Skip to main content
Log in

Emergence of Scaffold-Free Approaches for Tissue Engineering Musculoskeletal Cartilages

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This review explores scaffold-free methods as an additional paradigm for tissue engineering. Musculoskeletal cartilages—for example articular cartilage, meniscus, temporomandibular joint disc, and intervertebral disc—are characterized by low vascularity and cellularity, and are amenable to scaffold-free tissue engineering approaches. Scaffold-free approaches, particularly the self-assembling process, mimic elements of developmental processes underlying these tissues. Discussed are various scaffold-free approaches for musculoskeletal cartilage tissue engineering, such as cell sheet engineering, aggregation, and the self-assembling process, as well as the availability and variety of cells used. Immunological considerations are of particular importance as engineered tissues are frequently of allogeneic, if not xenogeneic, origin. Factors that enhance the matrix production and mechanical properties of these engineered cartilages are also reviewed, as the fabrication of biomimetically suitable tissues is necessary to replicate function and ensure graft survival in vivo. The concept of combining scaffold-free and scaffold-based tissue engineering methods to address clinical needs is also discussed. Inasmuch as scaffold-based musculoskeletal tissue engineering approaches have been employed as a paradigm to generate engineered cartilages with appropriate functional properties, scaffold-free approaches are emerging as promising elements of a translational pathway not only for musculoskeletal cartilages but for other tissues as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Adkisson, H. D., M. P. Gillis, E. C. Davis, W. Maloney, and K. A. Hruska. In vitro generation of scaffold independent neocartilage. Clin. Orthop. Relat. Res. 391:S280–S294, 2001.

    Article  PubMed  Google Scholar 

  2. Adkisson, H. D., J. A. Martin, R. L. Amendola, C. Milliman, K. A. Mauch, A. B. Katwal, M. Seyedin, A. Amendola, P. R. Streeter, and J. A. Buckwalter. The potential of human allogeneic juvenile chondrocytes for restoration of articular cartilage. Am. J. Sports Med. 38:1324–1333, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Allan, K. S., R. M. Pilliar, J. Wang, M. D. Grynpas, and R. A. Kandel. Formation of biphasic constructs containing cartilage with a calcified zone interface. Tissue Eng. 13:167–177, 2007.

    Article  CAS  PubMed  Google Scholar 

  4. Athanasiou, K. A. Articular cartilage. Boca Raton, FL: CRC Press/Taylor & Francis, 2013.

    Google Scholar 

  5. Athanasiou, K. A., R. Eswaramoorthy, P. Hadidi, and J. C. Hu. Self-organization and the self-assembling process in tissue engineering. Annu. Rev. Biomed. Eng. 15:115–136, 2013.

    Article  CAS  PubMed  Google Scholar 

  6. Babur, B. K., P. Ghanavi, P. Levett, W. B. Lott, T. Klein, J. J. Cooper-White, R. Crawford, and M. R. Doran. The interplay between chondrocyte redifferentiation pellet size and oxygen concentration. PLoS ONE 8:e58865, 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Bhumiratana, S., R. E. Eton, S. R. Oungoulian, L. Q. Wan, G. A. Ateshian, and G. Vunjak-Novakovic. Large, stratified, and mechanically functional human cartilage grown in vitro by mesenchymal condensation. Proc. Natl. Acad. Sci. USA 111:6940–6945, 2014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Bolano, L., and J. A. Kopta. The immunology of bone and cartilage transplantation. Orthopedics 14:987–996, 1991.

    CAS  PubMed  Google Scholar 

  9. Boneva, R. S., and T. M. Folks. Xenotransplantation and risks of zoonotic infections. Ann. Med. 36:504–517, 2004.

    Article  PubMed  Google Scholar 

  10. Brenner, J. M., N. M. Ventura, M. Y. Tse, A. Winterborn, D. D. Bardana, S. C. Pang, M. B. Hurtig, and S. D. Waldman. Implantation of scaffold-free engineered cartilage constructs in a rabbit model for chondral resurfacing. Artif. Organs 38:E21–E32, 2014.

    Article  CAS  PubMed  Google Scholar 

  11. Candrian, C., D. Vonwil, A. Barbero, E. Bonacina, S. Miot, J. Farhadi, D. Wirz, S. Dickinson, A. Hollander, M. Jakob, Z. Li, M. Alini, M. Heberer, and I. Martin. Engineered cartilage generated by nasal chondrocytes is responsive to physical forces resembling joint loading. Arthritis Rheum. 58:197–208, 2008.

    Article  CAS  PubMed  Google Scholar 

  12. Cheuk, Y. C., M. W. Wong, K. M. Lee, and S. C. Fu. Use of allogeneic scaffold-free chondrocyte pellet in repair of osteochondral defect in a rabbit model. J. Orthop. Res. 29:1343–1350, 2011.

    Article  CAS  PubMed  Google Scholar 

  13. Cho, H., S. H. Park, K. Park, J. W. Shim, J. Huang, R. Smith, S. Elder, B. H. Min, and K. A. Hasty. Construction of a tissue-engineered annulus fibrosus. Artif. Organs 37:E131–E138, 2013.

    Article  CAS  PubMed  Google Scholar 

  14. Darling, E. M., and K. A. Athanasiou. Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J. Orthop. Res. 23:425–432, 2005.

    Article  CAS  PubMed  Google Scholar 

  15. Darling, E. M., P. E. Pritchett, B. A. Evans, R. Superfine, S. Zauscher, and F. Guilak. Mechanical properties and gene expression of chondrocytes on micropatterned substrates following dedifferentiation in monolayer. Cell. Mol. Bioeng. 2:395–404, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Detamore, M. S., and K. A. Athanasiou. Evaluation of three growth factors for TMJ disc tissue engineering. Ann. Biomed. Eng. 33:383–390, 2005.

    Article  PubMed  Google Scholar 

  17. Ebihara, G., M. Sato, M. Yamato, G. Mitani, T. Kutsuna, T. Nagai, S. Ito, T. Ukai, M. Kobayashi, M. Kokubo, T. Okano, and J. Mochida. Cartilage repair in transplanted scaffold-free chondrocyte sheets using a minipig model. Biomaterials 33:3846–3851, 2012.

    Article  CAS  PubMed  Google Scholar 

  18. Elder, B. D., and K. A. Athanasiou. Synergistic and additive effects of hydrostatic pressure and growth factors on tissue formation. PLoS ONE 3:e2341, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Elder, B. D. and K. A. Athanasiou. Systematic assessment of growth factor treatment on biochemical and biomechanical properties of engineered articular cartilage constructs. Osteoarthritis and cartilage/OARS, Osteoarthritis Research Society. 2008.

  20. Elder, B. D., and K. A. Athanasiou. Effects of temporal hydrostatic pressure on tissue-engineered bovine articular cartilage constructs. Tissue Eng. Part A 15:1151–1158, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Elloumi-Hannachi, I., M. Yamato, and T. Okano. Cell sheet engineering: a unique nanotechnology for scaffold-free tissue reconstruction with clinical applications in regenerative medicine. J. Intern. Med. 267:54–70, 2010.

    Article  CAS  PubMed  Google Scholar 

  22. Erickson, I. E., A. H. Huang, C. Chung, R. T. Li, J. A. Burdick, and R. L. Mauck. Differential maturation and structure-function relationships in mesenchymal stem cell- and chondrocyte-seeded hydrogels. Tissue Eng. Part A 15:1041–1052, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Fickert, S., P. Gerwien, B. Helmert, T. Schattenberg, S. Weckbach, M. Kaszkin-Bettag, and L. Lehmann. One-year clinical and radiological results of a prospective, investigator-initiated trial examining a novel, purely autologous 3-dimensional autologous chondrocyte transplantation product in the knee. Cartilage 3:27–42, 2012.

    Article  Google Scholar 

  24. Frenkel, S. R., G. Bradica, J. H. Brekke, S. M. Goldman, K. Ieska, P. Issack, M. R. Bong, H. Tian, J. Gokhale, R. D. Coutts, and R. T. Kronengold. Regeneration of articular cartilage-evaluation of osteochondral defect repair in the rabbit using multiphasic implants. Osteoarthr. Cartil. OARS Osteoarthr. Res. Soc. 13:798–807, 2005.

    Article  CAS  Google Scholar 

  25. Furukawa, K. S., H. Suenaga, K. Toita, A. Numata, J. Tanaka, T. Ushida, Y. Sakai, and T. Tateishi. Rapid and large-scale formation of chondrocyte aggregates by rotational culture. Cell Transplant. 12:475–479, 2003.

    Article  PubMed  Google Scholar 

  26. Gigout, A., M. D. Buschmann, and M. Jolicoeur. Chondrocytes cultured in stirred suspension with serum-free medium containing pluronic-68 aggregate and proliferate while maintaining their differentiated phenotype. Tissue Eng. Part A 15:2237–2248, 2009.

    Article  CAS  PubMed  Google Scholar 

  27. Guilak, F., D. L. Butler, S. A. Goldstein, and F. P. Baaijens. Biomechanics and mechanobiology in functional tissue engineering. J. Biomech. 47:1933–1940, 2014.

    Article  PubMed  Google Scholar 

  28. Han, E. H., W. C. Bae, N. D. Hsieh-Bonassera, V. W. Wong, B. L. Schumacher, S. Gortz, K. Masuda, W. D. Bugbee, and R. L. Sah. Shaped, stratified, scaffold-free grafts for articular cartilage defects. Clin. Orthop. Relat. Res. 466:1912–1920, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Hoben, G. M., J. C. Hu, R. A. James, and K. A. Athanasiou. Self-assembly of fibrochondrocytes and chondrocytes for tissue engineering of the knee meniscus. Tissue Eng. 13:939–946, 2007.

    Article  CAS  PubMed  Google Scholar 

  30. Hu, J. C., and K. A. Athanasiou. A self-assembling process in articular cartilage tissue engineering. Tissue Eng. 12:969–979, 2006.

    Article  CAS  PubMed  Google Scholar 

  31. Huey, D. J., and K. A. Athanasiou. Maturational growth of self-assembled, functional menisci as a result of TGF-beta1 and enzymatic chondroitinase-ABC stimulation. Biomaterials 32:2052–2058, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Huey, D. J., and K. A. Athanasiou. Tension-compression loading with chemical stimulation results in additive increases to functional properties of anatomic meniscal constructs. PLoS ONE 6:e27857, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Huey, D. J., and K. A. Athanasiou. Alteration of the fibrocartilaginous nature of scaffoldless constructs formed from leporine meniscus cells and chondrocytes through manipulation of culture and processing conditions. Cells Tissues Organs 197:360–371, 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Huey, D. J., J. C. Hu, and K. A. Athanasiou. Unlike bone, cartilage regeneration remains elusive. Science 338:917–921, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Huey, D. J., J. C. Hu, and K. A. Athanasiou. Chondrogenically tuned expansion enhances the cartilaginous matrix-forming capabilities of primary, adult, leporine chondrocytes. Cell Transplant. 22:331–340, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Hung, C. T., R. L. Mauck, C. C. Wang, E. G. Lima, and G. A. Ateshian. A paradigm for functional tissue engineering of articular cartilage via applied physiologic deformational loading. Ann. Biomed. Eng. 32:35–49, 2004.

    Article  PubMed  Google Scholar 

  37. Hwang, N. S., and J. Elisseeff. Application of stem cells for articular cartilage regeneration. J. Knee Surg. 22:60–71, 2009.

    Article  PubMed  Google Scholar 

  38. Hwang, N. S., S. Varghese, and J. Elisseeff. Derivation of chondrogenically-committed cells from human embryonic cells for cartilage tissue regeneration. PLoS ONE 3:e2498, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Imabayashi, H., T. Mori, S. Gojo, T. Kiyono, T. Sugiyama, R. Irie, T. Isogai, J. Hata, Y. Toyama, and A. Umezawa. Redifferentiation of dedifferentiated chondrocytes and chondrogenesis of human bone marrow stromal cells via chondrosphere formation with expression profiling by large-scale cDNA analysis. Exp. Cell Res. 288:35–50, 2003.

    Article  CAS  PubMed  Google Scholar 

  40. Jakob, M., O. Demarteau, D. Schafer, B. Hintermann, W. Dick, M. Heberer, and I. Martin. Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhance chondrogenesis and cartilaginous tissue formation in vitro. J. Cell. Biochem. 81:368–377, 2001.

    Article  CAS  PubMed  Google Scholar 

  41. Klein, T. J., J. Malda, R. L. Sah, and D. W. Hutmacher. Tissue engineering of articular cartilage with biomimetic zones. Tissue Eng. Part B 15:143–157, 2009.

    Article  CAS  Google Scholar 

  42. Koay, E. J., G. M. Hoben, and K. A. Athanasiou. Tissue engineering with chondrogenically differentiated human embryonic stem cells. Stem Cells 25:2183–2190, 2007.

    Article  CAS  PubMed  Google Scholar 

  43. Kolettas, E., L. Buluwela, M. T. Bayliss, and H. I. Muir. Expression of cartilage-specific molecules is retained on long-term culture of human articular chondrocytes. J. Cell Sci. 108(Pt 5):1991–1999, 1995.

    CAS  PubMed  Google Scholar 

  44. Koo, S., and T. P. Andriacchi. A comparison of the influence of global functional loads vs. Local contact anatomy on articular cartilage thickness at the knee. J. Biomech. 40:2961–2966, 2007.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Kushida, A., M. Yamato, C. Konno, A. Kikuchi, Y. Sakurai, and T. Okano. Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature-responsive culture surfaces. J. Biomed. Mater. Res. 45:355–362, 1999.

    Article  CAS  PubMed  Google Scholar 

  46. Leddy, H. A., H. A. Awad, and F. Guilak. Molecular diffusion in tissue-engineered cartilage constructs: effects of scaffold material, time, and culture conditions. J. Biomed. Mater. Res. B 70:397–406, 2004.

    Article  Google Scholar 

  47. Lin, Z., C. Willers, J. Xu, and M. H. Zheng. The chondrocyte: biology and clinical application. Tissue Eng. 12:1971–1984, 2006.

    Article  CAS  PubMed  Google Scholar 

  48. Lin, L., C. Zhou, X. Wei, Y. Hou, L. Zhao, X. Fu, J. Zhang, and C. Yu. Articular cartilage repair using dedifferentiated articular chondrocytes and bone morphogenetic protein 4 in a rabbit model of articular cartilage defects. Arthritis Rheum. 58:1067–1075, 2008.

    Article  CAS  PubMed  Google Scholar 

  49. Lotz, M., and R. F. Loeser. Effects of aging on articular cartilage homeostasis. Bone 51:241–248, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. MacBarb, R. F., A. L. Chen, J. C. Hu, and K. A. Athanasiou. Engineering functional anisotropy in fibrocartilage neotissues. Biomaterials 34:9980–9989, 2013.

    Article  CAS  PubMed  Google Scholar 

  51. Makris, E. A., J. C. Hu, and K. A. Athanasiou. Hypoxia-induced collagen crosslinking as a mechanism for enhancing mechanical properties of engineered articular cartilage. Osteoarthr. Cartil. 21:634–641, 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Makris, E. A., R. F. MacBarb, N. K. Paschos, J. C. Hu, and K. A. Athanasiou. Combined use of chondroitinase-ABC, TGF-beta1, and collagen crosslinking agent lysyl oxidase to engineer functional neotissues for fibrocartilage repair. Biomaterials 35:6787–6796, 2014.

    Article  CAS  PubMed  Google Scholar 

  53. Martin, I., R. Suetterlin, W. Baschong, M. Heberer, G. Vunjak-Novakovic, and L. E. Freed. Enhanced cartilage tissue engineering by sequential exposure of chondrocytes to FGF-2 during 2d expansion and BMP-2 during 3d cultivation. J. Cell. Biochem. 83:121–128, 2001.

    Article  CAS  PubMed  Google Scholar 

  54. Masuda, K., R. L. Sah, M. J. Hejna, and E. J. Thonar. A novel two-step method for the formation of tissue-engineered cartilage by mature bovine chondrocytes: the alginate-recovered-chondrocyte (arc) method. J. Orthop. Res. 21:139–148, 2003.

    Article  CAS  PubMed  Google Scholar 

  55. McCormick, F., B. J. Cole, B. Nwachukwu, J. D. Harris, H. D. I. V. Adkisson, and J. Farr. Treatment of focal cartilage defects with a juvenile allogeneic 3-dimensional articular cartilage graft. Oper. Tech. Sports Med. 21:95–99, 2013.

    Article  Google Scholar 

  56. Mitalipov, S., and D. Wolf. Totipotency, pluripotency and nuclear reprogramming. Adv. Biochem. Eng. Biotechnol. 114:185–199, 2009.

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Mitani, G., M. Sato, J. I. Lee, N. Kaneshiro, M. Ishihara, N. Ota, M. Kokubo, H. Sakai, T. Kikuchi, and J. Mochida. The properties of bioengineered chondrocyte sheets for cartilage regeneration. BMC Biotechnol. 9:17, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Mueller, M. B., and R. S. Tuan. Functional characterization of hypertrophy in chondrogenesis of human mesenchymal stem cells. Arthritis Rheum. 58:1377–1388, 2008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Murphy, M. K., G. D. DuRaine, A. Reddi, J. C. Hu, and K. A. Athanasiou. Inducing articular cartilage phenotype in costochondral cells. Arthritis Res. Therapy 15:R214, 2013.

    Article  Google Scholar 

  60. Murphy, M. K., T. E. Masters, J. C. Hu, and K. A. Athanasiou. Engineering a fibrocartilage spectrum through modulation of aggregate redifferentiation. Cell Transplant. 2013. doi:10.3727/096368913X676204.

  61. Natoli, R. M., C. M. Revell, and K. A. Athanasiou. Chondroitinase ABC treatment results in greater tensile properties of self-assembled tissue-engineered articular cartilage. Tissue Eng. Part A 15:3119–3128, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Ng, K. W., G. A. Ateshian, and C. T. Hung. Zonal chondrocytes seeded in a layered agarose hydrogel create engineered cartilage with depth-dependent cellular and mechanical inhomogeneity. Tissue Eng. Part A 15:2315–2324, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Ofek, G., C. M. Revell, J. C. Hu, D. D. Allison, K. J. Grande-Allen, and K. A. Athanasiou. Matrix development in self-assembly of articular cartilage. PLoS ONE 3:e2795, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Park, S. S., H. R. Jin, D. H. Chi, and R. S. Taylor. Characteristics of tissue-engineered cartilage from human auricular chondrocytes. Biomaterials 25:2363–2369, 2004.

    Article  CAS  PubMed  Google Scholar 

  65. Perez-Pomares, J. M., and R. A. Foty. Tissue fusion and cell sorting in embryonic development and disease: biomedical implications. BioEssays 28:809–821, 2006.

    Article  PubMed  Google Scholar 

  66. Pestka, J. M., H. Schmal, G. Salzmann, J. Hecky, N. P. Sudkamp, and P. Niemeyer. In vitro cell quality of articular chondrocytes assigned for autologous implantation in dependence of specific patient characteristics. Arch. Orthop. Trauma Surg. 131:779–789, 2011.

    Article  PubMed  Google Scholar 

  67. Poole, A. R., T. Kojima, T. Yasuda, F. Mwale, M. Kobayashi, and S. Laverty. Composition and structure of articular cartilage: a template for tissue repair. Clin. Orthop. Relat. Res. 391:26–33, 2001.

    Article  Google Scholar 

  68. Ramallal, M., E. Maneiro, E. Lopez, I. Fuentes-Boquete, M. J. Lopez-Armada, J. L. Fernandez-Sueiro, F. Galdo, F. J. De Toro, and F. J. Blanco. Xeno-implantation of pig chondrocytes into rabbit to treat localized articular cartilage defects: an animal model. Wound Repair Regen. 12:337–345, 2004.

    Article  PubMed  Google Scholar 

  69. Responte, D. J., B. Arzi, R. M. Natoli, J. C. Hu, and K. A. Athanasiou. Mechanisms underlying the synergistic enhancement of self-assembled neocartilage treated with chondroitinase-ABC and TGF-beta1. Biomaterials 33:3187–3194, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Responte, D. J., J. K. Lee, J. C. Hu, and K. A. Athanasiou. Biomechanics-driven chondrogenesis: from embryo to adult. FASEB J. 26:3614–3624, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Revell, C. M., and K. A. Athanasiou. Success rates and immunologic responses of autogenic, allogenic, and xenogenic treatments to repair articular cartilage defects. Tissue Eng. Part B 15:1–15, 2009.

    Article  CAS  Google Scholar 

  72. Sanchez-Adams, J., and K. A. Athanasiou. Dermis isolated adult stem cells for cartilage tissue engineering. Biomaterials 33:109–119, 2012.

    Article  CAS  PubMed  Google Scholar 

  73. Sato, M., M. Yamato, K. Hamahashi, T. Okano, and J. Mochida. Articular cartilage regeneration using cell sheet technology. Anat. Rec. (Hoboken) 297:36–43, 2014.

    Article  CAS  Google Scholar 

  74. Schulze-Tanzil, G., R. D. Muller, B. Kohl, N. Schneider, W. Ertel, K. Ipaktchi, H. Hunigen, O. Gemeinhardt, R. Stark, and T. John. Differing in vitro biology of equine, ovine, porcine and human articular chondrocytes derived from the knee joint: an immunomorphological study. Histochem. Cell Biol. 131:219–229, 2009.

    Article  CAS  PubMed  Google Scholar 

  75. Shimizu, T., H. Sekine, M. Yamato, and T. Okano. Cell sheet-based myocardial tissue engineering: new hope for damaged heart rescue. Curr. Pharm. Des. 15:2807–2814, 2009.

    Article  CAS  PubMed  Google Scholar 

  76. Siegel, R. C., S. R. Pinnell, and G. R. Martin. Cross-linking of collagen and elastin. Properties of lysyl oxidase. Biochemistry. 9:4486–4492, 1970.

    Article  CAS  PubMed  Google Scholar 

  77. Steinberg, M. S. Differential adhesion in morphogenesis: a modern view. Curr. Opin. Genet. Dev. 17:281–286, 2007.

    Article  CAS  PubMed  Google Scholar 

  78. Stone, K. R., A. W. Walgenbach, J. T. Abrams, J. Nelson, N. Gillett, and U. Galili. Porcine and bovine cartilage transplants in cynomolgus monkey: I. A model for chronic xenograft rejection. Transplantation 63:640–645, 1997.

    Article  CAS  PubMed  Google Scholar 

  79. Tacchetti, C., R. Quarto, L. Nitsch, D. J. Hartmann, and R. Cancedda. In vitro morphogenesis of chick embryo hypertrophic cartilage. J. Cell Biol. 105:999–1006, 1987.

    Article  CAS  PubMed  Google Scholar 

  80. Talab, S. S., A.-M. Kajbafzadeh, A. Elmi, A. Tourchi, S. Sabetkish, N. Sabetkish, and M. Monajemzadeh. Bladder reconstruction using scaffold-less autologous smooth muscle cell sheet engineering: early histological outcomes for autoaugmentation cystoplasty. BJU Int. 2014. doi:10.1111/bju.12685.

  81. Tetlow, L. C., D. J. Adlam, and D. E. Woolley. Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis Rheum. 44:585–594, 2001.

    Article  CAS  PubMed  Google Scholar 

  82. Vacanti, V., E. Kong, G. Suzuki, K. Sato, J. M. Canty, and T. Lee. Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture. J. Cell. Physiol. 205:194–201, 2005.

    Article  CAS  PubMed  Google Scholar 

  83. van der Kraan, P. M., M. J. Goumans, E. Blaney Davidson, and P. ten Dijke. Age-dependent alteration of TGF-beta signalling in osteoarthritis. Cell Tissue Res. 347:257–265, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Williams, R., I. M. Khan, K. Richardson, L. Nelson, H. E. McCarthy, T. Analbelsi, S. K. Singhrao, G. P. Dowthwaite, R. E. Jones, D. M. Baird, H. Lewis, S. Roberts, H. M. Shaw, J. Dudhia, J. Fairclough, T. Briggs, and C. W. Archer. Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PLoS ONE 5:e13246, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Yamada, N., T. Okano, H. Sakai, F. Karikusa, Y. Sawasaki, and Y. Sakurai. Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells. Die Makromolekulare Chemie, Rapid Communications. 11:571–576, 1990.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge support by the NIH (R01DE019666, R01DE015038, R01AR061496), the California Institute for Regenerative Medicine (TR3-05709), and the Arthritis Foundation (Postdoctoral Fellowship for G. DuRaine).

Funding

No financial support or benefits from commercial sources were received.

Conflicts of interest

The authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyriacos A. Athanasiou.

Additional information

Associate Editor Rosemarie Hunziker oversaw the review of this article.

Grayson D. DuRaine and Wendy E. Brown have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DuRaine, G.D., Brown, W.E., Hu, J.C. et al. Emergence of Scaffold-Free Approaches for Tissue Engineering Musculoskeletal Cartilages. Ann Biomed Eng 43, 543–554 (2015). https://doi.org/10.1007/s10439-014-1161-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1161-y

Keywords

Navigation