeneration. J Neurosci 19:7537–7547

    PubMed  CAS  Google Scholar 

  • Le Page SL, Bi Y, Williams JA (2003) CCK-A receptor activates RhoA through G alpha 12/13 in NIH3T3 cells. Am J Physiol Cell Physiol 285:C1197–C1206

    PubMed  Google Scholar 

  • Li M, Dyda F, Benhar I, Pastan I, Davies DR (1996) Crystal structure of the catalytic domain of Pseudomonas exotoxin A complexed with a nicotinamide adenine dinucleotide analog: Implications for the activation process and for ADP ribosylation. Proc Natl Acad Sci 93:6902–6906

    PubMed  CAS  Google Scholar 

  • Liberto M, Cobrinik D, Minden A (2002) Rho regulates p21(CIP1), cyclin D1, and checkpoint control in mammary epithelial cells. Oncogene 21:1590–1599

    PubMed  CAS  Google Scholar 

  • Lowy FD (2000) Is Staphylococcus aureus an intracellular pathogen? Trends Microbiol 8:341–344

    PubMed  CAS  Google Scholar 

  • Lu J, Landerholm TE, Wei JS, Dong XR, Wu SP, Liu X, Nagata K, Inagaki M, Majesky MW (2001) Coronary smooth muscle differentiation from proepicardial cells requires rhoA-mediated actin reorganization and p160 rho-kinase activity. Dev Biol 240:404–418

    PubMed  CAS  Google Scholar 

  • Luo J-Q, Liu X, Frankel P, Rotunda T, Ramos M, Flom J, Jiang H, Feig LA, Morris AJ, Kahn RA, Foster DA (1998) Functional association between Arf and RalA in active phospholipase D complex. Proc Natl Acad Sci 95:3632–3637

    PubMed  CAS  Google Scholar 

  • Mack CP, Somlyo AV, Hautmann M, Somlyo AP, Owens GK (2001) Smooth muscle differentiation marker gene expression is regulated by RhoA-mediated actin polymerization. J Biol Chem 276:341–347

    PubMed  CAS  Google Scholar 

  • Mackay DJG, Esch F, Furthmayr H, Hall A (1997) Rho-and Rac-dependent assembly of focal adhesion complexes and actin filaments in permeabilized fibroblasts: an essential role for Ezrin/radixin/Moesin proteins. J Cell Biol 138:927–938

    PubMed  CAS  Google Scholar 

  • Maddala R, Deng PF, Costello JM, Wawrousek EF, Zigler JS, Rao VP (2004) Impaired cytoskeletal organization and membrane integrity in lens fibers of a Rho GTPase functional knockout transgenic mouse. Lab Invest 84:679–692

    PubMed  CAS  Google Scholar 

  • Madden JC, Ruiz N, Caparon M (2001) Cytolysin-mediated translocation (CMT): a functional equivalent type III secretion in gram-positive bacteria. Cell 104:143–152

    PubMed  CAS  Google Scholar 

  • Mao J, Yuan H, Xie W, Simon MI, Wu D (1998a) Specific involvement of G proteins in regulation of serum response factor-mediated gene transcription by different receptors. J Biol Chem 273:27118–27123

    PubMed  CAS  Google Scholar 

  • Mao J, Yuan H, Xie W, Wu D (1998b) Guanine nucleotide exchange factor GEF115 specifically mediates activation of Rho and serum response factor by the G protein α subunit Gα13. Proc Natl Acad Sci 95:12973–12976

    PubMed  CAS  Google Scholar 

  • Marvaud JC, Stiles BG, Chenal A, Gillet D, Gibert M, Smith LA, Popoff MR (2002) Clostridium perfringens iota toxin. Mapping of the Ia domain involved in docking with Ib and cellular internalization. J Biol Chem 277:43659–43666

    PubMed  CAS  Google Scholar 

  • Masuda M, Betancourt L, Matsuzawa T, Kashimoto T, Takao T, Shimonishi Y, Horiguchi Y (2000) Activation of Rho through a cross-link with polyamines catalyzed by Bordetella dermonecrotizing toxin. EMBO J 19:521–530

    PubMed  CAS  Google Scholar 

  • Meacci E, Vasta V, Moorman JP, Bobak DA, Bruni P, Moss J, Vaughan M (1999) Effect of Rho and ADP-ribosylation factor GTPases on phospholipase D activity in intact human adenocarcinoma A549 cells. J Biol Chem 274:18605–18612

    PubMed  CAS  Google Scholar 

  • Mempel M, Schnopp C, Hojka M, Fesq H, Weidinger S, Schaller M, Korting HC, Ring J, Abeck D (2002) Invasion of human keratinocytes by Staphylococcus aureus and intracellular bacterial persistence represent haemolysin-independent virulence mechanisms that are followed by features of necrotic and apoptotic keratinocyte cell death. Br J Dermatol 146:943–951

    PubMed  CAS  Google Scholar 

  • Ménétrey J, Flatau G, Stura EA, Charbonnier J-B, Gas F, Teulon J-M, Le Du M-H, Boquet P, Ménez A (2002) NAD binding induces conformational changes in Rho ADP-ribosylating Clostridium botulinum C3 exoenzyme. J Biol Chem 277:30950–30957

    PubMed  Google Scholar 

  • Meyer DK, Olenik C, Hofmann F, Barth H, Leemhuis J, Brünig I, Aktories K, Nörenberg W (2000) Regulation of somatodendritic GABAA receptor channels in rat hippocampal neurons: Evidence for a role of the small GTPase Rac1. J Neurosci 20:6743–6751

    PubMed  CAS  Google Scholar 

  • Mills JC, Stone NL, Erhardt J, Pittman RN (1998) Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. J Cell Biol 140:627–636

    PubMed  CAS  Google Scholar 

  • Moskalenko S, Henry DO, Rosse C, Mirey G, Camonis JH, White MA (2001) The exocyst is a Ral effector complex. Nat Cell Biol 4:66–72

    Google Scholar 

  • Nagata K, Puls A, Futter C, Aspenstrom P, Schaefer E, Nakata T, Hirokawa N, Hall A (1998) The MAP kinase kinase kinase MLK2 co-localizes with activated JNK along microtubules and associates with kinesin superfamily motor KIF3. EMBO J 17:149–158

    PubMed  CAS  Google Scholar 

  • Narumiya S, Morii N (1993) rho gene products, botulinum C3 exoenzyme and cell adhesion. Cell Signal 5:9–19

    PubMed  CAS  Google Scholar 

  • Nemoto E, Yu YJ, Dennert G (1996) Cell surface ADP-Ribosyltransferase regulates lymphocyte function-associated molecule-1 (LFA-1) function in T cells. J Immunol 157:3341–3349

    PubMed  CAS  Google Scholar 

  • Nemoto Y, Namba T, Kozaki S, Narumiya S (1991) Clostridium botulinum C3 ADP-ribosyltransferase gene. J Biol Chem 266:19312–19319

    PubMed  CAS  Google Scholar 

  • Neumann H, Schweigreiter R, Yamashita T, Rosenkranz K, Wekerle H, Barde YA (2002) Tumor necrosis factor inhibits neurite outgrowth and branching of hippocampal neurons by a rho-dependent mechanism. J Neurosci 22:854–862

    PubMed  CAS  Google Scholar 

  • Nguyen QD, Faivre S, Bruyneel E, Rivat C, Seto M, Endo T, Mareel M, Emami S, Gespach C (2002) RhoA-and RhoD-dependent regulatory switch of Galpha subunit signaling by PAR-1 receptors in cellular invasion. FASEB J 16:565–576

    PubMed  CAS  Google Scholar 

  • Niederost B, Oertle T, Fritsche J, McKinney RA, Bandtlow CE (2002) Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Rac1. J Neurosci 22:10368–10376

    PubMed  CAS  Google Scholar 

  • Nishiki T, Narumiya S, Morii N, Yamamoto M, Fujiwara M, Kamata Y, Sakaguchi G, Kozaki S (1990) ADP-ribosylation of the rho/rac proteins induces growth inhibition, neurite. Biochem Biophys Res Commun 167:265–272

    PubMed  CAS  Google Scholar 

  • Nobes CD, Hall A (1995) Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62

    PubMed  CAS  Google Scholar 

  • Nobes CD, Lauritzen I, Mattei M-G, Paris S, Hall A, Chardin P (1998) A new member of the Rho family, Rnd1, promotes disassembly of actin filament structures and loss of cell adhesion. J Cell Biol 141:187–197

    PubMed  CAS  Google Scholar 

  • Nusrat A, Giry M, Turner JR, Colgan SP, Parkos CA, Carnes D, Lemichez E, Boquet P, Madara JL (1995) Rho protein regulates tight junctions and perijunctional actin organization in polarized epithelia. Proc Natl Acad Sci 92:10629–10633

    PubMed  CAS  Google Scholar 

  • O’Connell CB, Wheatley SP, Ahmed S, Wang YL (1999) The small GTP-binding protein Rho regulates cortical activities in cultured cells during division. J Cell Biol 144:305–313

    PubMed  CAS  Google Scholar 

  • Ohishi I, Iwasaki M, Sakaguchi G (1980) Purification and characterization of two components of botulinum C2 toxin. Infect Immun 30:668–673

    PubMed  CAS  Google Scholar 

  • Ohmori T, Yatomi Y, Okamoto H, Miura Y, Rile G, Satoh K, Ozaki Y (2001) G(i)-mediated Cas tyrosine phosphorylation in vascular endothelial cells stimulated with sphingosine 1-phosphate: possible involvement in cell motility enhancement in cooperation with Rho-mediated pathways. J Biol Chem 276:5274–5280

    PubMed  CAS  Google Scholar 

  • Ohta Y, Suzuki N, Nakamura S, Hartwig JH, Stossel TP (1999) The small RalA targets filamin to induce filopodia. Proc Natl Acad Sci 96:2122–2128

    PubMed  CAS  Google Scholar 

  • Olson MF, Ashworth A, Hall A (1995) An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science 269:1270–1272

    PubMed  CAS  Google Scholar 

  • Oppenheimer NJ (1994) NAD hydrolysis: Chemical and enzymatic mechanisms. Mol Cell Biochem 138:245–251

    PubMed  CAS  Google Scholar 

  • Park J, Kim JS, Jung KC, Lee HJ, Kim JI, Kim J, Lee JY, Park JB, Choi SY (2003) Exoenzyme Tat-C3 inhibits association of zymosan particles, phagocytosis, adhesion, and complement binding in macrophage cells. Mol Cell 16:216–223

    CAS  Google Scholar 

  • Park SH, Weinberg RA (1995) A putative effector of Ral has homology to Rho/Rac GTPase activating proteins. Oncogene 11:2349–2355

    PubMed  CAS  Google Scholar 

  • Paterson HF, Self AJ, Garrett MD, Just I, Aktories K, Hall A (1990) Microinjection of recombinant p21rho induces rapid changes in cell morphology. J Cell Biol 111:1001–1007

    PubMed  CAS  Google Scholar 

  • Popoff MR, Boquet P, Gill DM, Eklund MW (1990) DNA sequence of exoenzyme C3, an ADP-ribosyltransferase encoded by Clostridium botulinum C and D phages. Nucleic Acids Res 18:1291–1291

    PubMed  CAS  Google Scholar 

  • Prepens U, Just I, Von Eichel-Streiber C, Aktories K (1996) Inhibition of FcεRI-mediated activation of rat basophilic leukemia cells by Clostridium difficile toxin B (monoglucosyltransferase). J Biol Chem 271:7324–7329

    PubMed  CAS  Google Scholar 

  • Price LS, Norman JC, Ridley AJ, Koffer A (1995) The small GTPases Rac and Rho as regulators of secretion in mast cells. Curr Biol 5:68–73

    PubMed  CAS  Google Scholar 

  • Quilliam LA, Lacal J-C, Bokoch GM (1989) Identification of rho as a substrate for botulinum toxin C3-catalyzed ADP-ribosylation. FEBS Lett 247:221–226

    PubMed  CAS  Google Scholar 

  • Rao V, Wawrousek E, Tamm ER, Zigler S Jr (2002) Rho GTPase inactivation impairs lens growth and integrity. Lab Invest 82:231–239

    PubMed  CAS  Google Scholar 

  • Ren X-D, Bokoch GM, Traynor-Kaplan A, Jenkins GH, Anderson RA, Schwartz MA (1996) Physical association of the small GTPase Rho with a 68-kDa phosphatidylinositol 4-phosphate 5-kinase in swiss 3T3 cells. Mol Biol Cell 7:435–442

    PubMed  CAS  Google Scholar 

  • Reuveny M, Heller H, Bengal E (2004) RhoA controls myoblast survival by inducing the phosphatidylinositol 3-kinase-Akt signaling pathway. FEBS Lett 569:129–134

    PubMed  CAS  Google Scholar 

  • Ridley A (2000) Rho. In: Hall A, (ed) GTPases. Oxford University Press, Oxford, pp. 89–136

    Google Scholar 

  • Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399

    PubMed  CAS  Google Scholar 

  • Ridley AJ, Hall A (2004) Snails, Swiss, and serum: the solution for Rac ‘n’ Rho. Cell 116:S23–5, 2

    PubMed  CAS  Google Scholar 

  • Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410

    PubMed  CAS  Google Scholar 

  • Riento K, Guasch RM, Garg R, Jin B, Ridley AJ (2003) RhoE binds to ROCK I and inhibits downstream signaling. Mol Cell Biol 23:4219–4229

    PubMed  CAS  Google Scholar 

  • Rubin EJ, Gill DM, Boquet P, Popoff MR (1988) Functional modification of a 21-Kilodalton G protein when ADP-ribosylated by exoenzyme C3 of Clostridium botulinum. Mol Cell Biol 8:418–426

    PubMed  CAS  Google Scholar 

  • Sagi SA, Seasholtz TM, Kobiashvili M, Wilson BA, Toksoz D, Brown JH (2001) Physical and functional interactions of Galphaq with Rho and its exchange factors. J Biol Chem 276:15445–15452

    PubMed  CAS  Google Scholar 

  • Sah VP, Hoshijima M, Chien KR, Brown JH (1996) Rho is required for Gαq and α1-adrenergic receptor signaling in cardiomyocytes—dissociation of Ras and Rho pathways. J Biol Chem 271:31185–31190

    PubMed  CAS  Google Scholar 

  • Sah VP, Seasholtz TM, Sagi SA, Brown JH (2000) The role of Rho in G protein-coupled receptor signal transduction. Annu Rev Pharmacol Toxicol 40:459–489

    PubMed  CAS  Google Scholar 

  • Sahai E, Alberts AS, Treisman R (1998) RhoA effector mutants reveal distinct effector pathways for cytoskeletal reorganization, SRF activation, and transformation. EMBO J 17:1350–1361

    PubMed  CAS  Google Scholar 

  • Saito Y, Nemoto Y, Ishizaki T, Watanabe N, Morii N, Narumiya S (1995) Identification of Glu173 as the critical amino acid residue for the ADP-ribosyltransferase activity of Clostridium botulinum C3 exoenzyme. FEBS Lett 371:105–109

    PubMed  CAS  Google Scholar 

  • Santos MF, McCormack SA, Guo Z, Okolicany J, Zheng Y, Johnson LR, Tigyi G (1997) Rho proteins play a critical role in cell migration during the early phase of mucosal restitution. J Clin Invest 100:216–225

    PubMed  CAS  Google Scholar 

  • Saurin JC, Fallavier M, Sordat B, Gevrey JC, Chayvialle JA, Abello J (2002) Bombesin stimulates invasion and migration of Isreco1 colon carcinoma cells in a Rho-dependent manner. Cancer Res 62:4829–4835

    PubMed  CAS  Google Scholar 

  • Sauzeau V, Le Mellionnec E, Bertoglio J, Scalbert E, Pacaud P, Loirand G (2001) Human urotensin II-induced contraction and arterial smooth muscle cell proliferation are mediated by RhoA and Rho-kinase. Circ Res 88:1102–1104

    PubMed  CAS  Google Scholar 

  • Schmalzing G, Richter HP, Hansen A, Schwarz W, Just I, Aktories K (1995) Involvement of the GTP binding protein Rho in constitutive endocytosis in Xenopus laevis oocytes. J Cell Biol 130:1319–1332

    PubMed  CAS  Google Scholar 

  • Schmidt G, Sehr P, Wilm M, Selzer J, Mann M, Aktories K (1997) Gln63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor 1. Nature 387:725–729

    PubMed  CAS  Google Scholar 

  • Schmidt M, Rümenapp U, Bienek C, Keller J, Von Eichel-Streiber C, Jakobs KH (1996) Inhibition of receptor signaling to phospholipase D by Clostridium difficile toxin B—role of Rho proteins. J Biol Chem 271:2422–2426

    PubMed  CAS  Google Scholar 

  • Schmidt M, Voss M, Weernink PA, Wetzel J, Amano M, Kaibuchi K, Jakobs KH (1999) A role for Rho-kinase in Rho-controlled phospholipase D stimulation by the m3 muscarinic acetylcholine receptor. J Biol Chem 274:14648–14654

    PubMed  CAS  Google Scholar 

  • Sehr P, Joseph G, Genth H, Just I, Pick E, Aktories K (1998) Glucosylation and ADP-ribosylation of Rho proteins—effects on nucleotide binding, GTPase activity, and effector-coupling. Biochemistry 37:5296–5304

    PubMed  CAS  Google Scholar 

  • Sekine A, Fujiwara M, Narumiya S (1989) Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase. J Biol Chem 264:8602–8605

    PubMed  CAS  Google Scholar 

  • Selzer J, Hofmann F, Rex G, Wilm M, Mann M, Just I, Aktories K (1996) Clostridium novyi α-toxin-catalyzed incorporation of GlcNAc into Rho subfamily proteins. J Biol Chem 271:25173–25177

    PubMed  CAS  Google Scholar 

  • Shao F, Merritt PM, Bao Z, Innes RW, Dixon JE (2002) A Yersinia effector and a Pseudomonas avirulence protein define a family of cycteine proteases functioning in bacterial pathogenesis. Cell 109:575–588

    PubMed  CAS  Google Scholar 

  • Shao F, Vacratsis PO, Bao Z, Bowers KE, Fierke CA, Dixon JE (2003) Biochemical characterization of the Yersinia YopT protease: Cleavage site and recognition elements in Rho GTPases. Proc Natl Acad Sci 100:904–909

    PubMed  CAS  Google Scholar 

  • Sotiropoulos A, Gineitis D, Copeland J, Treisman R (1999) Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell 98:159–169

    PubMed  CAS  Google Scholar 

  • Stam JC, Michiels F, Van der Kammen RA, Moolenaar WH, Collard JG (1998) Invasion of T-lymphoma cells: cooperation between Rho family GTPases and lysophospholipid receptor signaling. EMBO J 17:4066–4074

    PubMed  CAS  Google Scholar 

  • Strey A, Janning A, Barth H, Gerke V (2002) Endothelial Rho signaling is required for monocyte transendothelial migration. FEBS Lett 517:261–266

    PubMed  CAS  Google Scholar 

  • Su LF, Knoblauch R, Garabedian MJ (2001) Rho GTPases as modulators of the estrogen receptor transcriptional response. J Biol Chem 276:3231–3237

    PubMed  CAS  Google Scholar 

  • Sugai M, Hashimoto K, Kikuchi A, Inoue S, Okumura H, Matsumota K, Goto Y, Ohgai H, Moriishi K, Syuto B, Yoshikawa K, Suginaka H, Takai Y (1992) Epidermal cell differentiation inhibitor ADP-ribosylates small GTP-binding proteins and induces hyperplasia of epidermis. J Biol Chem 267:2600–2604

    PubMed  CAS  Google Scholar 

  • Takaishi K, Sasaki T, Kato M, Yamochi W, Kuroda S, Nakamura T, Takeichi M, 1Takai Y (1994) Involvement of Rho p21 small GTP-binding protein and its regulator in the HGF-induced cell motility. Oncogene 9:273–279

    PubMed  CAS  Google Scholar 

  • Takaishi K, Sasaki T, Kameyama T, Tsukita S, Takai Y (1995) Translocation of activated Rho from the cytoplasm to membrane ruffling area, cell-cell adhesion sites and cleavage furrows. Oncogene 11:39–48

    PubMed  CAS  Google Scholar 

  • Takemoto M, Sun J, Hiroki J, Shimokawa H, Liao JK (2002) Rho-kinase mediates hypoxia-induced downregulation of endothelial nitric oxide synthase. Circulation 106:57–62

    PubMed  CAS  Google Scholar 

  • Tigyi G, Fischer DJ, Sebök A, Yang C, Dyer DL, Miledi R (1996) Lysophosphatidic acid-induced neurite retraction in PC12 cells: control by phosphoinositide-Ca2+ signaling and Rho. J Neurochem 66:537–548

    PubMed  CAS  Google Scholar 

  • Urano T, Emkey R, Feig LA (1996) Ral-GTPases mediate a distinct downstream signaling pathway from Ras that facilitates cellular transformation. EMBO J 15:810–816

    PubMed  CAS  Google Scholar 

  • Valderrama F, Luna A, Babia T, Martinez-Menarguez JA, Ballesta J, Barth H, Chaponnier C, Renau-Piqueras J, Egea G (2000) The golgi-associated COPI-coated buds and vesicles contain beta/gamma-actin. Proc Natl Acad Sci 97:1560–1565

    PubMed  CAS  Google Scholar 

  • Verschueren H, De Baetselier P, De Braekeleer J, Dewit J, Aktories K, Just I (1997) ADP-ribosylation of Rho-proteins with botulinum C3 exoenzyme inhibits invasion and shape changes of T-lymphoma cells. Eur J Cell Biol 73:182–187

    PubMed  CAS  Google Scholar 

  • Vischer UM, Barth H, Wollheim CB (2000) Regulated von willebrand factor secretion is associated with agonist-specific patterns of cytoskeletal remodeling in cultured endothelial cells. Arterioscler Thromb Vasc Biol 20:883–891

    PubMed  CAS  Google Scholar 

  • Vögler O, Krummenerl P, Schmidt M, Jakobs KH, van Koppen CJ (1999) RhoA-sensitive trafficking of muscarinic acetylcholine receptors. J Pharmacol Exp Ther 288:36–42

    PubMed  Google Scholar 

  • von Pawel-Rammingen U, Telepnev MV, Schmidt G, Aktories K, Wolf-Watz H, Rosqvist R (2000) GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure. Mol Microbiol 36:737–748

    Google Scholar 

  • Vouret-Craviari V, Boquet P, Pouyss-gur J, Van Obberghen-Schilling E (1998) Regulation of the actin cytoskeleton by thrombin in human endothelial cells: Role of Rho proteins in endothelial barrier function. Mol Biol Cell 9:2639–2653

    PubMed  CAS  Google Scholar 

  • Wahl S, Barth H, Ciossek T, Aktories K, Mueller BK (2000) Ephrin-A5 induces collapse of growth cones by activating Rho and Rho kinase. J Cell Biol 149:263–270

    PubMed  CAS  Google Scholar 

  • Watanabe N, Madaule P, Reid T, Ishizaki T, Watanabe G, Kakizuka A, Saito Y, Nakao K, Jockusch BM, Naumiya S (1997) p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein fro Rho small GTPase and is a ligand for profilin. EMBO J 16:3044–3056

    PubMed  CAS  Google Scholar 

  • Weernink PA, Guo Y, Zhang C, Schmidt M, Von Eichel-Streiber C, Jakobs KH (2000) Control of cellular phosphatidylinositol 4,5-biphosphate levels by adhesion signals and Rho GTPases in NIH 3T3 fibroblasts involvement of both phosphatidylinositol-4-phosphate and phospholipase C. Eur J Biochem 267:5237–5246

    PubMed  CAS  Google Scholar 

  • Wennerberg K, Der CJ (2004) Rho-family GTPases: it’s not only Rac and Rho (and I like it). J Cell Sci 117:1301–1312

    PubMed  CAS  Google Scholar 

  • Wiegers W, Just I, Müller H, Hellwig A, Traub P, Aktories K (1991) Alteration of the cytoskeleton of mammalian cells cultured in vitro by Clostridium botulinum C2 toxin and C3 ADP-ribosyltransferase. Eur J Cell Biol 54:237–245

    PubMed  CAS  Google Scholar 

  • Wilde C, Aktories K (2001) The Rho-ADP-ribosylating C3 exoenzyme from Clostridium botulinum and related C3-like transferases. Toxicon 39:1647–1660

    PubMed  CAS  Google Scholar 

  • Wilde C, Chhatwal GS, Aktories K (2001a) C3stau, a new member of the family of C3-like ADP-ribosyltransferases. Trends Microbiol 10:5–7

    Google Scholar 

  • Wilde C, Chhatwal GS, Schmalzing G, Aktories K, Just I (2001b) A novel C3-like ADP-ribosyltransferase from Staphylococcus aureus modifying RhoE and Rnd3. J Biol Chem 276:9537–9542

    PubMed  CAS  Google Scholar 

  • Wilde C, Barth H, Sehr P, Han L, Schmidt M, Just I, Aktories K (2002a) Interaction of the Rho-ADP-ribosylating C3 exoenzyme with RalA. J Biol Chem 277:14771–14776

    PubMed  CAS  Google Scholar 

  • Wilde C, Just I, Aktories K (2002b) Structure-function analysis of the Rho-ADP-ribosylating exoenzyme C3stau2 from Staphylococcus aureus. Biochemistry 41:1539–1544

    PubMed  CAS  Google Scholar 

  • Wilde C, Vogelsgesang M, Aktories K (2003) Rho-specific Bacillus cereus ADP-ribosyltransferase C3cer cloning and characterization. Biochemistry 42:9694–9702

    PubMed  CAS  Google Scholar 

  • Winton MJ, Dubreuil CI, Lasko D, Leclerc N, McKerracher L (2002) Characterization of new cell permeable C3-like proteins that inactivate Rho and stimulate neurite outgrowth on inhibitory substrates. J Biol Chem 277:32820–32829

    PubMed  CAS  Google Scholar 

  • Wojciak-Stothard B, Entwistle A, Garg R, Ridley AJ (1998) Regulation of TNF-α-induced reorganization of the actin cytoskeleton and cell-cell junctions by Rho, Rac, and Cdc42 in human endothelial cells. J Cell Physiol 176:150–165

    PubMed  CAS  Google Scholar 

  • Worthylake RA, Lemoine S, Watson JM, Burridge K (2001) RhoA is required for monocyte tail retraction during transendothelial migration. J Cell Biol 154:147–160

    PubMed  CAS  Google Scholar 

  • Xie Z, Ho WT, Spellman R, Cai S, Exton JH (2002) Mechanisms of regulation of phospholipase D1 and D2 by the heterotrimeric G proteins G13 and Gq. J Biol Chem 277:11979–11986

    PubMed  CAS  Google Scholar 

  • Yamaguchi T, Hayashi T, Takami H, Ohnishi M, Murata T, Nakayama K, Asakawa K, Ohara M, Komatsuzawa H, Sugai M (2001) Complete nucleotide sequence of a Staphylococcus aureus exfoliative toxin B plasmid and identification of a novel ADP-ribosyltransferase, EDIN-C. Infect Immun 69:7760–7771

    PubMed  CAS  Google Scholar 

  • Yamakawa T, Tanaka S, Numaguchi K, Yamakawa Y, Motley ED, Ichihara S, Inagami T (2000) Involvement of Rho-kinase in angiotensin II-induced hypertrophy of rat vascular smooth muscle cells. Hypertension 35:313–318

    PubMed  CAS  Google Scholar 

  • Yoshioka K, Matsumura F, Akedo H, Itoh K (1998) Small GTP-binding protein Rho stimulates the actomyosin system, leading to invasion of tumor cells. J Biol Chem 273:5146–5154

    PubMed  CAS  Google Scholar 

  • Yuan XB, Jin M, Xu X, Song YQ, Wu CP, Poo MM, Duan S (2003) Signalling and crosstalk of Rho GTPases in mediating axon guidance. Nat Cell Biol 5:38–45

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Aktories .

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag

About this chapter

Cite this chapter

Aktories, K., Wilde, C., Vogelsgesang, M. (2004). Rho-modifying C3-like ADP-ribosyltransferases. In: Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 152. Springer, Berlin, Heidelberg. https://doi.org/10.1007/s10254-004-0034-4

Download citation

Publish with us

Policies and ethics