Skip to main content

Advertisement

Log in

Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Many problems in Biology and Engineering are governed by anisotropic reaction–diffusion equations with a very rapidly varying reaction term. This usually implies the use of very fine meshes and small time steps in order to accurately capture the propagating wave while avoiding the appearance of spurious oscillations in the wave front. This work develops a family of macro finite elements amenable for solving anisotropic reaction–diffusion equations with stiff reactive terms. The developed elements are incorporated on a semi-implicit algorithm based on operator splitting that includes adaptive time stepping for handling the stiff reactive term. A linear system is solved on each time step to update the transmembrane potential, whereas the remaining ordinary differential equations are solved uncoupled. The method allows solving the linear system on a coarser mesh thanks to the static condensation of the internal degrees of freedom (DOF) of the macroelements while maintaining the accuracy of the finer mesh. The method and algorithm have been implemented in parallel. The accuracy of the method has been tested on two- and three-dimensional examples demonstrating excellent behavior when compared to standard linear elements. The better performance and scalability of different macro finite elements against standard finite elements have been demonstrated in the simulation of a human heart and a heterogeneous two-dimensional problem with reentrant activity. Results have shown a reduction of up to four times in computational cost for the macro finite elements with respect to equivalent (same number of DOF) standard linear finite elements as well as good scalability properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9
FIGURE 10

Similar content being viewed by others

References

  1. Aliev, R., and A. Panfilov. A simple two-variable model of cardiac excitation. Chaos Solitons Fractals 7:293–301, 1996.

    Article  Google Scholar 

  2. Barad, M., and P. Colella. A fourth-order accurate local refinement method for Poisson’s equation. J. Comput. Phys. 209:1–18, 2005.

    Article  Google Scholar 

  3. Bendahmane, M., R. Bürguer, and R. Ruiz-Baier. A multiresolution space-time adaptive scheme for the bidomain model in electrocardiology. Numer. Methods Partial Differ. Equ. 2010. doi:10.1002/num.20495

  4. Bernabeu, M. O., R. Bordas, P. Pathmanathan, J. Pitt-Francis, J. Cooper, A. Garny, D. J. Gavaghan, B. Rodriguez, J. A. Southern, and J. P. Whiteley. Chaste: incorporating a novel multi-scale spatial and temporal algorithm into a large-scale open source library. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367(1895):1907–1930, 2009.

    Article  Google Scholar 

  5. Buttari, A., and S. Filippone. PSBLAS 2.3 User’s Guide. http://www.ce.uniroma2.it/psblas/. University of Rome and Tor Vergata, 2008.

  6. Cherry, E. M., H. S. Greenside, and C. S. Henriquez. A space-time adaptive method for simulating complex cardiac dynamics. Phys. Rev. Lett. 84:1343–1346, 2000.

    Article  CAS  PubMed  Google Scholar 

  7. Cherry, E. M., H. S. Greenside, and C. S. Henriquez. Efficient simulation of three-dimensional anisotropic cardiac tissue using an adaptive mesh refinement method. Chaos. 13(3):853–865, 2003.

    Article  PubMed  Google Scholar 

  8. Colli-Franzone, P., P. Deuflhard, B. Erdmann, J. Lang, and L. F. Pavarino. Adaptivity in space and time for reaction–diffusion systems in electrocardiology. SIAM J. Sci. Comput. 28(3):942–962, 2006.

    Article  Google Scholar 

  9. Colli-Franzone, P., and L. Pavarino. A parallel solver for reaction–diffusion systems in computational electrocardiology. Math. Models Methods Appl. Sci. 14(6):883–911, 2004.

    Article  Google Scholar 

  10. Faber, G. M., and Y. Rudy. Action potential and contractility changes in [Na(+)](i) overloaded cardiac myocytes: a simulation study. Biophys. J. 78(5):2392–2404, 2000.

    Article  CAS  PubMed  Google Scholar 

  11. Felippa, C. Introduction to Finite Element Methods. Boulder: Department of Aerospace Engineering Sciences, University of Colorado at Boulder, 2007.

  12. Fenton, F., E. Cherry, A. Karma, and W. Rappel. Modelling wave propagation in realistic heart geometries using the phase-field method. Chaos 15:1–11, 2005.

    Article  Google Scholar 

  13. Ferrero, J. M., B. Trenor, B. Rodriguez, and J. Saiz. Electrical activity and reentry during acute regional myocardial ischemia: insights from simulations. Int. J. Bifurcat. Chaos. 13:3703–3715, 2003.

    Article  Google Scholar 

  14. Garfinkel, A., Y. H. Kim, O. Voroshilovsky, Z. Qu, J. R. Kil, M. H. Lee, H. S. Karagueuzian, J. N. Weiss, and P. S. Chen. Preventing ventricular fibrillation by flattering cardiac restitution. Proc. Natl Acad. Sci. 97:6061–6066, 2000.

    Article  CAS  PubMed  Google Scholar 

  15. Geselowitz, D. B., and W. T. Miller III. A bidomain model for anisotropic cardiac muscle. Ann. Biomed. Eng. 11:315–334, 1983.

    Article  Google Scholar 

  16. Heidenreich, E. A., J. F. Rodriguez, F. J. Gaspar, and M. Doblare. Fourth order compact schemes with adaptive time step for monodomain reaction difusion equations. J. Comput. Appl. Math. 216:39–55, 2008.

    Article  Google Scholar 

  17. Helm, P. A. A novel technique for quantifying variability of cardiac anatomy application to the dyssynchronous failing heart. PhD thesis, Johns Hopkins University, 2005.

  18. Henriquez, C. S. Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit. Rev. Bioeng. 21:1–77, 1993.

    CAS  Google Scholar 

  19. Ho, S. P., and Y. L. Yeh. The use of 2d enriched elements with bubble functions for finite element analysis. Comput. Struct. 84(29–30):2081–2091, 2006.

    Article  Google Scholar 

  20. Hughes, T. J. R. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Englewwog Cliffs, NJ: Prentice Hall Inc., 672 pp., 1987.

  21. Hunter, P., A. Pullan, and B. Smaill. Modeling total heart function. Annu. Rev. Biomed. Eng. 5:147–177, 2003.

    Article  CAS  PubMed  Google Scholar 

  22. Katz, A. Physiology of the Heart. Philadelphia, USA: Lippincott Williams and Wilkins, 718 pp., 2001.

  23. Karypis, G., and V. Kumar. METIS. A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices. http://www.glaros.dtc.umn.edu/gkhome/metis/metis/overview. University of Minnesota, Department of Computer Science/Army HPC Research Center, Minneapolis, MN, version 4.0, 1998.

  24. Keener, J., and J. Sneyd. Mathematical Physiology. New York: Springer-Verlag, 1148 pp., 2008.

  25. Penland, R. C., D. M. Harrild, and C. S. Heniquez. Modeling impulse propagation and extracellular potential distributions in anisotropic cardiac tissue using a finite volume discretization. Comput. Visualizat. Sci. 4:215–226, 2000.

    Article  Google Scholar 

  26. Qu, Z., and A. Garfinkel. An advanced algorithm for solving partial differential equations in cardiac conduction. IEEE Trans. Biomed. Eng. 46: 1166–1168, 1999.

    Article  CAS  PubMed  Google Scholar 

  27. Rodriguez, B., N. Trayanova, and D. Noble. Modeling cardiac ischemia. Ann. N Y Acad. Sci. 1080:395–414, 2006.

    Article  CAS  PubMed  Google Scholar 

  28. Rogers, J. M., and A. D. McCulloch. A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Eng. 41:743–757, 1994.

    Article  CAS  PubMed  Google Scholar 

  29. Rosamond, W., et al. Heart disease and stroke statistics—2008. Circulation 117:e25–e146, 2008.

    Article  PubMed  Google Scholar 

  30. Skouibine, K., N. Trayanova, and P. Moore. A numerical efficient method for simulation of defibrillation in an active bidomain sheet of myocardium. Math. Biosci. 116:85–100, 2000.

    Article  Google Scholar 

  31. Spotz, W. F., and G. F. Carey. Extension of high-order compact schemes to time-dependent problems. Numer. Methods Partial. Differ. Eq. 17:657–672, 2001.

    Article  Google Scholar 

  32. Strang G. On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3):506–517, 1968.

    Article  Google Scholar 

  33. Sundnes, J., B. F. Nielsen, K. A. Mardal, X. Cai, G. T. Lines, and A. Tveito. On the computational complexity of the bidomain and the monodomain models of electrophysiology. Ann. Biomed. Eng. 34:1088–1097, 2006.

    Article  PubMed  Google Scholar 

  34. Taggart, P., P. M. Sutton, T. Opthof, R. Coronel, T. Richard, W. Pugsley, and P. Kallis. Inhomogeneous transmural conduction during early ischaemia in patients with coronary artery disease. J. Mol. Cell Cardiol. 32(4):621–630, 2000.

    Article  CAS  PubMed  Google Scholar 

  35. ten Tusscher, K. H.W. J., D. Noble, P. J. Noble, and A.V. Panfilov. A model of human ventricular tissue. Am. J. Physiol. Heart Circ. Physiol. 286:H1573–H1589, 2004.

    Article  CAS  PubMed  Google Scholar 

  36. ten Tusscher, K. H. W. J., and A. V. Panfilov. Alternants and spiral breakup in a human ventricular tissue model. Am. J. Physiol. Heart Circ. Physiol. 291:H1088–H1100, 2006.

    Article  CAS  PubMed  Google Scholar 

  37. Trangenstein, J. A., and C. H. Kim. Operator splitting and adaptive mesh refinement for the Luo–Rudy I model. J. Comput. Phys. 196:645–679, 2004.

    Article  Google Scholar 

  38. Trayanova, N., J. Eason, and F. Aguel. Computer simulations of cardiac defibrillation: a look inside the heart. Comput. Vis. Sci. 4:259–270, 2002.

    Article  Google Scholar 

  39. Whiteley, J. P. Physiology driven adaptivity for the numerical solution of the bidomain equations. Ann. Biomed. Eng. 35(9):1510–1520, 2007.

    Article  PubMed  Google Scholar 

  40. Whiteley, J. An efficient technique for the numerical solution of the bidomain equations. Ann. Biomed. Eng. 36(8):1398–1408, 2008.

    Article  PubMed  Google Scholar 

  41. Wilson, E. L. The static condensation algorithm. Int. J. Numer. Methods Eng. 8(1):198–203, 1974.

    Article  Google Scholar 

  42. Zienkiewicz, O. C., and R. L. Taylor. Finite Element Method, Vol. 1. Butterworth-Heinemann, Burlington, MA: Elsevier, 752 pp., 2005.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvio A. Heidenreich.

Additional information

Associate Editor Gerald Saidel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heidenreich, E.A., Ferrero, J.M., Doblaré, M. et al. Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology. Ann Biomed Eng 38, 2331–2345 (2010). https://doi.org/10.1007/s10439-010-9997-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9997-2

Keywords

Navigation