Skip to main content

Advertisement

Log in

Diabetes Alters Mechanical Properties and Collagen Fiber Re-Alignment in Multiple Mouse Tendons

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Tendons function to transfer load from muscle to bone through their complex composition and hierarchical structure, consisting mainly of type I collagen. Recent evidence suggests that type II diabetes may cause alterations in collagen structure, such as irregular fibril morphology and density, which could play a role in the mechanical function of tendons. Using the db/db mouse model of type II diabetes, the diabetic skin was found to have impaired biomechanical properties when compared to the non-diabetic group. The purpose of this study was to assess the effect of diabetes on biomechanics, collagen fiber re-alignment, and biochemistry in three functionally different tendons (Achilles, supraspinatus, patellar) using the db/db mouse model. Results showed that cross-sectional area and stiffness, but not modulus, were significantly reduced in all three tendons. However, the tendon response to load (transition strain, collagen fiber re-alignment) occurred earlier in the mechanical test, contrary to expectations. In addition, the patellar tendon had an altered response to diabetes when compared to the other two tendons, with no changes in fiber re-alignment and decreased collagen content at the midsubstance of the tendon. Overall, type II diabetes alters tendon mechanical properties and the dynamic response to load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Amiel, D., C. Frank, F. Harwood, J. Fronek, and W. Akeson. Tendons and ligaments: a morphological and biochemical comparison. J. Orthop. Res. 1:257–265, 1984.

    Article  CAS  PubMed  Google Scholar 

  2. Ansorge, H., S. Adams, D. Birk, and L. Soslowsky. Mechanical, compositional, and structural properties of the post-natal mouse Achilles tendon. Ann. Biomed. Eng. 39:1904–1913, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Avery, N. C., and A. J. Bailey. Enzymic and non-enzymic cross-linking mechanisms in relation to turnover of collagen: relevance to aging and exercise. Scand. J. Med. Sci. Sports 15:231–240, 2005.

    Article  CAS  PubMed  Google Scholar 

  4. Bermudez, D. M., B. J. Herdrich, J. Xu, R. Lind, D. P. Beason, M. E. Mitchell, L. J. Soslowsky, and K. W. Liechty. Impaired biomechanical properties of diabetic skin implications in pathogenesis of diabetic wound complications. Am. J. Pathol. 178:2215–2223, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Brownlee, M., A. Cerami, and H. Vlassara. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N. Engl. J. Med. 318:1315–1321, 1988.

    Article  CAS  PubMed  Google Scholar 

  6. Brownlee, M., A. Cerami, and H. Vlassara. Advanced products of nonenzymatic glycosylation and the pathogenesis of diabetic vascular disease. Diabete. Metab. Rev. 4:437–451, 1988.

    Article  CAS  Google Scholar 

  7. Connizzo, B. K., J. J. Sarver, R. V. Iozzo, D. E. Birk, and L. J. Soslowsky. Effect of age and proteoglycan deficiency on collagen fiber re-alignment and mechanical properties in mouse supraspinatus tendon. J. Biomech. Eng. 135:021019, 2013.

    Article  PubMed  Google Scholar 

  8. Connizzo, B. K., S. M. Yannascoli, and L. J. Soslowsky. Structure-function relationships of postnatal tendon development: a parallel to healing. Matrix Biol. 32:106–116, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Cooper, M. E. Importance of advanced glycation end products in diabetes-associated cardiovascular and renal disease. Am. J. Hypertens. 17:31S–38S, 2004.

    Article  CAS  PubMed  Google Scholar 

  10. Couppe, C., P. Hansen, M. Kongsgaard, V. Kovanen, C. Suetta, P. Aagaard, M. Kjaer, and S. P. Magnusson. Mechanical properties and collagen cross-linking of the patellar tendon in old and young men. J. Appl. Physiol. 107:880–886, 2009.

    Article  CAS  PubMed  Google Scholar 

  11. de Oliveira, R. R., K. D. de Lira, P. V. Silveira, M. P. Coutinho, M. N. Medeiros, M. F. Teixeira, and S. R. de Moraes. Mechanical properties of Achilles tendon in rats induced to experimental diabetes. Ann. Biomed. Eng. 39:1528–1534, 2011.

    Article  PubMed  Google Scholar 

  12. Dourte, L. M., L. Pathmanathan, M. J. Mienaltowski, A. F. Jawad, D. E. Birk, and L. J. Soslowsky. Mechanical, compositional, and structural properties of the mouse patellar tendon with changes in biglycan gene expression. J. Orthop. Res. 2013.

  13. Dourte, L. M., L. Pathmanathan, A. F. Jawad, R. V. Iozzo, M. J. Mienaltowski, D. E. Birk, and L. J. Soslowsky. Influence of decorin on the mechanical, compositional, and structural properties of the mouse patellar tendon. J. Biomech. Eng. 134:031005, 2012.

    Article  PubMed  Google Scholar 

  14. Duenwald, S. E., R. Vanderby, Jr., and R. S. Lakes. Stress relaxation and recovery in tendon and ligament: experiment and modeling. Biorheology 47:1–14, 2010.

    PubMed  Google Scholar 

  15. Dyer, D. G., J. A. Dunn, S. R. Thorpe, K. E. Bailie, T. J. Lyons, D. R. McCance, and J. W. Baynes. Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J. Clin. Invest. 91:2463–2469, 1993.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Elliott, D. M., P. S. Robinson, J. A. Gimbel, J. J. Sarver, J. A. Abboud, R. V. Iozzo, and L. J. Soslowsky. Effect of altered matrix proteins on quasilinear viscoelastic properties in transgenic mouse tail tendons. Ann. Biomed. Eng. 31:599–605, 2003.

    Article  PubMed  Google Scholar 

  17. Frank, C., D. McDonald, J. Wilson, D. Eyre, and N. Shrive. Rabbit medial collateral ligament scar weakness is associated with decreased collagen pyridinoline crosslink density. J. Orthop. Res. 13:157–165, 1995.

    Article  CAS  PubMed  Google Scholar 

  18. Gonzalez, A. D., Gallant, M. A., Burr, D. B. and Wallace, J. M. Multiscale analysis of morphology and mechanics in tail tendon from the ZDSD rat model of type 2 diabetes. J Biomech. 2013.

  19. Grant, W. P., R. Sullivan, D. E. Sonenshine, M. Adam, J. H. Slusser, K. A. Carson, and A. I. Vinik. Electron microscopic investigation of the effects of diabetes mellitus on the Achilles tendon. J. Foot Ankle Surg. 36:272–278; discussion 330, 1997.

  20. Kent, M. J., N. D. Light, and A. J. Bailey. Evidence for glucose-mediated covalent cross-linking of collagen after glycosylation in vitro. Biochem. J. 225:745–752, 1985.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Lake, S. P., K. S. Miller, D. M. Elliott, and L. J. Soslowsky. Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading. J. Orthop. Res. 27:1596–1602, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Lake, S. P., K. S. Miller, D. M. Elliott, and L. J. Soslowsky. Tensile properties and fiber alignment of human supraspinatus tendon in the transverse direction demonstrate inhomogeneity, nonlinearity, and regional isotropy. J. Biomech. 43:727–732, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Marturano, J. E., and C. K. Kuo. Mechanical and biochemical effects of inhibiting collagen crosslinking in developing embryonic tendon. Trans. Orthop. Res. Soc. 37:2302, 2012.

  24. Miller, K. S., B. K. Connizzo, E. Feeney, and L. J. Soslowsky. Characterizing local collagen fiber re-alignment and crimp behavior throughout mechanical testing in a mature mouse supraspinatus tendon model. J. Biomech. Eng. 45:2061–2065, 2012.

    Article  Google Scholar 

  25. Miller, K. S., B. K. Connizzo, E. Feeney, J. J. Tucker, and L. J. Soslowsky. Examining differences in local collagen fiber crimp frequency throughout mechanical testing in a developmental mouse supraspinatus tendon model. J. Biomech. Eng. 134:041004, 2012.

    Article  PubMed  Google Scholar 

  26. Miller, K., B. Connizzo, and L. Soslowsky. Collagen fiber re-alignment in a neonatal developmental mouse supraspinatus tendon model. Ann. Biomed. Eng. 40:1102–1110, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Monnier, V. M. Toward a Maillard reaction theory of aging. Prog. Clin. Biol. Res. 304:1–22, 1989.

    CAS  PubMed  Google Scholar 

  28. Odetti, P., I. Aragno, R. Rolandi, S. Garibaldi, S. Valentini, L. Cosso, N. Traverso, D. Cottalasso, M. A. Pronzato, and U. M. Marinari. Scanning force microscopy reveals structural alterations in diabetic rat collagen fibrils: role of protein glycation. Diabete. Metab. Res. Rev. 16:74–81, 2000.

    Article  CAS  Google Scholar 

  29. Oturai, P. S., M. Christensen, B. Rolin, K. E. Pedersen, S. B. Mortensen, and E. Boel. Effects of advanced glycation end-product inhibition and cross-link breakage in diabetic rats. Metabolism 49:996–1000, 2000.

    Article  CAS  PubMed  Google Scholar 

  30. Peltz, C. D., J. J. Sarver, L. M. Dourte, C. C. Wurgler-Hauri, G. R. Williams, and L. J. Soslowsky. Exercise following a short immobilization period is detrimental to tendon properties and joint mechanics in a rat rotator cuff injury model. J. Orthop. Res. 28:841–845, 2010.

    PubMed Central  PubMed  Google Scholar 

  31. Robinson, P. S., T. W. Lin, P. R. Reynolds, K. A. Derwin, R. V. Iozzo, and L. J. Soslowsky. Strain-rate sensitive mechanical properties of tendon fascicles from mice with genetically engineered alterations in collagen and decorin. J. Biomech. Eng. 126:252–257, 2004.

    Article  PubMed  Google Scholar 

  32. Singer, V. L., L. J. Jones, S. T. Yue, and R. P. Haugland. Characterization of PicoGreen reagent and development of a fluorescence-based solution assay for double-stranded DNA quantitation. Anal. Biochem. 249:228–238, 1997.

    Article  CAS  PubMed  Google Scholar 

  33. Stefek, M., A. Gajdosik, A. Gajdosikova, and L. Krizanova. p-Dimethylaminobenzaldehyde-reactive substances in tail tendon collagen of streptozotocin-diabetic rats: temporal relation to biomechanical properties and advanced glycation endproduct (AGE)-related fluorescence. Biochim. Biophys. Acta 1502:398–404, 2000.

    Article  CAS  PubMed  Google Scholar 

  34. Sverdlik, A., and Y. Lanir. Time-dependent mechanical behavior of sheep digital tendons, including the effects of preconditioning. J. Biomech. Eng. 124:78–84, 2002.

    Article  CAS  PubMed  Google Scholar 

  35. Thornton, G. M., G. P. Leask, N. G. Shrive, and C. B. Frank. Early medial collateral ligament scars have inferior creep behaviour. J. Orthop. Res. 18:238–246, 2000.

    Article  CAS  PubMed  Google Scholar 

  36. Voleti, P. B., M. R. Buckley, and L. J. Soslowsky. Tendon healing: repair and regeneration. Annu. Rev. Biomed. Eng. 14:47–71, 2012.

    Article  CAS  PubMed  Google Scholar 

  37. Williams, L. N., S. H. Elder, M. F. Horstemeyer, and D. Harbarger. Variation of diameter distribution, number density, and area fraction of fibrils within five areas of the rabbit patellar tendon. Ann. Anat. 190:442–451, 2008.

    Article  PubMed  Google Scholar 

  38. Woo, S. L., G. A. Johnson, and B. A. Smith. Mathematical modeling of ligaments and tendons. J. Biomech. Eng. 115:468–473, 1993.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the NIH T32 AR556680 (Soslowsky) and DP2 DK083085 (Liechty).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis J. Soslowsky.

Additional information

Associate Editor Eric M. Darling oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Connizzo, B.K., Bhatt, P.R., Liechty, K.W. et al. Diabetes Alters Mechanical Properties and Collagen Fiber Re-Alignment in Multiple Mouse Tendons. Ann Biomed Eng 42, 1880–1888 (2014). https://doi.org/10.1007/s10439-014-1031-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1031-7

Keywords

Navigation