Skip to main content

Advertisement

Log in

Fibroblast growth factor signaling in mammalian tooth development

  • Review Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

In this review, we discuss the central role of fibroblast growth factor (FGF) signaling in mammalian tooth development. The FGF family consists of 22 members, most of which bind to four different receptor tyrosine kinases, which in turn signal through a cascade of intracellular proteins. This signaling regulates a number of cellular processes, including proliferation, differentiation, cell adhesion and cell mobility. FGF signaling first becomes important in the presumptive dental epithelium at the initiation stage of tooth development, and subsequently, it controls the invagination of the dental epithelium into the underlying mesenchyme. Later, FGFs are critical in tooth shape formation and differentiation of ameloblasts and odontoblasts, as well as in the development and homeostasis of the stem cell niche that fuels the continuously growing mouse incisor. In addition, FGF signaling is critical in human teeth, as mutations in genes encoding FGF ligands or receptors result in several congenital syndromes characterized by alterations in tooth number, morphology or enamel structure. The parallel roles of FGF signaling in mouse and human tooth development demonstrate the conserved importance of FGF signaling in mammalian odontogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Harada H, Kettunen P, Jung HS, et al. Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling. J Cell Biol. 1999;147:105–20.

    PubMed  Google Scholar 

  2. Mina M, Kollar EJ. The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium. Arch Oral Biol. 1987;32:123–7.

    PubMed  Google Scholar 

  3. Lumsden AG. Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development. 1988;103(Suppl):155–69.

    PubMed  Google Scholar 

  4. Jernvall J, Kettunen P, Karavanova I, Martin LB, Thesleff I. Evidence for the role of the enamel knot as a control center in mammalian tooth cusp formation: non-dividing cells express growth stimulating Fgf-4 gene. Int J Dev Biol. 1994;38:463–9.

    PubMed  Google Scholar 

  5. Vaahtokari A, Aberg T, Thesleff I. Apoptosis in the developing tooth: association with an embryonic signaling center and suppression by EGF and FGF-4. Development. 1996;122:121–9.

    PubMed  Google Scholar 

  6. Thesleff I, Hurmerinta K. Tissue interactions in tooth development. Differentiation. 1981;18:75–88.

    PubMed  Google Scholar 

  7. Crossley PH, Martinez S, Martin GR. Midbrain development induced by FGF8 in the chick embryo. Nature. 1996;380:66–8.

    PubMed  Google Scholar 

  8. Crossley PH, Minowada G, MacArthur CA, Martin GR. Roles for FGF8 in the induction, initiation, and maintenance of chick limb development. Cell. 1996;84:127–36.

    PubMed  Google Scholar 

  9. Christen B, Slack JM. FGF-8 is associated with anteroposterior patterning and limb regeneration in Xenopus. Dev Biol. 1997;192:455–66.

    PubMed  Google Scholar 

  10. Vogel A, Rodriguez C, Izpisua-Belmonte JC. Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb. Development. 1996;122:1737–50.

    PubMed  Google Scholar 

  11. Phillips BT, Bolding K, Riley BB. Zebrafish fgf3 and fgf8 encode redundant functions required for otic placode induction. Dev Biol. 2001;235:351–65.

    PubMed  Google Scholar 

  12. Slack JM, Darlington BG, Heath JK, Godsave SF. Mesoderm induction in early Xenopus embryos by heparin-binding growth factors. Nature. 1987;326:197–200.

    PubMed  Google Scholar 

  13. Sutherland D, Samakovlis C, Krasnow MA. Branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell. 1996;87:1091–101.

    PubMed  Google Scholar 

  14. Feldman B, Poueymirou W, Papaioannou VE, DeChiara TM, Goldfarb M. Requirement of FGF-4 for postimplantation mouse development. Science. 1995;267:246–9.

    PubMed  Google Scholar 

  15. Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biol. 2001;2(REVIEWS300):5.

    Google Scholar 

  16. Itoh N, Ornitz DM. Evolution of the Fgf and Fgfr gene families. Trends Genet. 2004;20:563–9.

    PubMed  Google Scholar 

  17. Popovici C, Roubin R, Coulier F, Birnbaum D. An evolutionary history of the FGF superfamily. BioEssays. 2005;27:849–57.

    PubMed  Google Scholar 

  18. Goldfarb M. Fibroblast growth factor homologous factors: evolution, structure, and function. Cytokine Growth Factor Rev. 2005;16:215–20.

    PubMed Central  PubMed  Google Scholar 

  19. Metzger RJ, Krasnow MA. Genetic control of branching morphogenesis. Science. 1999;284:1635–9.

    PubMed  Google Scholar 

  20. Hoffman MP, Kidder BL, Steinberg ZL, et al. Gene expression profiles of mouse submandibular gland development: FGFR1 regulates branching morphogenesis in vitro through BMP- and FGF-dependent mechanisms. Development. 2002;129:5767–78.

    PubMed  Google Scholar 

  21. Mailleux AA, Spencer-Dene B, Dillon C, et al. Role of FGF10/FGFR2b signaling during mammary gland development in the mouse embryo. Development. 2002;129:53–60.

    PubMed  Google Scholar 

  22. Mariani FV, Ahn CP, Martin GR. Genetic evidence that FGFs have an instructive role in limb proximal-distal patterning. Nature. 2008;453:401–5.

    PubMed Central  PubMed  Google Scholar 

  23. Jukkola T, Lahti L, Naserke T, Wurst W, Partanen J. FGF regulated gene-expression and neuronal differentiation in the developing midbrain-hindbrain region. Dev Biol. 2006;297:141–57.

    PubMed  Google Scholar 

  24. Werner S, Duan DS, de Vries C, et al. Differential splicing in the extracellular region of fibroblast growth factor receptor 1 generates receptor variants with different ligand-binding specificities. Mol Cell Biol. 1992;12:82–8.

    PubMed Central  PubMed  Google Scholar 

  25. Chellaiah AT, McEwen DG, Werner S, Xu J, Ornitz DM. Fibroblast growth factor receptor (FGFR) 3. Alternative splicing in immunoglobulin-like domain III creates a receptor highly specific for acidic FGF/FGF-1. J Biol Chem. 1994;269:11620–7.

    PubMed  Google Scholar 

  26. Johnson DE, Lu J, Chen H, Werner S, Williams LT. The human fibroblast growth factor receptor genes: a common structural arrangement underlies the mechanisms for generating receptor forms that differ in their third immunoglobulin domain. Mol Cell Biol. 1991;11:4627–34.

    PubMed Central  PubMed  Google Scholar 

  27. Vainikka S, Partanen J, Bellosta P, et al. Fibroblast growth factor receptor-4 shows novel features in genomic structure, ligand binding and signal transduction. EMBO J. 1992;11:4273–80.

    PubMed  Google Scholar 

  28. Duan DS, Werner S, Williams LT. A naturally occurring secreted form of fibroblast growth factor (FGF) receptor 1 binds basic FGF in preference over acidic FGF. J Biol Chem. 1992;267:16076–80.

    PubMed  Google Scholar 

  29. Avivi A, Yayon A, Givol D. A novel form of FGF receptor-3 using an alternative exon in the immunoglobulin domain III. FEBS Lett. 1993;330:249–52.

    PubMed  Google Scholar 

  30. Orr-Urtreger A, Bedford MT, Burakova T, et al. Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2 (FGFR2). Dev Biol. 1993;158:475–86.

    PubMed  Google Scholar 

  31. Alarid ET, Rubin JS, Young P, et al. Keratinocyte growth factor functions in epithelial induction during seminal vesicle development. Proc Natl Acad Sci USA. 1994;91:1074–8.

    PubMed  Google Scholar 

  32. Yan G, Fukabori Y, McBride G, Nikolaropolous S, McKeehan WL. Exon switching and activation of stromal and embryonic fibroblast growth factor (FGF)-FGF receptor genes in prostate epithelial cells accompany stromal independence and malignancy. Mol Cell Biol. 1993;13:4513–22.

    PubMed Central  PubMed  Google Scholar 

  33. Gilbert E, Del Gatto F, Champion-Arnaud P, Gesnel MC, Breathnach R. Control of BEK and K-SAM splice sites in alternative splicing of the fibroblast growth factor receptor 2 pre-mRNA. Mol Cell Biol. 1993;13:5461–8.

    PubMed Central  PubMed  Google Scholar 

  34. Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005;16:139–49.

    PubMed  Google Scholar 

  35. Clark SG, Stern MJ, Horvitz HR. C. elegans cell-signalling gene sem-5 encodes a protein with SH2 and SH3 domains. Nature. 1992;356:340–4.

    PubMed  Google Scholar 

  36. Li W, Nishimura R, Kashishian A, et al. A new function for a phosphotyrosine phosphatase: linking GRB2-Sos to a receptor tyrosine kinase. Mol Cell Biol. 1994;14:509–17.

    PubMed Central  PubMed  Google Scholar 

  37. Saxton TM, Henkemeyer M, Gasca S, et al. Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp-2. EMBO J. 1997;16:2352–64.

    PubMed  Google Scholar 

  38. Hadari YR, Kouhara H, Lax I, Schlessinger J. Binding of Shp2 tyrosine phosphatase to FRS2 is essential for fibroblast growth factor-induced PC12 cell differentiation. Mol Cell Biol. 1998;18:3966–73.

    PubMed Central  PubMed  Google Scholar 

  39. Kouhara H, Hadari YR, Spivak-Kroizman T, et al. A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell. 1997;89:693–702.

    PubMed  Google Scholar 

  40. Lowenstein EJ, Daly RJ, Batzer AG, et al. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell. 1992;70:431–42.

    PubMed  Google Scholar 

  41. Lebreton S, Boissel L, Moreau J. Control of embryonic Xenopus morphogenesis by a Ral-GDS/Xral branch of the Ras signalling pathway. J Cell Sci. 2003;116:4651–62.

    PubMed  Google Scholar 

  42. Wilson R, Vogelsang E, Leptin M. FGF signalling and the mechanism of mesoderm spreading in Drosophila embryos. Development. 2005;132:491–501.

    PubMed  Google Scholar 

  43. Chambard JC, Lefloch R, Pouyssegur J, Lenormand P. ERK implication in cell cycle regulation. Biochim Biophys Acta. 2007;1773:1299–310.

    PubMed  Google Scholar 

  44. Pacold ME, Suire S, Perisic O, et al. Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. Cell. 2000;103:931–43.

    PubMed  Google Scholar 

  45. Rodriguez-Viciana P, Warne PH, Dhand R, et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature. 1994;370:527–32.

    PubMed  Google Scholar 

  46. Castellano E, Downward J. RAS interaction with PI3K: more than just another effector pathway. Genes Cancer. 2011;2:261–74.

    PubMed Central  PubMed  Google Scholar 

  47. Habets GG, Scholtes EH, Zuydgeest D, et al. Identification of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP-GTP exchangers for Rho-like proteins. Cell. 1994;77:537–49.

    PubMed  Google Scholar 

  48. Michiels F, Habets GG, Stam JC, van der Kammen RA, Collard JG. A role for Rac in Tiam1-induced membrane ruffling and invasion. Nature. 1995;375:338–40.

    PubMed  Google Scholar 

  49. Ferro E, Trabalzini L. RalGDS family members couple Ras to Ral signalling and that’s not all. Cell Signal. 2010;22:1804–10.

    PubMed  Google Scholar 

  50. Hanafusa H, Torii S, Yasunaga T, Nishida E. Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat Cell Biol. 2002;4:850–8.

    PubMed  Google Scholar 

  51. Kim HJ, Bar-Sagi D. Modulation of signalling by Sprouty: a developing story. Nat Rev Mol Cell Biol. 2004;5:441–50.

    PubMed  Google Scholar 

  52. Sasaki A, Taketomi T, Kato R, et al. Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1. Nat Cell Biol. 2003;5:427–32.

    PubMed  Google Scholar 

  53. Kettunen P, Karavanova I, Thesleff I. Responsiveness of developing dental tissues to fibroblast growth factors: expression of splicing alternatives of FGFR1, -2, -3, and of FGFR4; and stimulation of cell proliferation by FGF-2, -4, -8, and -9. Dev Genet. 1998;22:374–85.

    PubMed  Google Scholar 

  54. Porntaveetus T, Otsuka-Tanaka Y, Basson MA, et al. Expression of fibroblast growth factors (Fgfs) in murine tooth development. J Anat. 2011;218:534–43.

    PubMed  Google Scholar 

  55. Kettunen P, Laurikkala J, Itaranta P, et al. Associations of FGF-3 and FGF-10 with signaling networks regulating tooth morphogenesis. Dev Dyn. 2000;219:322–32.

    PubMed  Google Scholar 

  56. Kettunen P, Thesleff I. Expression and function of FGFs-4, -8, and -9 suggest functional redundancy and repetitive use as epithelial signals during tooth morphogenesis. Dev Dyn. 1998;211:256–68.

    PubMed  Google Scholar 

  57. Klein OD, Minowada G, Peterkova R, et al. Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Dev Cell. 2006;11:181–90.

    PubMed Central  PubMed  Google Scholar 

  58. Ferguson CA, Tucker AS, Sharpe PT. Temporospatial cell interactions regulating mandibular and maxillary arch patterning. Development. 2000;127:403–12.

    PubMed  Google Scholar 

  59. Neubuser A, Peters H, Balling R, Martin GR. Antagonistic interactions between FGF and BMP signaling pathways: a mechanism for positioning the sites of tooth formation. Cell. 1997;90:247–55.

    PubMed  Google Scholar 

  60. Trumpp A, Depew MJ, Rubenstein JL, Bishop JM, Martin GR. Cre-mediated gene inactivation demonstrates that FGF8 is required for cell survival and patterning of the first branchial arch. Genes Dev. 1999;13:3136–48.

    PubMed  Google Scholar 

  61. Yokohama-Tamaki T, Ohshima H, Fujiwara N, et al. Cessation of Fgf10 signaling, resulting in a defective dental epithelial stem cell compartment, leads to the transition from crown to root formation. Development. 2006;133:1359–66.

    PubMed  Google Scholar 

  62. Kurosaka H, Islam MN, Kuremoto K, et al. Core binding factor beta functions in the maintenance of stem cells and orchestrates continuous proliferation and differentiation in mouse incisors. Stem Cells. 2011;29:1792–803.

    PubMed  Google Scholar 

  63. Haara O, Harjunmaa E, Lindfors PH, et al. Ectodysplasin regulates activator-inhibitor balance in murine tooth development through Fgf20 signaling. Development. 2012;139:3189–99.

    PubMed  Google Scholar 

  64. Tucker AS, Yamada G, Grigoriou M, Pachnis V, Sharpe PT. Fgf-8 determines rostral-caudal polarity in the first branchial arch. Development. 1999;126:51–61.

    PubMed  Google Scholar 

  65. Ohuchi H, Hori Y, Yamasaki M, et al. FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem Biophys Res Commun. 2000;277:643–9.

    PubMed  Google Scholar 

  66. Kettunen P, Spencer-Dene B, Furmanek T, et al. Fgfr2b mediated epithelial-mesenchymal interactions coordinate tooth morphogenesis and dental trigeminal axon patterning. Mech Dev. 2007;124:868–83.

    PubMed  Google Scholar 

  67. De Moerlooze L, Spencer-Dene B, Revest JM, et al. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development. 2000;127:483–92.

    PubMed  Google Scholar 

  68. Hosokawa R, Deng X, Takamori K, et al. Epithelial-specific requirement of FGFR2 signaling during tooth and palate development. J Exp Zool B Mol Dev Evol. 2009;312B:343–50.

    PubMed Central  PubMed  Google Scholar 

  69. Harada H, Toyono T, Toyoshima K, et al. FGF10 maintains stem cell compartment in developing mouse incisors. Development. 2002;129:1533–41.

    PubMed  Google Scholar 

  70. Wang XP, Suomalainen M, Felszeghy S, et al. An integrated gene regulatory network controls stem cell proliferation in teeth. PLoS Biol. 2007;5:e159.

    PubMed Central  PubMed  Google Scholar 

  71. D’Souza RN, Aberg T, Gaikwad J, et al. Cbfa1 is required for epithelial-mesenchymal interactions regulating tooth development in mice. Development. 1999;126:2911–20.

    PubMed  Google Scholar 

  72. Satokata I, Maas R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet. 1994;6:348–56.

    PubMed  Google Scholar 

  73. St Amand TR, Zhang Y, Semina EV, et al. Antagonistic signals between BMP4 and FGF8 define the expression of Pitx1 and Pitx2 in mouse tooth-forming anlage. Dev Biol. 2000;217:323–32.

    PubMed  Google Scholar 

  74. Lu MF, Pressman C, Dyer R, Johnson RL, Martin JF. Function of Rieger syndrome gene in left-right asymmetry and craniofacial development. Nature. 1999;401:276–8.

    PubMed  Google Scholar 

  75. Lin CR, Kioussi C, O’Connell S, et al. Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature. 1999;401:279–82.

    PubMed  Google Scholar 

  76. van Genderen C, Okamura RM, Farinas I, et al. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev. 1994;8:2691–703.

    PubMed  Google Scholar 

  77. Kratochwil K, Galceran J, Tontsch S, Roth W, Grosschedl R. FGF4, a direct target of LEF1 and Wnt signaling, can rescue the arrest of tooth organogenesis in Lef1(−/−) mice. Genes Dev. 2002;16:3173–85.

    PubMed  Google Scholar 

  78. Tummers M, Thesleff I. The importance of signal pathway modulation in all aspects of tooth development. J Exp Zool B Mol Dev Evol. 2009;312B:309–19.

    PubMed  Google Scholar 

  79. Jernvall J, Thesleff I. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev. 2000;92:19–29.

    PubMed  Google Scholar 

  80. Salazar-Ciudad I, Jernvall J. A gene network model accounting for development and evolution of mammalian teeth. Proc Natl Acad Sci USA. 2002;99:8116–20.

    PubMed  Google Scholar 

  81. Salazar-Ciudad I, Jernvall J. A computational model of teeth and the developmental origins of morphological variation. Nature. 2010;464:583–6.

    PubMed  Google Scholar 

  82. Pispa J, Jung HS, Jernvall J, et al. Cusp patterning defect in Tabby mouse teeth and its partial rescue by FGF. Dev Biol. 1999;216:521–34.

    PubMed  Google Scholar 

  83. Ohazama A, Courtney JM, Tucker AS, et al. Traf6 is essential for murine tooth cusp morphogenesis. Dev Dyn. 2004;229:131–5.

    PubMed  Google Scholar 

  84. Dassule HR, Lewis P, Bei M, Maas R, McMahon AP. Sonic hedgehog regulates growth and morphogenesis of the tooth. Development. 2000;127:4775–85.

    PubMed  Google Scholar 

  85. Harjunmaa E, Kallonen A, Voutilainen M, et al. On the difficulty of increasing dental complexity. Nature. 2012;483:324–7.

    PubMed  Google Scholar 

  86. Jarvinen E, Salazar-Ciudad I, Birchmeier W, et al. Continuous tooth generation in mouse is induced by activated epithelial Wnt/beta-catenin signaling. Proc Natl Acad Sci USA. 2006;103:18627–32.

    PubMed  Google Scholar 

  87. Liu F, Chu EY, Watt B, et al. Wnt/beta-catenin signaling directs multiple stages of tooth morphogenesis. Dev Biol. 2008;313:210–24.

    PubMed Central  PubMed  Google Scholar 

  88. Wang XP, Suomalainen M, Jorgez CJ, et al. Modulation of activin/bone morphogenetic protein signaling by follistatin is required for the morphogenesis of mouse molar teeth. Dev Dyn. 2004;231:98–108.

    PubMed  Google Scholar 

  89. Jernvall J, Aberg T, Kettunen P, Keranen S, Thesleff I. The life history of an embryonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development. 1998;125:161–9.

    PubMed  Google Scholar 

  90. Aberg T, Wang XP, Kim JH, et al. Runx2 mediates FGF signaling from epithelium to mesenchyme during tooth morphogenesis. Dev Biol. 2004;270:76–93.

    PubMed  Google Scholar 

  91. Peterkova R, Peterka M, Viriot L, Lesot H. Development of the vestigial tooth primordia as part of mouse odontogenesis. Connect Tissue Res. 2002;43:120–8.

    PubMed  Google Scholar 

  92. Prochazka J, Pantalacci S, Churava S, et al. Patterning by heritage in mouse molar row development. Proc Natl Acad Sci USA. 2010;107:15497–502.

    PubMed  Google Scholar 

  93. Tureckova J, Lesot H, Vonesch JL, et al. Apoptosis is involved in the disappearance of the diastemal dental primordia in mouse embryo. Int J Dev Biol. 1996;40:483–9.

    PubMed  Google Scholar 

  94. Mustonen T, Pispa J, Mikkola ML, et al. Stimulation of ectodermal organ development by Ectodysplasin-A1. Dev Biol. 2003;259:123–36.

    PubMed  Google Scholar 

  95. Charles C, Hovorakova M, Ahn Y, et al. Regulation of tooth number by fine-tuning levels of receptor-tyrosine kinase signaling. Development. 2011;138:4063–73.

    PubMed  Google Scholar 

  96. Thesleff I, Keranen S, Jernvall J. Enamel knots as signaling centers linking tooth morphogenesis and odontoblast differentiation. Adv Dent Res. 2001;15:14–8.

    PubMed  Google Scholar 

  97. Tompkins K. Molecular mechanisms of cytodifferentiation in mammalian tooth development. Connect Tissue Res. 2006;47:111–8.

    PubMed  Google Scholar 

  98. Takamori K, Hosokawa R, Xu X, et al. Epithelial fibroblast growth factor receptor 1 regulates enamel formation. J Dent Res. 2008;87:238–43.

    PubMed  Google Scholar 

  99. Tsuboi T, Mizutani S, Nakano M, Hirukawa K, Togari A. Fgf-2 regulates enamel and dentine formation in mouse tooth germ. Calcif Tissue Int. 2003;73:496–501.

    PubMed  Google Scholar 

  100. Mitsiadis TA, Tucker AS, De Bari C, Cobourne MT, Rice DP. A regulatory relationship between Tbx1 and FGF signaling during tooth morphogenesis and ameloblast lineage determination. Dev Biol. 2008;320:39–48.

    PubMed  Google Scholar 

  101. Caton J, Luder HU, Zoupa M, et al. Enamel-free teeth: Tbx1 deletion affects amelogenesis in rodent incisors. Dev Biol. 2009;328:493–505.

    PubMed Central  PubMed  Google Scholar 

  102. Huang Z, Kim J, Lacruz RS, et al. Epithelial-specific knockout of the Rac1 gene leads to enamel defects. Eur J Oral Sci. 2011;119(Suppl 1):168–76.

    PubMed  Google Scholar 

  103. Klein OD, Lyons DB, Balooch G, et al. An FGF signaling loop sustains the generation of differentiated progeny from stem cells in mouse incisors. Development. 2008;135:377–85.

    PubMed Central  PubMed  Google Scholar 

  104. Boran T, Peterkova R, Lesot H, et al. Temporal analysis of ectopic enamel production in incisors from sprouty mutant mice. J Exp Zool B Mol Dev Evol. 2009;312B:473–85.

    PubMed Central  PubMed  Google Scholar 

  105. Goodwin AF, Tidyman WE, Jheon AH, et al. Abnormal Ras signaling in costello syndrome (CS) negatively regulates enamel formation. Hum Mol Genet. 2013 [Epub ahead of print].

  106. Smith CE, Warshawsky H. Histological and three dimensional organization of the odontogenic organ in the lower incisor of 100 gram rats. Am J Anat. 1975;142:403–29.

    PubMed  Google Scholar 

  107. Li CY, Cha W, Luder HU, et al. E-cadherin regulates the behavior and fate of epithelial stem cells and their progeny in the mouse incisor. Dev Biol. 2012;366:357–66.

    PubMed Central  PubMed  Google Scholar 

  108. Harada H, Toyono T, Toyoshima K, Ohuchi H. FGF10 maintains stem cell population during mouse incisor development. Connect Tissue Res. 2002;43:201–4.

    PubMed  Google Scholar 

  109. Seidel K, Ahn CP, Lyons D, et al. Hedgehog signaling regulates the generation of ameloblast progenitors in the continuously growing mouse incisor. Development. 2010;137:3753–61.

    PubMed  Google Scholar 

  110. Parsa S, Kuremoto K, Seidel K, et al. Signaling by FGFR2b controls the regenerative capacity of adult mouse incisors. Development. 2010;137:3743–52.

    PubMed  Google Scholar 

  111. Lin Y, Cheng YS, Qin C, et al. FGFR2 in the dental epithelium is essential for development and maintenance of the maxillary cervical loop, a stem cell niche in mouse incisors. Dev Dyn. 2009;238:324–30.

    PubMed Central  PubMed  Google Scholar 

  112. Wilkie AO, Slaney SF, Oldridge M, et al. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet. 1995;9:165–72.

    PubMed  Google Scholar 

  113. Reardon W, Winter RM, Rutland P, et al. Mutations in the fibroblast growth factor receptor 2 gene cause Crouzon syndrome. Nat Genet. 1994;8:98–103.

    PubMed  Google Scholar 

  114. Muenke M, Schell U, Hehr A, et al. A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome. Nat Genet. 1994;8:269–74.

    PubMed  Google Scholar 

  115. Lajeunie E, Ma HW, Bonaventure J, et al. FGFR2 mutations in Pfeiffer syndrome. Nat Genet. 1995;9:108.

    PubMed  Google Scholar 

  116. Stavropoulos D, Bartzela T, Bronkhorst E, Mohlin B, Hagberg C. Dental agenesis patterns of permanent teeth in Apert syndrome. Eur J Oral Sci. 2011;119:198–203.

    PubMed  Google Scholar 

  117. Reitsma JH, Ongkosuwito EM, van Wijk AJ, Prahl-Andersen B. Patterns of tooth agenesis in patients with the syndrome of crouzon or apert. Cleft Palate Craniofac J. 2012 [Epub ahead of print].

  118. Rohmann E, Brunner HG, Kayserili H, et al. Mutations in different components of FGF signaling in LADD syndrome. Nat Genet. 2006;38:414–7.

    PubMed  Google Scholar 

  119. Milunsky JM, Zhao G, Maher TA, Colby R, Everman DB. LADD syndrome is caused by FGF10 mutations. Clin Genet. 2006;69:349–54.

    PubMed  Google Scholar 

  120. Shams I, Rohmann E, Eswarakumar VP, et al. Lacrimo-auriculo-dento-digital syndrome is caused by reduced activity of the fibroblast growth factor 10 (FGF10)-FGF receptor 2 signaling pathway. Mol Cell Biol. 2007;27:6903–12.

    PubMed Central  PubMed  Google Scholar 

  121. Guven Y, Rosti RO, Tuna EB, Kayserili H, Aktoren O. Orodental findings of a family with lacrimo-auriculo-dento digital (LADD) syndrome. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106:e33–44.

    PubMed  Google Scholar 

  122. Tekin M, Hismi BO, Fitoz S, et al. Homozygous mutations in fibroblast growth factor 3 are associated with a new form of syndromic deafness characterized by inner ear agenesis, microtia, and microdontia. Am J Hum Genet. 2007;80:338–44.

    PubMed Central  PubMed  Google Scholar 

  123. Tekin M, Ozturkmen Akay H, Fitoz S, et al. Homozygous FGF3 mutations result in congenital deafness with inner ear agenesis, microtia, and microdontia. Clin Genet. 2008;73:554–65.

    PubMed  Google Scholar 

  124. Alsmadi O, Meyer BF, Alkuraya F, et al. Syndromic congenital sensorineural deafness, microtia and microdontia resulting from a novel homoallelic mutation in fibroblast growth factor 3 (FGF3). Eur J Hum Genet. 2009;17:14–21.

    PubMed  Google Scholar 

  125. Sensi A, Ceruti S, Trevisi P, et al. LAMM syndrome with middle ear dysplasia associated with compound heterozygosity for FGF3 mutations. Am J Med Genet A. 2011;155A:1096–101.

    PubMed  Google Scholar 

  126. Roberts A, Allanson J, Jadico SK, et al. The cardiofaciocutaneous syndrome. J Med Genet. 2006;43:833–42.

    PubMed  Google Scholar 

  127. Rauen KA. HRAS and the Costello syndrome. Clin Genet. 2007;71:101–8.

    PubMed  Google Scholar 

  128. Tidyman WE, Lee HS, Rauen KA. Skeletal muscle pathology in Costello and cardio-facio-cutaneous syndromes: developmental consequences of germline Ras/MAPK activation on myogenesis. Am J Med Genet C Semin Med Genet. 2011;157C:104–14.

    PubMed  Google Scholar 

  129. Stevenson DA, Allen S, Tidyman WE, et al. Peripheral muscle weakness in RASopathies. Muscle Nerve. 2012;46:394–9.

    PubMed  Google Scholar 

  130. Aoki Y, Niihori T, Kawame H, et al. Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat Genet. 2005;37:1038–40.

    PubMed  Google Scholar 

  131. Niihori T, Aoki Y, Narumi Y, et al. Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nat Genet. 2006;38:294–6.

    PubMed  Google Scholar 

  132. Rodriguez-Viciana P, Tetsu O, Tidyman WE, et al. Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science. 2006;311:1287–90.

    PubMed  Google Scholar 

  133. Goodwin AF, Oberoi S, Landan M, et al. Craniofacial and dental development in cardio-facio-cutaneous syndrome: the importance of Ras signaling homeostasis. Clin Genet. 2013;83:539–44.

    PubMed  Google Scholar 

  134. Schwartz RA, Fernandez G, Kotulska K, Jozwiak S. Tuberous sclerosis complex: advances in diagnosis, genetics, and management. J Am Acad Dermatol. 2007;57:189–202.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank their colleagues in the Klein laboratory for helpful discussions. The authors were funded in part by NIH R01-DE021420.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ophir D. Klein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, CY., Prochazka, J., Goodwin, A.F. et al. Fibroblast growth factor signaling in mammalian tooth development. Odontology 102, 1–13 (2014). https://doi.org/10.1007/s10266-013-0142-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-013-0142-1

Keywords

Navigation