Skip to main content
Log in

Residual Deep Convolutional Neural Network Predicts MGMT Methylation Status

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Predicting methylation of the O6-methylguanine methyltransferase (MGMT) gene status utilizing MRI imaging is of high importance since it is a predictor of response and prognosis in brain tumors. In this study, we compare three different residual deep neural network (ResNet) architectures to evaluate their ability in predicting MGMT methylation status without the need for a distinct tumor segmentation step. We found that the ResNet50 (50 layers) architecture was the best performing model, achieving an accuracy of 94.90% (+/− 3.92%) for the test set (classification of a slice as no tumor, methylated MGMT, or non-methylated). ResNet34 (34 layers) achieved 80.72% (+/− 13.61%) while ResNet18 (18 layers) accuracy was 76.75% (+/− 20.67%). ResNet50 performance was statistically significantly better than both ResNet18 and ResNet34 architectures (p < 0.001). We report a method that alleviates the need of extensive preprocessing and acts as a proof of concept that deep neural architectures can be used to predict molecular biomarkers from routine medical images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Johnson DR, O’Neill BP: Glioblastoma survival in the United States before and during the temozolomide era. J Neurooncol 107:359–364, 2011

    Article  PubMed  Google Scholar 

  2. Ellingson BM, Wen PY, van den Bent MJ, Cloughesy TF: Pros and cons of current brain tumor imaging. Neuro Oncol 16(Suppl 7):vii2–vi11, 2014

    Article  PubMed  PubMed Central  Google Scholar 

  3. Weizman L, Ben-Sira L, Joskowicz L, Aizenstein O, Shofty B, Constantini S, Ben-Bashat D: Prediction of brain MR scans in longitudinal tumor follow-up studies. Med Image Comput Comput Assist Interv 15:179–187, 2012

    PubMed  Google Scholar 

  4. Law M, Young RJ, Babb JS, Peccerelli N, Chheang S, Gruber ML, Miller DC, Golfinos JG, Zagzag D, Johnson G: Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 247:490–498, 2008

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jain R, Poisson LM, Gutman D et al.: Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor. Radiology 272:484–493, 2014

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang K, Wang X-Q, Zhou B, Zhang L: The prognostic value of MGMT promoter methylation in glioblastoma multiforme: a meta-analysis. Fam Cancer 12:449–458, 2013

    Article  CAS  PubMed  Google Scholar 

  7. Li H, Li J, Cheng G, Zhang J, Li X: IDH mutation and MGMT promoter methylation are associated with the pseudoprogression and improved prognosis of glioblastoma multiforme patients who have undergone concurrent and adjuvant temozolomide-based chemoradiotherapy. Clin Neurol Neurosurg 151:31–36, 2016

    Article  PubMed  Google Scholar 

  8. Rivera AL, Pelloski CE, Gilbert MR, Colman H, De La Cruz C, Sulman EP, Bekele BN, Aldape KD: MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro Oncol 12:116–121, 2010

    Article  CAS  PubMed  Google Scholar 

  9. Ellingson BM: Radiogenomics and imaging phenotypes in glioblastoma: novel observations and correlation with molecular characteristics. Curr Neurol Neurosci Rep 15:506, 2015

    Article  PubMed  Google Scholar 

  10. Rundle-Thiele D, Day B, Stringer B et al.: Using the apparent diffusion coefficient to identifying MGMT promoter methylation status early in glioblastoma: importance of analytical method. J Med Radiat Sci 62:92–98, 2015

    Article  PubMed  PubMed Central  Google Scholar 

  11. Drabycz S, Roldán G, de Robles P, Adler D, McIntyre JB, Magliocco AM, Cairncross JG, Mitchell JR: An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging. Neuroimage 49:1398–1405, 2010

    Article  CAS  PubMed  Google Scholar 

  12. Levner I, Drabycz S, Roldan G, De Robles P, Gregory Cairncross J, Mitchell R: Predicting MGMT Methylation Status of Glioblastomas from MRI Texture. Med Image Comput Comput Assist Interv. 2009;12(Pt 2):522–530

  13. Moon W-J, Choi JW, Roh HG, Lim SD, Koh Y-C: Imaging parameters of high grade gliomas in relation to the MGMT promoter methylation status: the CT, diffusion tensor imaging, and perfusion MR imaging. Neuroradiology 54:555–563, 2012

    Article  PubMed  Google Scholar 

  14. Ahn SS, Shin N-Y, Chang JH, Kim SH, Kim EH, Kim DW, Lee S-K: Prediction of methylguanine methyltransferase promoter methylation in glioblastoma using dynamic contrast-enhanced magnetic resonance and diffusion tensor imaging. J Neurosurg 121:367–373, 2014

    Article  PubMed  Google Scholar 

  15. Gupta A, Omuro AMP, Shah AD, Graber JJ, Shi W, Zhang Z, Young RJ: Continuing the search for MR imaging biomarkers for MGMT promoter methylation status: conventional and perfusion MRI revisited. Neuroradiology 54:641–643, 2012

    Article  PubMed  Google Scholar 

  16. Kanas VG, Zacharaki EI, Thomas GA, Zinn PO, Megalooikonomou V, Colen RR: Learning MRI-based classification models for MGMT methylation status prediction in glioblastoma. Comput Methods Programs Biomed 140:249–257, 2017

    Article  PubMed  Google Scholar 

  17. Korfiatis P, Kline TL, Coufalova L, Lachance DH, Parney IF, Carter RE, Buckner JC, Erickson BJ: MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas. Med Phys 43:2835, 2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eckel-Passow JE, Lachance DH, Molinaro AM et al.: Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372:2499–2508, 2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Greenspan H, van Ginneken B, Summers RM: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging 35:1153–1159, 2016

    Article  Google Scholar 

  20. Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35:1207–1216, 2016

    Article  PubMed  Google Scholar 

  21. Dalmış MU, Litjens G, Holland K, Setio A, Mann R, Karssemeijer N, Gubern-Mérida A: Using deep learning to segment breast and fibroglandular tissue in MRI volumes. Med Phys 44:533–546, 2017

    Article  PubMed  Google Scholar 

  22. Dhungel N, Carneiro G, Bradley AP: A deep learning approach for the analysis of masses in mammograms with minimal user intervention. Med Image Anal 37:114–128, 2017

    Article  PubMed  Google Scholar 

  23. Spampinato C, Palazzo S, Giordano D, Aldinucci M, Leonardi R: Deep learning for automated skeletal bone age assessment in X-ray images. Med Image Anal 36:41–51, 2017

    Article  CAS  PubMed  Google Scholar 

  24. Yan Z, Zhan Y, Zhang S, Metaxas D, Zhou XS: Multi-Instance Multi-Stage Deep Learning for Medical Image Recognition. IEEE Transactions On Medical Imaging. doi:10.1109/TMI.2016.2524985

  25. Rajkomar A, Lingam S, Taylor AG, Blum M, Mongan J: High-throughput classification of radiographs using deep convolutional neural networks. J Digit Imaging 30:95–101, 2017

    Article  PubMed  Google Scholar 

  26. Korfiatis PD, Kline TL, Blezek DJ, Langer SG, Ryan WJ, Erickson BJ: MIRMAID: a content management system for medical image analysis research. Radiographics 35:1461–1468, 2015

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC: N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29:1310–1320, 2010

    Article  PubMed  PubMed Central  Google Scholar 

  28. Juntu J, Sijbers J, Dyck D, Gielen J: Bias Field Correction for MRI Images. In: Advances in Soft Computing. Springer. pp 543–551

  29. He K, Zhang X, Ren S, Sun J: Deep Residual Learning for Image Recognition. arXiv [cs.CV]. 2015. https://arxiv.org/abs/1512.03385

  30. He K, Zhang X, Ren S, Sun J: Identity Mappings in Deep Residual Networks. In: Lecture Notes in Computer Science. 2016, pp 630–645. https://link.springer.com/chapter/10.1007/978-3-319-46493-0_38

  31. He K, Zhang X, Ren S, Sun J: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas. 2016, pp 770–778

  32. He K, Zhang X, Ren S, Sun J: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. 2015 I.E. International Conference on Computer Vision (ICCV), 2015. doi: 10.1109/iccv.2015.123

  33. loffe S, Szegedy C: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv [cs.LG]. 2015. https://arxiv.org/abs/1502.03167

  34. Dietterich TG: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput 10:1895–1923, 1998 1998

    Article  CAS  PubMed  Google Scholar 

  35. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze, Vol. 8 (1936), pp. 3–62 Key: citeulike:1778138

  36. Veit A, Wilber M, Belongie S: Residual Networks Behave Like Ensembles of Relatively Shallow Networks. arXiv [cs.CV]. 2016. https://arxiv.org/abs/1605.06431

  37. Nyúl LG, Udupa JK: On standardizing the MR image intensity scale. Magn Reson Med 42:1072–1081, 1999

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the NCI Grant CA160045, NVidia: Research Support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley J. Erickson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korfiatis, P., Kline, T.L., Lachance, D.H. et al. Residual Deep Convolutional Neural Network Predicts MGMT Methylation Status. J Digit Imaging 30, 622–628 (2017). https://doi.org/10.1007/s10278-017-0009-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-017-0009-z

Keywords

Navigation