Skip to main content
Log in

High Fluid Shear Stress and Spatial Shear Stress Gradients Affect Endothelial Proliferation, Survival, and Alignment

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cerebral aneurysms develop near bifurcation apices, where complex hemodynamics occur: Flow impinges on the apex, accelerates into branches, then slows again distally, creating high wall shear stress (WSS) and positive and negative spatial gradients in WSS (WSSG). Endothelial responses to these kinds of high WSS hemodynamic environments are not well characterized. We examined endothelial cells (ECs) under elevated WSS and positive and negative WSSG using a flow chamber with constant-height channels to create regions of uniform WSS and converging and diverging channels to create positive and negative WSSG, respectively. Cultured bovine aortic ECs were subjected to 3.5 and 28.4 Pa with and without WSSG for 24 and 36 h. High WSS inhibited EC alignment to flow, increased EC proliferation assessed by bromodeoxyuridine incorporation, and increased apoptosis determined by terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling. These responses to high WSS were either accentuated or ameliorated by WSSG: Positive WSSG (+980 Pa/m) inhibited alignment and stimulated proliferation and apoptosis, whereas negative WSSG (−1120 Pa/m) promoted alignment and suppressed proliferation and apoptosis. These results demonstrate that ECs discriminate between positive and negative WSSG under high WSS conditions. EC responses to positive WSSG may contribute to pathogenic remodeling that occurs at bifurcations preceding aneurysm formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Alnaes, M. S., J. Isaksen, K. A. Mardal, B. Romner, M. K. Morgan, and T. Ingebrigtsen. Computation of hemodynamics in the circle of Willis. Stroke 38:2500–2505, 2007.

    Article  PubMed  Google Scholar 

  2. Bacabac, R. G., T. H. Smit, S. C. Cowin, J. J. Van Loon, F. T. Nieuwstadt, R. Heethaar, and J. Klein-Nulend. Dynamic shear stress in parallel-plate flow chambers. J. Biomech. 38:159–167, 2005.

    PubMed  Google Scholar 

  3. Baier, R. E. Surface behaviour of biomaterials: the theta surface for biocompatibility. J. Mater. Sci. Mater. Med. 17:1057–1062, 2006.

    Article  PubMed  CAS  Google Scholar 

  4. Brakemeier, S., I. Eichler, H. Hopp, R. Kohler, and J. Hoyer. Up-regulation of endothelial stretch-activated cation channels by fluid shear stress. Cardiovasc. Res. 53:209–218, 2002.

    Article  PubMed  CAS  Google Scholar 

  5. Buus, C. L., F. Pourageaud, G. E. Fazzi, G. Janssen, M. J. Mulvany, and J. G. De Mey. Smooth muscle cell changes during flow-related remodeling of rat mesenteric resistance arteries. Circ. Res. 89:180–186, 2001.

    Article  PubMed  CAS  Google Scholar 

  6. Chaudhuri, S., H. Nguyen, R. M. Rangayyan, S. Walsh, and C. B. Frank. A Fourier domain directional filtering method for analysis of collagen alignment in ligaments. IEEE Trans. Biomed. Eng. 34:509–518, 1987.

    Article  PubMed  CAS  Google Scholar 

  7. Chien, S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am. J. Physiol. Heart Circ. Physiol. 292:H1209–H1224, 2007.

    Article  PubMed  CAS  Google Scholar 

  8. Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75:519–560, 1995.

    PubMed  CAS  Google Scholar 

  9. DePaola, N., P. F. Davies, W. F. Pritchard, Jr., L. Florez, N. Harbeck, and D. C. Polacek. Spatial and temporal regulation of gap junction connexin43 in vascular endothelial cells exposed to controlled disturbed flows in vitro. Proc. Natl. Acad. Sci. USA 96:3154–3159, 1999.

    Article  PubMed  CAS  Google Scholar 

  10. DePaola, N., M. A. Gimbrone, Jr., P. F. Davies, and C. F. Dewey, Jr. Vascular endothelium responds to fluid shear stress gradients. Arterioscler. Thromb. 12:1254–1257, 1992.

    PubMed  CAS  Google Scholar 

  11. Dimmeler, S., J. Haendeler, V. Rippmann, M. Nehls, and A. M. Zeiher. Shear stress inhibits apoptosis of human endothelial cells. FEBS Lett. 399:71–74, 1996.

    Article  PubMed  CAS  Google Scholar 

  12. Gimbrone, Jr., M. A., J. N. Topper, T. Nagel, K. R. Anderson, and G. Garcia-Cardena. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann. N. Y. Acad. Sci. 902:230–239, 2000; discussion 239–240.

    Article  PubMed  CAS  Google Scholar 

  13. Jou, L. D., R. van Tyen, S. A. Berger, and D. Saloner. Calculation of the magnetization distribution for fluid flow in curved vessels. Magn. Reson. Med. 35:577–584, 1996.

    Article  PubMed  CAS  Google Scholar 

  14. Kolega, J. Cytoplasmic dynamics of myosin IIA and IIB: spatial ‘sorting’ of isoforms in locomoting cells. J. Cell Sci. 111(Pt 15):2085–2095, 1998.

    PubMed  CAS  Google Scholar 

  15. Kolega, J. Asymmetric distribution of myosin IIB in migrating endothelial cells is regulated by a rho-dependent kinase and contributes to tail retraction. Mol. Biol. Cell 14:4745–4757, 2003.

    Article  PubMed  CAS  Google Scholar 

  16. Kolega, J., Gao, L., Mandelbaum, M., Mocco, J., Siddiqui, A. H., Natarajan, S. K., Meng, H. Cellular and molecular responses of the basilar terminus to hemodynamics during intracranial aneurysm initiation in a rabbit model. J. Vasc. Res. in press, 2011.

  17. Krex, D., H. K. Schackert, and G. Schackert. Genesis of cerebral aneurysms—an update. Acta Neurochir. (Wien) 143:429–448, 2001; discussion 448–429.

    Article  CAS  Google Scholar 

  18. LaMack, J. A., and M. H. Friedman. Individual and combined effects of shear stress magnitude and spatial gradient on endothelial cell gene expression. Am. J. Physiol. Heart Circ. Physiol. 293:H2853–H2859, 2007.

    Article  PubMed  CAS  Google Scholar 

  19. Lehoux, S., F. Tronc, and A. Tedgui. Mechanisms of blood flow-induced vascular enlargement. Biorheology 39:319–324, 2002.

    PubMed  CAS  Google Scholar 

  20. Levesque, M. J., R. M. Nerem, and E. A. Sprague. Vascular endothelial cell proliferation in culture and the influence of flow. Biomaterials 11:702–707, 1990.

    Article  PubMed  CAS  Google Scholar 

  21. Li, X., and J. Kolega. Effects of direct current electric fields on cell migration and actin filament distribution in bovine vascular endothelial cells. J. Vasc. Res. 39:391–404, 2002.

    Article  PubMed  CAS  Google Scholar 

  22. Lindekleiv, H. M., K. Valen-Sendstad, M. K. Morgan, K. A. Mardal, K. Faulder, J. H. Magnus, K. Waterloo, B. Romner, and T. Ingebrigtsen. Sex differences in intracranial arterial bifurcations. Gend. Med. 7:149–155, 2010.

    Article  PubMed  Google Scholar 

  23. Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042, 1999.

    Article  PubMed  CAS  Google Scholar 

  24. Martins, G. G., and J. Kolega. Endothelial cell protrusion and migration in three-dimensional collagen matrices. Cell Motil. Cytoskelet. 63:101–115, 2006.

    Article  Google Scholar 

  25. Meng, H., E. Metaxa, L. Gao, N. Liaw, S. K. Natarajan, D. D. Swartz, A. H. Siddiqui, J. Kolega, and J. Mocco. Progressive aneurysm development following hemodynamic insult. J. Neurosurg. in press, 2011.

  26. Meng, H., Z. Wang, Y. Hoi, L. Gao, E. Metaxa, D. D. Swartz, and J. Kolega. Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke 38:1924–1931, 2007.

    Article  PubMed  Google Scholar 

  27. Metaxa, E., H. Meng, S. R. Kaluvala, M. P. Szymanski, R. A. Paluch, and J. Kolega. Nitric oxide-dependent stimulation of endothelial cell proliferation by sustained high flow. Am. J. Physiol. Heart Circ. Physiol. 295:H736–H742, 2008.

    Article  PubMed  CAS  Google Scholar 

  28. Metaxa, E., M. Tremmel, S. K. Natarajan, J. Xiang, R. A. Paluch, M. Mandelbaum, A. H. Siddiqui, J. Kolega, J. Mocco, and H. Meng. Characterization of critical hemodynamics contributing to aneurysmal remodeling at the basilar terminus in a rabbit model. Stroke 41:1774–1782, 2010.

    Article  PubMed  Google Scholar 

  29. Nagel, T., N. Resnick, C. F. Dewey, Jr., and M. A. Gimbrone, Jr. Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors. Arterioscler. Thromb. Vasc. Biol. 19:1825–1834, 1999.

    PubMed  CAS  Google Scholar 

  30. Ng, C. P., B. Hinz, and M. A. Swartz. Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J. Cell Sci. 118:4731–4739, 2005.

    Article  PubMed  CAS  Google Scholar 

  31. Phelps, J. E., and N. DePaola. Spatial variations in endothelial barrier function in disturbed flows in vitro. Am. J. Physiol. Heart Circ. Physiol. 278:H469–H476, 2000.

    PubMed  CAS  Google Scholar 

  32. Reidy, M. A., and B. L. Langille. The effect of local blood flow patterns on endothelial cell morphology. Exp. Mol. Pathol. 32:276–289, 1980.

    Article  PubMed  CAS  Google Scholar 

  33. Sakamoto, N., N. Saito, X. Han, T. Ohashi, and M. Sato. Effect of spatial gradient in fluid shear stress on morphological changes in endothelial cells in response to flow. Biochem. Biophys. Res. Commun. 395:264–269, 2010.

    Article  PubMed  CAS  Google Scholar 

  34. Schirmer, C. M., and A. M. Malek. Wall shear stress gradient analysis within an idealized stenosis using non-Newtonian flow. Neurosurgery 61:853–863, 2007; discussion 863–854.

    Article  PubMed  Google Scholar 

  35. Sho, E., M. Komatsu, M. Sho, H. Nanjo, T. M. Singh, C. Xu, H. Masuda, and C. K. Zarins. High flow drives vascular endothelial cell proliferation during flow-induced arterial remodeling associated with the expression of vascular endothelial growth factor. Exp. Mol. Pathol. 75:1–11, 2003.

    Article  PubMed  CAS  Google Scholar 

  36. Sho, E., M. Sho, T. M. Singh, H. Nanjo, M. Komatsu, C. Xu, H. Masuda, and C. K. Zarins. Arterial enlargement in response to high flow requires early expression of matrix metalloproteinases to degrade extracellular matrix. Exp. Mol. Pathol. 73:142–153, 2002.

    Article  PubMed  CAS  Google Scholar 

  37. Stone, P. H., A. U. Coskun, Y. Yeghiazarians, S. Kinlay, J. J. Popma, R. E. Kuntz, and C. L. Feldman. Prediction of sites of coronary atherosclerosis progression: in vivo profiling of endothelial shear stress, lumen, and outer vessel wall characteristics to predict vascular behavior. Curr. Opin. Cardiol. 18:458–470, 2003.

    Article  PubMed  Google Scholar 

  38. Sullivan, C. J., and J. B. Hoying. Flow-dependent remodeling in the carotid artery of fibroblast growth factor-2 knockout mice. Arterioscler. Thromb. Vasc. Biol. 22:1100–1105, 2002.

    Article  PubMed  CAS  Google Scholar 

  39. Szymanski, M. P., E. Metaxa, H. Meng, and J. Kolega. Endothelial cell layer subjected to impinging flow mimicking the apex of an arterial bifurcation. Ann. Biomed. Eng. 36:1681–1689, 2008.

    Article  PubMed  Google Scholar 

  40. Tardy, Y., N. Resnick, T. Nagel, M. A. Gimbrone, Jr., and C. F. Dewey, Jr. Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation-migration-loss cycle. Arterioscler. Thromb. Vasc. Biol. 17:3102–3106, 1997.

    PubMed  CAS  Google Scholar 

  41. Thi, M. M., J. M. Tarbell, S. Weinbaum, and D. C. Spray. The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a “bumper-car” model. Proc. Natl. Acad. Sci. USA 101:16483–16488, 2004.

    Article  PubMed  CAS  Google Scholar 

  42. Tzima, E., M. Irani-Tehrani, W. B. Kiosses, E. Dejana, D. A. Schultz, B. Engelhardt, G. Cao, H. DeLisser, and M. A. Schwartz. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426–431, 2005.

    Article  PubMed  CAS  Google Scholar 

  43. van Everdingen, K. J., C. J. Klijn, L. J. Kappelle, W. P. Mali, and J. van der Grond. MRA flow quantification in patients with a symptomatic internal carotid artery occlusion. The Dutch EC-IC Bypass Study Group. Stroke 28:1595–1600, 1997.

    PubMed  Google Scholar 

  44. Viggers, R. F., A. R. Wechezak, and L. R. Sauvage. An apparatus to study the response of cultured endothelium to shear stress. J. Biomech. Eng. 108:332–337, 1986.

    Article  PubMed  CAS  Google Scholar 

  45. Wang, Z., J. Kolega, Y. Hoi, L. Gao, D. D. Swartz, E. I. Levy, J. Mocco, and H. Meng. Molecular alterations associated with aneurysmal remodeling are localized in the high hemodynamic stress region of a created carotid bifurcation. Neurosurgery 65:169–177, 2009; discussion 177–168.

    Article  PubMed  Google Scholar 

  46. Wright, H. P. Endothelial mitosis around aortic branches in normal guinea pigs. Nature 220:78–79, 1968.

    Article  PubMed  CAS  Google Scholar 

  47. Zarins, C. K., D. P. Giddens, B. K. Bharadvaj, V. S. Sottiurai, R. F. Mabon, and S. Glagov. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ. Res. 53:502–514, 1983.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Eleni Metaxa for contributions to chamber design and stimulating discussions, Robert Baier for critical advice on biocompatible materials, Scott Woodward for technical assistance in chamber design, Nicholas Liaw for stimulating discussions, and Jianping Xiang for assistance with CFD. We also acknowledge the assistance of Wade Sigurdson and the Confocal Microscope and Flow Cytometry Core Facility at the University of Buffalo. This work was supported by the NIH grant R01NS064592 (H.M.) and the American Society for Quality (J.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Kolega.

Additional information

Associate Editor K. A. Athanasiou oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolan, J.M., Meng, H., Singh, S. et al. High Fluid Shear Stress and Spatial Shear Stress Gradients Affect Endothelial Proliferation, Survival, and Alignment. Ann Biomed Eng 39, 1620–1631 (2011). https://doi.org/10.1007/s10439-011-0267-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0267-8

Keywords

Navigation