Skip to main content
Log in

Fluid Flow-Induced Calcium Response in Osteoclasts: Signaling Pathways

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Intracellular calcium oscillation and its downstream signaling in osteoclasts is believed to play critical roles in regulating bone resorption. Our previous study demonstrated that fluid shear stress (FSS) induced more calcium responsive peaks in the late differentiated osteoclasts than the early ones. In this paper, the signaling pathways of FSS-induced calcium response for the osteoclasts in different differentiation stages were studied. RAW264.7 macrophage cells were induced to differentiate into osteoclasts with the conditioned medium from MC3T3-E1 osteoblasts. Furthermore pharmacological agents were added to block the specific signaling pathways. Finally the cells were exposed to FSS at different levels (1 or 10 dyne/cm2) after being induced for 4 or 8 days. The results showed that the mechanosensitive, cation-selective channels, phospholipase C (PLC) and endoplasmic reticulum constituted the major signaling pathway for mechanical stimulation-induced calcium response in osteoclasts. Extracellular calcium or ATP involved with calcium oscillation in a FSS magnitude-dependent manner. This pathway study may help to give insight into the molecular mechanism of mechanical stimulation-regulated bone remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Adinolfi, E., F. Amoroso, and A. L. Giuliani. P2X7 receptor function in bone-related cancer. J. Osteoporos. 2012:637863, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Batra, N., R. Kar, and J. X. Jiang. Gap junctions and hemichannels in signal transmission, function and development of bone. Biochim. Biophys. Acta 1818(8):1909–1918, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bennett, B. D., U. Alvarez, and K. A. Hruska. Receptor-operated osteoclast calcium sensing. Endocrinology 142(5):1968–1974, 2001.

    CAS  PubMed  Google Scholar 

  4. Brandao-Burch, A., et al. The P2X7 receptor is an important regulator of extracellular ATP levels. Front. Endocrinol. (Lausanne) 3:41, 2012.

    Google Scholar 

  5. Combs, C. E., et al. Urocortin is a novel regulator of osteoclast differentiation and function through inhibition of a canonical transient receptor potential 1-like cation channel. J. Endocrinol. 212(2):187–197, 2012.

    Article  CAS  PubMed  Google Scholar 

  6. Everaerts, W., B. Nilius, and G. Owsianik. The vanilloid transient receptor potential channel TRPV4: from structure to disease. Prog. Biophys. Mol. Biol. 103(1):2–17, 2010.

    Article  CAS  PubMed  Google Scholar 

  7. Faccio, R., and V. Cremasco. PLCgamma2: where bone and immune cells find their common ground. Ann. N. Y. Acad. Sci. 1192:124–130, 2010.

    Article  CAS  PubMed  Google Scholar 

  8. Fahlgren, A., et al. Fluid pressure and flow as a cause of bone resorption. Acta Orthop. 81(4):508–516, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Hazama, R., et al. ATP-induced osteoclast function: the formation of sealing-zone like structure and the secretion of lytic granules via microtubule-deacetylation under the control of Syk. Genes Cells 14(7):871–884, 2009.

    Article  CAS  PubMed  Google Scholar 

  10. Henriksen, Z., et al. The predominant mechanism of intercellular calcium wave propagation changes during long-term culture of human osteoblast-like cells. Cell Calcium 39(5):435–444, 2006.

    Article  CAS  PubMed  Google Scholar 

  11. Hiken, J. F., and T. H. Steinberg. ATP downregulates P2X7 and inhibits osteoclast formation in RAW cells. Am. J. Physiol. Cell Physiol. 287(2):C403–C412, 2004.

    Article  CAS  PubMed  Google Scholar 

  12. Huo, B., X. L. Lu, and X. E. Guo. Intercellular calcium wave propagation in linear and circuit-like bone cell networks. Philos. Trans. A Math. Phys. Eng. Sci. 2010(368):617–633, 1912.

    Google Scholar 

  13. Huo, B., et al. Fluid flow induced calcium response in bone cell network. Cell. Mol. Bioeng. 1(1):58–66, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Huo, B., et al. An ATP-dependent mechanism mediates intercellular calcium signaling in bone cell network under single cell nanoindentation. Cell Calcium 47:234–241, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Hwang, S. Y., and J. W. Putney. Orai1-mediated calcium entry plays a critical role in osteoclast differentiation and function by regulating activation of the transcription factor NFATc1. FASEB J. 26(4):1484–1492, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Ilvesaro, J., and J. Tuukkanen. Gap-junctional regulation of osteoclast function. Crit. Rev. Eukaryot. Gene Expr. 13(2–4):133–146, 2003.

    CAS  PubMed  Google Scholar 

  17. Johansson, L., et al. Bone resorption induced by fluid flow. J. Biomech. Eng. Trans. ASME 131(9):094505, 2009.

    Article  Google Scholar 

  18. Kajiya, H. Calcium signaling in osteoclast differentiation and bone resorption. Adv. Exp. Med. Biol. 740:917–932, 2012.

    Article  CAS  PubMed  Google Scholar 

  19. Kim, K., et al. The transmembrane adaptor protein, linker for activation of T cells (LAT), regulates RANKL-induced osteoclast differentiation. Mol. Cells 33(4):401–406, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Kuroda, Y., et al. Osteoblasts induce Ca2+ oscillation-independent NFATc1 activation during osteoclastogenesis. Proc. Natl. Acad. Sci. U.S.A. 105(25):8643–8648, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Lemaire, I., S. Falzoni, and E. Adinolfi. Purinergic signaling in giant cell formation. Front. Biosci. (Elite Ed.) 4:41–55, 2012.

    Article  Google Scholar 

  22. Lev, S., et al. Signal dependent hydrolysis of PI(4,5)P2 without activation of phospholipase C: implications on the gating of the Drosophila TRPL channel. J. Biol. Chem. 287:1436–1447, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Li, P., et al. Fluid flow-induced calcium response in early or late differentiated osteoclasts. Ann. Biomed. Eng. 40(9):1874–1883, 2012.

    Article  PubMed  Google Scholar 

  24. Liu, B., et al. Two distinct phases of calcium signalling under flow. Cardiovasc. Res. 91(1):124–133, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Lu, X. L., et al. Calcium response in osteocytic networks under steady and oscillatory fluid flow. Bone 51(3):466–473, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Lu, X. L., et al. Osteocytic network is more responsive in calcium signaling than osteoblastic network under fluid flow. J. Bone Miner. Res. 27(3):563–574, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Masuyama, R., et al. TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell Metab. 8(3):257–265, 2008.

    Article  CAS  PubMed  Google Scholar 

  28. Matemba, S. F., A. Lie, and M. Ransjo. Regulation of osteoclastogenesis by gap junction communication. J. Cell. Biochem. 99(2):528–537, 2006.

    Article  CAS  PubMed  Google Scholar 

  29. Mentaverri, R., et al. The calcium sensing receptor is directly involved in both osteoclast differentiation and apoptosis. FASEB J. 20(14):2562–2564, 2006.

    Article  CAS  PubMed  Google Scholar 

  30. Miyazaki, T., et al. Intracellular and extracellular ATP coordinately regulate the inverse correlation between osteoclast survival and bone resorption. J. Biol. Chem. 287(45):37808–37823, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Mizoguchi, F., et al. Transient receptor potential vanilloid 4 deficiency suppresses unloading-induced bone loss. J. Cell. Physiol. 216(1):47–53, 2008.

    Article  CAS  PubMed  Google Scholar 

  32. Nishii, N., et al. Effects of ATP on the intracellular calcium level in the osteoblastic TBR31-2 cell line. Biol. Pharm. Bull. 32(1):18–23, 2009.

    Article  CAS  PubMed  Google Scholar 

  33. Noh, A. L., et al. L-type Ca(2+) channel agonist inhibits RANKL-induced osteoclast formation via NFATc1 down-regulation. Life Sci. 89(5–6):159–164, 2011.

    Article  CAS  PubMed  Google Scholar 

  34. O’Neil, R. G., and S. Heller. The mechanosensitive nature of TRPV channels. Pflugers Archiv. (Eur. J. Physiol.) 451(1):193–203, 2005.

    Article  Google Scholar 

  35. Reyes, J. P., S. M. Sims, and S. J. Dixon. P2 receptor expression, signaling and function in osteoclasts. Front. Biosci (Sch. Ed.) 3:1101–1118, 2011.

    Article  Google Scholar 

  36. Sakai, H., et al. Phospholipase C-dependent Ca2+-sensing pathways leading to endocytosis and inhibition of the plasma membrane vacuolar H+-ATPase in osteoclasts. Am. J. Physiol. Cell Physiol. 299(3):C570–C578, 2010.

    Article  CAS  PubMed  Google Scholar 

  37. Schilling, A. F., et al. Gap junctional communication in human osteoclasts in vitro and in vivo. J. Cell Mol. Med. 12(6A):2497–2504, 2008.

    Article  CAS  PubMed  Google Scholar 

  38. Son, A., et al. Effects of inositol 1,4,5-triphosphate on osteoclast differentiation in RANKL-induced osteoclastogenesis. Korean J. Physiol. Pharmacol. 16(1):31–36, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Sukharev, S., and D. P. Corey. Mechanosensitive channels: multiplicity of families and gating paradigms. Sci. STKE 2004(219):re4, 2004.

    PubMed  Google Scholar 

  40. Thompson, W. R., et al. Association of the alpha(2)delta(1) subunit with Ca(v)3.2 enhances membrane expression and regulates mechanically induced ATP release in MLO-Y4 osteocytes. J. Bone Miner. Res. 26(9):2125–2139, 2011.

    Article  CAS  PubMed  Google Scholar 

  41. Tsuzuki, T., et al. Osmotic membrane stretch increases cytosolic Ca(2+) and inhibits bone resorption activity in rat osteoclasts. Jpn. J. Physiol. 50(1):67–76, 2000.

    Article  CAS  PubMed  Google Scholar 

  42. Wiebe, S. H., S. M. Sims, and S. J. Dixon. Calcium signalling via multiple P2 purinoceptor subtypes in rat osteoclasts. Cell. Physiol. Biochem. 9(6):323–337, 1999.

    Article  CAS  PubMed  Google Scholar 

  43. Wiltink, A., et al. Cell membrane stretch in osteoclasts triggers a self-reinforcing Ca2+ entry pathway. Pflugers Archiv. (Eur. J. Physiol.) 429(5):663–671, 1995.

    Article  CAS  Google Scholar 

  44. Xia, S. L., and J. Ferrier. Calcium signal induced by mechanical perturbation of osteoclasts. J. Cell. Physiol. 163(3):493–501, 1995.

    Article  CAS  PubMed  Google Scholar 

  45. Xia, S. L., and J. Ferrier. Localized calcium signaling in multinucleated osteoclasts. J. Cell. Physiol. 167(1):148–155, 1996.

    Article  CAS  PubMed  Google Scholar 

  46. Yasuda, E., et al. Decreased expression of phospholipase C-beta 1 protein in endoplasmic reticulum stress-loaded neurons. Biol. Pharm. Bull. 31(4):719–721, 2008.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China [11372043 (BH) and 31070829 (DZ)], National Key Basic Research Foundation of China grant [2011CB710904 (ML)] and the Fundamental Research Funds for the Central Universities [GZ2013015101 (BH)].

Conflict of interest

No conflict of interested is assigned to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ding Zhang or Bo Huo.

Additional information

Associate Editor Scott I. Simon oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, P., Liu, C., Hu, M. et al. Fluid Flow-Induced Calcium Response in Osteoclasts: Signaling Pathways. Ann Biomed Eng 42, 1250–1260 (2014). https://doi.org/10.1007/s10439-014-0984-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-0984-x

Keywords

Navigation