Skip to main content
Log in

Electrophysiological Modeling of Fibroblasts and their Interaction with Myocytes

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Experimental studies have shown that cardiac fibroblasts are electrically inexcitable, but can contribute to electrophysiology of myocardium in various manners. The aim of this computational study was to give insights in the electrophysiological role of fibroblasts and their interaction with myocytes. We developed a mathematical model of fibroblasts based on data from whole-cell patch clamp and polymerase chain reaction (PCR) studies. The fibroblast model was applied together with models of ventricular myocytes to assess effects of heterogeneous intercellular electrical coupling. We investigated the modulation of action potentials of a single myocyte varying the number of coupled fibroblasts and intercellular resistance. Coupling to fibroblasts had only a minor impact on the myocyte’s resting and peak transmembrane voltage, but led to significant changes of action potential duration and upstroke velocity. We examined the impact of fibroblasts on conduction in one-dimensional strands of myocytes. Coupled fibroblasts reduced conduction and upstroke velocity. We studied electrical bridging between ventricular myocytes via fibroblast insets for various coupling resistors. The simulations showed significant conduction delays up to 20.3 ms. In summary, the simulations support strongly the hypothesis that coupling of fibroblasts to myocytes modulates electrophysiology of cardiac cells and tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Antzelevitch, C., and A. Lukas. Reflection and circus movement reentry in isolated atrial and ventricular tissue. In: Electrophysiology and Pharmacology of the Heart, edited by K. H. Dangman and D. S. Miura. Marcel Dekker, 1991, Chapter 11, pp. 251–275.

  2. Brown R. D., Ambler S. K., Mitchell M. D., Long C. S. (2005) The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu. Rev. Pharmacol. Toxicol. 45:657–687

    Article  PubMed  CAS  Google Scholar 

  3. Cabo C., Barr R. C. (1992) Reflection after delayed excitation in a computer model of a single fiber. Circ. Res. 71:260–270

    PubMed  CAS  Google Scholar 

  4. Camelliti P., Devlin G. P., Matthews K. G., Kohl P., Green C. R. (2004) Spatially and temporally distinct expression of connexins after sheep ventricular infarction. Cardiovas. Res. 62:415–425

    Article  CAS  Google Scholar 

  5. Camelliti P., Green C. R., LeGrice I., Kohl P. (2004) Fibroblast network in rabbit sinoatrial node: structural and functional identification of homogeneous and heterogeneous cell coupling. Circ. Res. 94(6):828–835

    Article  PubMed  CAS  Google Scholar 

  6. Camelliti, P., and P. Kohl. Myocyte/fibroblast 2D structured cardiac tissue model. J. Phyiol. 552P:P36, 2003.

  7. Camelliti P., McCulloch A. D., Kohl P. (2005) Microstructured cocultures of cardiac myocytes and fibroblasts: a two-dimensional in vitro model of cardiac tissue. Microsc. Microanal. 11:249–259

    PubMed  CAS  Google Scholar 

  8. Chilton L., Ohya S., Freed D., George E., Drobic V., Shibukawa Y., MacCannel K. A., Imaizumi Y., Clark R. B., Dixon M. C., Giles W. R. (2005) K+ currents regulate the resting membrane potential, proliferation, and contractile response in ventricular fibroblasts and myofibroblasts. Am. J. Physiol. Heart Circ. Physiol. 288:H2931–H2939

    Article  PubMed  CAS  Google Scholar 

  9. Cranefield P. F., Hoffmann B. F. (1971) Conduction of the cardiac impulse: II. summation and inhibition. Circ. Res. 28:220–233

    PubMed  CAS  Google Scholar 

  10. Cranefield P. F., Klein H. O., Hoffmann B. F. (1971) Conduction of the cardiac impulse: I. Delay, block, and one-way block in depressed Purkinje fibers. Circulation 28:199–219

    CAS  Google Scholar 

  11. Cranefield P. F., Wit A. L., Hoffmann B. F. (1971) Conduction of the cardiac impulse: III. Characteristics of slow conduction. Circ. Res. 59:227–246

    Google Scholar 

  12. Eghbali M., Czaja M. J., Zeydel M., Weiner F. R., Zern M. A., Seifter S., Blumenfeld O. O. (1988) Collagen chain mRNAs in isolated heart cells from young and adult rats. J. Mol. Cell. Cardiol. 20:267–276

    Article  PubMed  CAS  Google Scholar 

  13. Fleischhauer J., Lehmann L., Kĺeber A. G. (1995) Electrical resistances of interstitial and microvascular space a determinants of the extracellular electrical field and velocity of propagation in ventricular myocardium. Circulation 92:587–594

    PubMed  CAS  Google Scholar 

  14. Gaudesius G., Miragoli M., Thomas S. P., Rohr S. (2003) Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Circ. Res. 93:421–428

    Article  PubMed  CAS  Google Scholar 

  15. Geneser, S. E., R. M. Kirby, and F. B. Sachse. Sensitivity analysis of cardiac electrophysiological models using polynomial chaos. Proc. IEEE EMBS 4:4042–4045, 2005.

    Google Scholar 

  16. Goldsmith E. C., Hoffman A., Morales M. O., Potts J. D., Price R. L., McFadden A., Rice M., Borg T. K. (2004) Organization of fibroblasts in the heart. Dev. Dynam. 230:787–794

    Article  CAS  Google Scholar 

  17. Goshima K. (1969) Synchronized beating of and electrotonic transmission between myocardial cells mediated by heterotypic strain cells in a monolayer culture. Exp. Cell Res. 58:420–426

    Article  PubMed  CAS  Google Scholar 

  18. Harks E. G., Torres J. J., Cornelisse L. N., Ypey D. L., Theuvenet A. P. (2003) Ionic basis for excitability of normal rat kidney (NRK) fibroblasts. J. Cell Physiol. 196(3):493–503

    Article  PubMed  CAS  Google Scholar 

  19. B. Hille. Ionic Channels of Excitable Membranes, 2nd edition. Sinauer Associates, 1992.

  20. Hyde A., Blondel B., Matter A., Cheneval J. P., Filloux B., Girardier L. (1969) Homo- and heterocellular junctions in cell cultures: an electrophysiological and morphological study. Prog. Brain Res. 31:283–311

    Article  PubMed  CAS  Google Scholar 

  21. Iyer V., Mazhari R., Winslow R. L. (2004) A computational model of the human left-ventricular epicardial myocyte. Biophys. J. 87(3):1507–1525

    Article  PubMed  CAS  Google Scholar 

  22. Kamkin A., Kiseleva I., Lozinsky I., Scholz H. (2005) Electrical interaction of mechanosensitive fibroblasts and myocytes in the heart. Basic Res. Cardiol. 100:337–345

    Article  PubMed  CAS  Google Scholar 

  23. Kamkin A., Kiseleva I., Wagner K.-D., Pylaev A., Leiterer K. P., Theres H., Scholz H., Günther J., Isenberg G. (2002) A possible role for atrial fibroblasts in postinfarction bradycardia. Am. J. Physiol. 282:H842–H849

    CAS  Google Scholar 

  24. Kiseleva I., Kamkin A., Pylaev A., Kondratjev D., Leiterer K. P., Theres H., Wagner K. D., Persson P. B., Gunther J. (1998) Electrophysiological properties of mechanosensitive atrial fibroblasts from chronic infarcted rat heart. J. Mol. Cell. Cardiol. 30(6):1083–1093

    Article  PubMed  CAS  Google Scholar 

  25. Klemic K. G., Durand D. M., Jones S. W. (1998) Activation kinetics of the delayed rectifier potassium current of bullfrog sympathetic neurons. J. Neurophysiol. 79:2345–2357

    PubMed  CAS  Google Scholar 

  26. Kohl P., Camelliti P., Burton F. L., Smith G. L. (2005) Electrical coupling of fibroblasts and myocytes: relevance for cardiac propagation. J. Electrocardiol. 38:45–50

    Article  PubMed  Google Scholar 

  27. Kohl P., Kamkin A. G., Kiseleva I. S., Noble D. (1994) Mechanosensitive fibroblasts in the sino-atrial node region of the rat heart: interaction with cardiomyocytes and possible role. Exp. Physiol. 79:943–956

    PubMed  CAS  Google Scholar 

  28. Kohl P., Noble D. (1996) Mechanosensitive connective tissue: Potential influence on heart rhythm. Cardiovasc. Res. 32:62–68

    Article  PubMed  CAS  Google Scholar 

  29. Luo C.-H., Rudy Y. (1994) A dynamic model of the ventricular cardiac action potential: I. Simulations of ionic currents and concentration changes. Circ. Res. 74(6):1071–1096

    PubMed  CAS  Google Scholar 

  30. Luo C.-H., Rudy Y. (1994) A Dynamic Model of the Ventricular Cardiac Action Potential: II. Afterdepolarizations, Triggered Activity, and Potentiation. Circ. Res. 74(6):1097–1113

    PubMed  CAS  Google Scholar 

  31. Manabe I., Shindo T., Nagai R. (2005) Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circ. Res. 91:1103–1113

    Article  Google Scholar 

  32. Nishimura S., Kawai Y., Nakajima T., Hosoya Y., Fujita H., Katoh M., Yamashita H., Nagai R., Sugiura S. (2006) Membrane potential of rat ventricular myocytes responds to axial stretch in phase, amplitude and speed-dependent manners. Cardiovasc. Res. 72:403–411

    Article  PubMed  CAS  Google Scholar 

  33. Noble D., Varghese A., Kohl P., Noble P. (1998) Improved guinea-pig ventricular cell model incorporating a diadic space, I Kr and I Ks, and length- and tension-dependent processes. Can. J. Cardiol. 14(1):123–134

    PubMed  CAS  Google Scholar 

  34. Pandit S. V., Clark R. B., Giles W. R., Demir S. S. (2001) A mathematical model of action potential heterogeneity in adult left ventricular myocytes. Biophys. J. 81:3029–3051

    Article  PubMed  CAS  Google Scholar 

  35. Penefsky Z. J., Hoffman B. F. (1963) Effects of stretch on mechanical and electrical properties of cardiac muscle. Am. J. Physiol. 204(3):433–438

    Google Scholar 

  36. Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P. (1992) Numerical Recipes in C, 2nd edition. Cambridge University Press, Cambridge, New York, Melbourne

    Google Scholar 

  37. Rook M. B., van Ginneken A. C. G., de Jonge B., El Aoumari A., Gros D., Jongsma H. J. (1992) Differences in gap junction channels between cardiac myocytes, fibroblasts, and heterologous pairs. Am. J. Physiol. 263:C959–C977

    PubMed  CAS  Google Scholar 

  38. Rudy Y. (2004) Conductive bridges in cardiac tissue: a beneficial role or an arrhythmogenic substrate. Circ. Res. 94:709–711

    Article  PubMed  CAS  Google Scholar 

  39. Ruknudin A., Sachs F., Bustamante J. O. (1993) Stretch-activated ion channels in tissue-cultured chick heart. Am. J. Physiol. Heart Circ. Physiol. 264(33):H960–972

    CAS  Google Scholar 

  40. Sachse, F. B. Computational Cardiology: Modeling of Anatomy, Electrophysiology, and Mechanics. LNCS 2966. Heidelberg:Springer Press, 2004.

  41. Sano T., Takayama N., Shimamoto T. (1959) Directional difference of conduction velocity in the cardiac ventricular syncytium studied by microelectrodes. Circ. Res. 7:262–267

    PubMed  CAS  Google Scholar 

  42. Shaw R. M., Rudy Y. (1997) Ionic mechanisms of propagation in cardiac tissue: roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling. Circ. Res. 81:727–741

    PubMed  CAS  Google Scholar 

  43. Shibukawa Y., Chilton L., MacCannell K. A., Clark R. B., Giles W. R. (2005) K+ currents activated by depolarization in cardiac fibroblasts. Biophys. J. 88:3924–3935

    Article  PubMed  CAS  Google Scholar 

  44. Spear J. F., Moore E. N. (1972) Stretch-Induced Excitation and Conduction Disturbances in the Isolated Rat Myocardium. J. Electrocardiol. 5(1):15–24

    Article  PubMed  CAS  Google Scholar 

  45. Torres J. J., Cornelisse L. N., Harks E. G. A., van Meerwijk W. P. M., Theuvenet A. P. R., Ypey D. L. (2004) Modeling action potential generation and propagation in NRK fibroblasts. Am. J. Physiol. 287:H851–H865

    Article  Google Scholar 

  46. Vasquez C., Moreno A. P., Berbari E. J. (2004) Modeling fibroblast–mediated conduction in the ventricle. Proc. CiC 31:349–352

    Google Scholar 

  47. Wit A. L., Cranefield P. F., Hoffman B. F. (1972) Slow Conduction and Reentry in the Ventricular Conduction System: II. Single and sustained circus movement in networks of canine and bovine Purkinje fibers. Circ. Res. 30:11–22

    PubMed  CAS  Google Scholar 

  48. Wit A. L., Hoffman B. F., Cranefield P. F. (1972) Slow Conduction and Reentry in the Ventricular Conduction System: I. Return extrasystole in the canine Purkinje fibers. Circ. Res. 30(1):1–10

    PubMed  CAS  Google Scholar 

  49. Zagotta W. N., Aldrich R. W. (1990) Voltage-dependent gating of Shaker A-type potassium channels in drosophila muscle. J. Gen. Physiol. 95(1):29–60

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Richard A. and Nora Eccles Fund for Cardiovascular Research, awards from the Nora Eccles Treadwell Foundation (FBS, APM, JAA), and NIH/NHLBI, HL63969 (APM). We thank Ms. Catherine Lloyd, University of Auckland, and Dr. Alan Garny, University of Oxford, for implementing a CellML version of the fibroblast model. We acknowledge the support of Prof. James B. Bassingthwaighte and Dr. Brian Carlson, University of Washington, for implementation of the fibroblast and myocyte-fibroblast models in JSim and including these in the model repository of the NSR Physiome Project (http://www.physiome.org/model/doku.php?id=Cell_Physiology:Fibroblast:model_index and http://www.physiome.org/model/doku.php?id=Cell_Physiology:Action_potential:Myocyte_fibroblast_coupling:model_index).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank B. Sachse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sachse, F.B., Moreno, A.P. & Abildskov, J. . Electrophysiological Modeling of Fibroblasts and their Interaction with Myocytes. Ann Biomed Eng 36, 41–56 (2008). https://doi.org/10.1007/s10439-007-9405-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9405-8

Keywords

Navigation