Skip to main content

Advertisement

Log in

3D Bioprinting for Tissue and Organ Fabrication

  • Additive Manufacturing of Biomaterials, Tissues, and Organs
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The field of regenerative medicine has progressed tremendously over the past few decades in its ability to fabricate functional tissue substitutes. Conventional approaches based on scaffolding and microengineering are limited in their capacity of producing tissue constructs with precise biomimetic properties. Three-dimensional (3D) bioprinting technology, on the other hand, promises to bridge the divergence between artificially engineered tissue constructs and native tissues. In a sense, 3D bioprinting offers unprecedented versatility to co-deliver cells and biomaterials with precise control over their compositions, spatial distributions, and architectural accuracy, therefore achieving detailed or even personalized recapitulation of the fine shape, structure, and architecture of target tissues and organs. Here we briefly describe recent progresses of 3D bioprinting technology and associated bioinks suitable for the printing process. We then focus on the applications of this technology in fabrication of biomimetic constructs of several representative tissues and organs, including blood vessel, heart, liver, and cartilage. We finally conclude with future challenges in 3D bioprinting as well as potential solutions for further development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Atala, A., F. K. Kasper, and A. G. Mikos. Engineering complex tissues. Sci. Transl. Med. 4:160rv12, 2012.

    Article  PubMed  CAS  Google Scholar 

  2. Augst, A. D., H. J. Kong, and D. J. Mooney. Alginate hydrogels as biomaterials. Macromol. Biosci. 6:623–633, 2006.

    Article  CAS  PubMed  Google Scholar 

  3. Bae, H., A. S. Puranik, R. Gauvin, F. Edalat, B. Carrillo-Conde, N. A. Peppas, and A. Khademhosseini. Building vascular networks. Sci. Transl. Med. 4:160ps23, 2012. doi:10.1002/smll.201501798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Baudino, T. A., W. Carver, W. Giles, and T. K. Borg. Cardiac fibroblasts: friend or foe? Am. J. Physiol. Heart Circ. Physiol. 291:H1015–H1026, 2006.

    Article  CAS  PubMed  Google Scholar 

  5. Bergmann, O., R. D. Bhardwaj, S. Bernard, S. Zdunek, F. Barnabe-Heider, S. Walsh, J. Zupicich, K. Alkass, B. A. Buchholz, H. Druid, S. Jovinge, and J. Frisen. Evidence for cardiomyocyte renewal in humans. Science 324:98–102, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bertassoni, L. E., M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Yang, and A. Khademhosseini. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab. Chip 14:2202–2211, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Berthiaume, F., T. J. Maguire, and M. L. Yarmush. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu. Rev. Chem. Biomol. Eng. 2:403–430, 2011.

    Article  PubMed  Google Scholar 

  8. Bhattacharjee, T., S. M. Zehnder, K. G. Rowe, S. Jain, R. M. Nixon, W. G. Sawyer, and T. E. Angelini. Writing in the granular gel medium. Sci. Adv. 1:e1500655, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bhise, N. S., V. Manoharan, S. Massa, A. Tamayol, M. Ghaderi, M. Miscuglio, Q. Lang, Y. S. Zhang, S. R. Shin, G. Calzone, N. Annabi, T. Shupe, C. Bishop, A. Atala, M. R. Dokmeci, and A. Khademhosseini. A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication 8:014101, 2016.

    Article  PubMed  CAS  Google Scholar 

  10. Binder, K. W., W. Zhao, T. Aboushwareb, D. Dice, A. Atala, and J. J. Yoo. In situ bioprinting of the skin for burns. J. Am. Coll. Surg. 211:S76, 2010.

    Article  Google Scholar 

  11. Blaeser, A., D. F. D. Campos, U. Puster, W. Richtering, M. M. Stevens, and H. Fischer. Controlling shear stress in 3d bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv. Healthc. Mater. 5:326–333, 2016.

    Article  CAS  PubMed  Google Scholar 

  12. Burdick, J. A., and G. D. Prestwich. Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 23:H41–H56, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Camelliti, P., T. K. Borg, and P. Kohl. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc. Res. 65:40–51, 2005.

    Article  CAS  PubMed  Google Scholar 

  14. Cen, L., W. Liu, L. Cui, W. Zhang, and Y. Cao. Collagen tissue engineering: development of novel biomaterials and applications. Pediatr. Res. 63:492–496, 2008.

    Article  CAS  PubMed  Google Scholar 

  15. Censi, R., W. Schuurman, J. Malda, G. Di Dato, P. E. Burgisser, W. J. A. Dhert, C. F. Van Nostrum, P. Di Martino, T. Vermonden, and W. E. Hennink. A printable photopolymerizable thermosensitive p (hpmam-lactate)-peg hydrogel for tissue engineering. Adv. Funct. Mater. 21:1833–1842, 2011.

    Article  CAS  Google Scholar 

  16. Chiu, L. L., and M. Radisic. Cardiac tissue engineering. Curr. Opin. Chem. Eng. 2:41–52, 2013.

    Article  Google Scholar 

  17. Christensen, K., C. Xu, W. Chai, Z. Zhang, J. Fu, and Y. Huang. Freeform inkjet printing of cellular structures with bifurcations. Biotechnol. Bioeng. 112:1047–1055, 2015.

    Article  CAS  PubMed  Google Scholar 

  18. Chung, J. H. Y., S. Naficy, Z. Yue, R. Kapsa, A. Quigley, S. E. Moulton, and G. G. Wallace. Bio-ink properties and printability for extrusion printing living cells. Biomater. Sci. 1:763–773, 2013.

    Article  CAS  Google Scholar 

  19. Colosi, C., S. R. Shin, V. Manoharan, S. Massa, M. Constantini, A. Barbetta, M. R. Dokmeci, M. Dentini, and A. Khademhosseini. Microfluidic bioprinting of heterogeneous 3d tissue constructs using low viscosity bioink. Adv. Mater. 28:677–684, 2015.

    Article  PubMed  CAS  Google Scholar 

  20. Comparative structure of blood vessels [Online]. Wiley, New York, 2011. http://higheredbcs.wiley.com/legacy/college/tortora/0470565101/hearthis_ill/pap13e_ch21_illustr_audio_mp3_am/simulations/hear/blood_vessels.html. Accessed 29 Nov 2015.

  21. Cui, X., K. Breitenkamp, M. G. Finn, M. Lotz, and D. D. D’lima. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng. A 18:1304–1312, 2012.

    Article  CAS  Google Scholar 

  22. Dababneh, A. B., and I. T. Ozbolat. Bioprinting technology: a current state-of-the-art review. J. Manuf. Sci. Eng. 136:061016, 2014.

    Article  Google Scholar 

  23. Discher, D. E., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143, 2005.

    Article  CAS  PubMed  Google Scholar 

  24. Drury, J. L., and D. J. Mooney. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351, 2003.

    Article  CAS  PubMed  Google Scholar 

  25. Du, Y., E. Lo, S. Ali, and A. Khademhosseini. Directed assembly of cell-laden microgels for fabrication of 3d tissue constructs. Proc. Natl. Acad. Sci. USA 105:9522–9527, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Duan, B., L. A. Hockaday, K. H. Kang, and J. T. Butcher. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J. Biomed. Mater. Res. A 101:1255–1264, 2013.

    Article  PubMed  CAS  Google Scholar 

  27. Duan, B., E. Kapetanovic, L. A. Hockaday, and J. T. Butcher. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater. 10:1836–1846, 2014.

    Article  CAS  PubMed  Google Scholar 

  28. Dumont, K., J. Yperman, E. Verbeken, P. Segers, B. Meuris, S. Vandenberghe, W. Flameng, and P. R. Verdonck. Design of a new pulsatile bioreactor for tissue engineered aortic heart valve formation. Artif. Organs 26:710–714, 2002.

    Article  PubMed  Google Scholar 

  29. Elbert, D. L. Bottom-up tissue engineering. Curr. Opin. Biotechnol. 22:674–680, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Engler, A. J., C. Carag-Krieger, C. P. Johnson, M. Raab, H. Y. Tang, D. W. Speicher, J. W. Sanger, J. M. Sanger, and D. E. Discher. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J. Cell Sci. 121:3794–3802, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.

    Article  CAS  PubMed  Google Scholar 

  32. Faulkner-Jones, A., C. Fyfe, D.-J. Cornelissen, J. Gardner, J. King, A. Courtney, and W. Shu. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3d. Biofabrication 7:044102, 2015.

    Article  PubMed  Google Scholar 

  33. Fukumitsu, K., H. Yagi, and A. Soto-Gutierrez. Bioengineering in organ transplantation: targeting the liver. Transpl. Proc. 43:2137–2138, 2011.

    Article  CAS  Google Scholar 

  34. Fullhase, C., R. Soler, A. Atala, K.-E. Andersson, and J. J. Yoo. A novel hybrid printing system for the generation of organized bladder tissue. J. Urol. 181:282–283, 2009.

    Article  Google Scholar 

  35. Gaebel, R., N. Ma, J. Liu, J. Guan, L. Koch, C. Klopsch, M. Gruene, A. Toelk, W. Wang, P. Mark, F. Wang, B. Chichkov, W. Li, and G. Steinhoff. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials 32:9218–9230, 2011.

    Article  CAS  PubMed  Google Scholar 

  36. Gaetani, R., P. A. Doevendans, C. H. G. Metz, J. Alblas, E. Messina, A. Giacomello, and J. P. G. Sluijter. Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 33:1782–1790, 2012.

    Article  CAS  PubMed  Google Scholar 

  37. Gao, G., A. F. Schilling, K. Hubbell, T. Yonezawa, D. Truong, Y. Hong, G. Dai, and X. Cui. Improved properties of bone and cartilage tissue from 3d inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in peg-gelma. Biotechnol. Lett. 37:2349–2355, 2015.

    Article  CAS  PubMed  Google Scholar 

  38. Gladman, A. S., E. A. Matsumoto, R. G. Nuzzo, L. Mahadevan, and J. A. Lewis. Biomimetic 4d printing. Nat. Mater. 15:413–418, 2016.

    Article  PubMed  CAS  Google Scholar 

  39. Glowacki, J., and S. Mizuno. Collagen scaffolds for tissue engineering. Biopolymers 89:338–344, 2008.

    Article  CAS  PubMed  Google Scholar 

  40. Hardin, J. O., T. J. Ober, A. D. Valentine, and J. A. Lewis. Microfluidic printheads for multimaterial 3d printing of viscoelastic inks. Adv. Mater. 27:3279–3284, 2015.

    Article  CAS  PubMed  Google Scholar 

  41. Henmi, C., M. Nakamura, Y. Nishiyama, K. Yamaguchi, S. Mochizuki, K. Takiura, and H. Nakagawa. Development of an effective three dimensional fabrication technique using inkjet technology for tissue model samples. AATEX 14:689–692, 2007.

    Google Scholar 

  42. Highley, C. B., C. B. Rodell, and J. A. Burdick. Direct 3d printing of shear-thinning hydrogels into self-healing hydrogels. Adv. Mater. 27:5075–5079, 2015.

    Article  CAS  PubMed  Google Scholar 

  43. Hinton, T. J., Q. Jallerat, R. N. Palchesko, J. H. Park, M. S. Grodzicki, H. J. Shue, M. H. Ramadan, A. R. Hudson, and A. W. Feinberg. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 1:e1500758, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Ho, C. T., R. Z. Lin, R. J. Chen, C. K. Chin, S. E. Gong, H. Y. Chang, H. L. Peng, L. Hsu, T. R. Yew, S. F. Chang, and C. H. Liu. Liver-cell patterning lab chip: mimicking the morphology of liver lobule tissue. Lab. Chip 13:3578–3587, 2013.

    Article  CAS  PubMed  Google Scholar 

  45. Hoch, E., G. E. Tovar, and K. Borchers. Bioprinting of artificial blood vessels: current approaches towards a demanding goal. Eur. J. Cardiothorac. Surg. 46:767–778, 2014.

    Article  PubMed  Google Scholar 

  46. Hoffman, A. S. Hydrogels for biomedical applications. Adv. Drug Del. Rev. 64:18–23, 2012.

    Article  Google Scholar 

  47. Hubbell, J. A. Biomaterials in tissue engineering. Biotechnology 13:565–576, 1995.

    Article  CAS  PubMed  Google Scholar 

  48. Huebsch, N., P. R. Arany, A. S. Mao, D. Shvartsman, O. A. Ali, S. A. Bencherif, J. Rivera-Feliciano, and D. J. Mooney. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9:518–526, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hutmacher, D. W. Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. J. Biomater. Sci. Polym. Ed. 12:107–124, 2001.

    Article  CAS  PubMed  Google Scholar 

  50. Kajstura, J., N. Gurusamy, B. Ogorek, P. Goichberg, C. Clavo-Rondon, T. Hosoda, D. D’amario, S. Bardelli, A. P. Beltrami, D. Cesselli, R. Bussani, F. Del Monte, F. Quaini, M. Rota, C. A. Beltrami, B. A. Buchholz, A. Leri, and p Anversa. Myocyte turnover in the aging human heart. Circ. Res. 107:1374–1386, 2010.

    Article  CAS  PubMed  Google Scholar 

  51. Kesti, M., C. Eberhardt, G. Pagliccia, D. Kenkel, D. Grande, A. Boss, and M. Zenobi-Wong. Bioprinting complex cartilaginous structures with clinically compliant biomaterials. Adv. Funct. Mater. 25:7406–7417, 2015.

    Article  Google Scholar 

  52. Khademhosseini, A., J. P. Vacanti, and R. Langer. Progress in tissue engineering. Sci. Am. 300:64–71, 2009.

    Article  CAS  PubMed  Google Scholar 

  53. Khetan, S., M. Guvendiren, W. R. Legant, D. M. Cohen, C. S. Chen, and J. A. Burdick. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater. 12:458–465, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Khetani, S. R., and S. N. Bhatia. Microscale culture of human liver cells for drug development. Nat. Biotechnol. 26:120–126, 2008.

    Article  CAS  PubMed  Google Scholar 

  55. Kim, M., J. Y. Lee, C. N. Jones, A. Revzin, and G. Tae. Heparin-based hydrogel as a matrix for encapsulation and cultivation of primary hepatocytes. Biomaterials 31:3596–3603, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Knezevic, I., A. Patel, N. R. Sundaresan, M. P. Gupta, R. J. Solaro, R. S. Nagalingam, and M. Gupta. A novel cardiomyocyte-enriched microRNA, miR-378, targets insulin-like growth factor 1 receptor: implications in postnatal cardiac remodeling and cell survival. J. Biol. Chem. 287:12913–12926, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kolesky, D. B., R. L. Truby, A. S. Gladman, T. A. Busbee, K. A. Homan, and J. A. Lewis. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26:3124–3130, 2014.

    Article  CAS  PubMed  Google Scholar 

  58. Kucukgul, C., B. Ozler, H. E. Karakas, D. Gozuacik, and B. Koc. 3D hybrid bioprinting of macrovascular structures. Procedia Eng. 59:183–192, 2013.

    Article  Google Scholar 

  59. Langer, R. Tissue engineering: status and challenges. e-Biomed. J. Regen. Med. 1:5–6, 2000.

    Google Scholar 

  60. Langer, R., and J. P. Vacanti. Tissue engineering. Science 260:920–926, 1993.

    Article  CAS  PubMed  Google Scholar 

  61. Langer, R., J. P. Vacanti, C. A. Vacanti, A. Atala, L. E. Freed, and G. Vunjak-Novakovic. Tissue engineering: biomedical applications. Tissue Eng. 1:151–161, 1995.

    Article  CAS  PubMed  Google Scholar 

  62. Lee, J. S., and S.-W. Cho. Liver tissue engineering: recent advances in the development of a bio-artificial liver. Biotechnol. Bioprocess Eng. 17:427–438, 2012.

    Article  CAS  Google Scholar 

  63. Lee, V. K., D. Y. Kim, H. Ngo, Y. Lee, L. Seo, S.-S. Yoo, P. A. Vincent, and G. Dai. Creating perfused functional vascular channels using 3d bio-printing technology. Biomaterials 35:8092–8102, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee, W., J. Pinckney, V. Lee, J. H. Lee, K. Fischer, S. Polio, J. K. Park, and S. S. Yoo. Three-dimensional bioprinting of rat embryonic neural cells. NeuroReport 20:798–803, 2009.

    Article  PubMed  Google Scholar 

  65. Lee, Y. B., S. Polio, W. Lee, G. Dai, L. Menon, R. S. Carroll, and S. S. Yoo. Bio-printing of collagen and vegf-releasing fibrin gel scaffolds for neural stem cell culture. Exp. Neurol. 223:645–652, 2010.

    Article  CAS  PubMed  Google Scholar 

  66. Lee, V., G. Singh, J. P. Trasatti, C. Bjornsson, X. Xu, T. N. Tran, S.-S. Yoo, G. Dai, and P. Karande. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng. Part C Methods 20:473–484, 2014.

    Article  CAS  PubMed  Google Scholar 

  67. Leijten, J., J. Rouwkema, Y. S. Zhang, A. Nasajpour, M. R. Dokmeci, and A. Khademhosseini. Advancing tissue engineering: a tale of nano-, micro-, and macroscale integration. Small 12:2130–2145, 2016. doi:10.1002/smll.201501798.

    Article  CAS  PubMed  Google Scholar 

  68. Lu, T., Y. Li, and T. Chen. Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int. J. Nanomed. 8:337–350, 2013.

    Article  CAS  Google Scholar 

  69. Ma, P. X. Scaffolds for tissue fabrication. Mater. Today 7:30–40, 2004.

    Article  CAS  Google Scholar 

  70. Malda, J., J. Visser, F. P. Melchels, T. Jungst, W. E. Hennink, W. J. Dhert, J. Groll, and D. W. Hutmacher. 25th anniversary article: engineering hydrogels for biofabrication. Adv. Mater. 25:5011–5028, 2013.

    Article  CAS  PubMed  Google Scholar 

  71. Mannoor, M. S., Z. Jiang, T. James, Y. L. Kong, K. A. Malatesta, W. O. Soboyejo, N. Verma, D. H. Gracias, and M. C. Mcalpine. 3D printed bionic ears. Nano Lett. 13:2634–2639, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mao, A. S., and D. J. Mooney. Regenerative medicine: current therapies and future directions. Proc. Natl. Acad. Sci. USA 112:14452–14459, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Markstedt, K., A. Mantas, I. Tournier, H. M. Avila, D. Hagg, and P. Gatenholm. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16:1489–1496, 2015.

    Article  CAS  PubMed  Google Scholar 

  74. Mehrban, N., G. Z. Teoh, and M. A. Birchall. 3D bioprinting for tissue engineering: stem cells in hydrogels. Int. J. Bioprint. 2:6–19, 2016. doi:10.18063/IJB.2016.01.006.

  75. Michalopoulos, G. K., and M. C. Defrances. Liver regeneration. Science 276:60–66, 1997.

    Article  CAS  PubMed  Google Scholar 

  76. Miller, J. S. The billion cell construct: will three-dimensional printing get us there? PLoS Biol. 12:e1001882, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Miller, J. S., K. R. Stevens, M. T. Yang, B. M. Baker, D. H. Nguyen, D. M. Cohen, E. Toro, A. A. Chen, P. A. Galie, X. Yu, R. Chaturvedi, S. N. Bhatia, and C. S. Chen. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11:768–774, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mironov, V., T. Boland, T. Trusk, G. Forgacs, and R. R. Markwald. Organ printing: computer-aided jet-based 3d tissue engineering. Trends Biotechnol. 21:157–161, 2003.

    Article  CAS  PubMed  Google Scholar 

  79. Mironov, V., V. Kasyanov, C. Drake, and R. R. Markwald. Organ printing: promises and challenges. Regen. Med. 3:93–103, 2008.

    Article  CAS  PubMed  Google Scholar 

  80. Mironov, V., N. Reis, and B. Derby. Review: bioprinting: a beginning. Tissue Eng. 12:631–634, 2006.

    Article  PubMed  Google Scholar 

  81. Mironov, V., R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake, and R. R. Markwald. Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164–2174, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Müller, W. E. G., E. Tolba, H. C. Schröder, M. Neufurth, S. Wang, T. Link, B. Al-Nawas, and X. Wang. A new printable and durable n, o-carboxymethyl chitosan–ca2+–polyphosphate complex with morphogenetic activity. J. Mater. Chem. B 3:1722–1730, 2015.

    Article  CAS  Google Scholar 

  83. Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32:773–785, 2014.

    Article  CAS  PubMed  Google Scholar 

  84. Murphy, S. V., A. Skardal, and A. Atala. Evaluation of hydrogels for bio-printing applications. J. Biomed. Mater. Res. A 101:272–284, 2013.

    Article  PubMed  CAS  Google Scholar 

  85. Nag, A. C. Study of non-muscle cells of the adult mammalian heart: a fine structural analysis and distribution. Cytobios 28:41–61, 1979.

    Google Scholar 

  86. Nahmias, Y., F. Berthiaume, and M. L. Yarmush. Integration of technologies for hepatic tissue engineering. Tissue engineering II. New York: Springer, pp. 309–329, 2007.

    Book  Google Scholar 

  87. Nguyen, D., J. Robbins, C. Crogan-Grundy, V. Gorgen, P. Bangalore, D. Perusse, O. Creasey, S. King, S. Lin, and C. Khatiwala. Functional characterization of three-dimensional (3d) human liver tissues generated by an automated bioprinting platform. FASEB J. 29:LB424, 2015.

    Google Scholar 

  88. Nichol, J. W., S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, and A. Khademhosseini. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Niklason, L. E., J. Gao, W. M. Abbott, K. K. Hirschi, S. Houser, R. Marini, and R. Langer. Functional arteries grown in vitro. Science 284:489–493, 1999.

    Article  CAS  PubMed  Google Scholar 

  90. Nishida, K., M. Yamato, Y. Hayashida, K. Watanabe, K. Yamamoto, E. Adachi, S. Nagai, A. Kikuchi, N. Maeda, H. Watanabe, T. Okano, and Y. Tano. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N. Engl. J. Med. 351:1187–1196, 2004.

    Article  CAS  PubMed  Google Scholar 

  91. Nomi, M., A. Atala, P. D. Coppi, and S. Soker. Principals of neovascularization for tissue engineering. Mol. Asp. Med. 23:463–483, 2002.

    Article  CAS  Google Scholar 

  92. Novosel, E. C., C. Kleinhans, and P. J. Kluger. Vascularization is the key challenge in tissue engineering. Adv. Drug Deliv. Rev. 63:300–311, 2011.

    Article  CAS  PubMed  Google Scholar 

  93. Nunes, S. S., J. W. Miklas, J. Liu, R. Aschar-Sobbi, Y. Xiao, B. Zhang, J. Jiang, S. Masse, M. Gagliardi, A. Hsieh, N. Thavandiran, M. A. Laflamme, K. Nanthakumar, G. J. Gross, P. H. Backx, G. Keller, and M. Radisic. Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat. Methods 10:781–787, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ouyang, L., R. Yao, S. Mao, X. Chen, J. Na, and W. Sun. Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation. Biofabrication 7:044101, 2015.

    Article  PubMed  Google Scholar 

  95. Pati, F., J. Jang, D. H. Ha, S. W. Kim, J. W. Rhie, J. H. Shim, D. H. Kim, and D. W. Cho. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 5:3935, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pelham, Jr., R. J., and Y. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 94:13661–13665, 1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Peyton, S. R., and A. J. Putnam. Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J. Cell. Physiol. 204:198–209, 2005.

    Article  CAS  PubMed  Google Scholar 

  98. Phelps, E. A., N. Landazuri, P. M. Thule, W. R. Taylor, and A. J. Garcia. Bioartificial matrices for therapeutic vascularization. Proc. Natl. Acad. Sci USA 107:3323–3328, 2010.

    Article  CAS  PubMed  Google Scholar 

  99. Place, E. S., N. D. Evans, and M. M. Stevens. Complexity in biomaterials for tissue engineering. Nat. Mater. 8:457–470, 2009.

    Article  CAS  PubMed  Google Scholar 

  100. Ratcliffe, A. Tissue engineering of vascular grafts. Matrix Biol. 19:353–357, 2000.

    Article  CAS  PubMed  Google Scholar 

  101. Rice, J. J., M. M. Martino, L. De Laporte, F. Tortelli, P. S. Briquez, and J. A. Hubbell. Engineering the regenerative microenvironment with biomaterials. Adv. Healthc. Mater. 2:57–71, 2013.

    Article  CAS  PubMed  Google Scholar 

  102. Richardson, T. P., M. C. Peters, A. B. Ennett, and D. J. Mooney. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 19:1029–1034, 2001.

    Article  CAS  PubMed  Google Scholar 

  103. Robbins, J. B., V. Gorgen, P. Min, B. R. Shepherd, and S. C. Presnell. A novel in vitro three-dimensional bioprinted liver tissue system for drug development. FASEB J. 27:872.12, 2013.

    Google Scholar 

  104. Rosines, E., K. Johkura, X. Zhang, H. J. Schmidt, M. Decambre, K. T. Bush, and S. K. Nigam. Constructing kidney-like tissues from cells based on programs for organ development: toward a method of in vitro tissue engineering of the kidney. Tissue Eng. Part A 16:2441–2455, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Saladin, K. S., and L. Miller. Anatomy & physiology. New York: McGraw-Hill, 1998.

    Google Scholar 

  106. Schuurman, W., P. A. Levett, M. W. Pot, P. R. Van Weeren, W. J. Dhert, D. W. Hutmacher, F. P. Melchels, T. J. Klein, and J. Malda. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol. Biosci. 13:551–561, 2013.

    Article  CAS  PubMed  Google Scholar 

  107. Senoo, H. Structure and function of hepatic stellate cells. Med. Electron Microsc. 37:3–15, 2004.

    Article  CAS  PubMed  Google Scholar 

  108. Shin, H., S. Jo, and A. G. Mikos. Biomimetic materials for tissue engineering. Biomaterials 24:4353–4364, 2003.

    Article  CAS  PubMed  Google Scholar 

  109. Skardal, A., and A. Atala. Biomaterials for integration with 3-d bioprinting. Ann. Biomed. Eng. 43:730–746, 2015.

    Article  PubMed  Google Scholar 

  110. Skardal, A., D. Mack, E. Kapetanovic, A. Atala, J. D. Jackson, J. Yoo, and S. Soker. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl. Med. 1:792–802, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Skardal, A., J. Zhang, L. Mccoard, X. Xu, S. Oottamasathien, and G. D. Prestwich. Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng. Part A 16:2675–2685, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tandon, N., C. Cannizzaro, P. H. Chao, R. Maidhof, A. Marsano, H. T. Au, M. Radisic, and G. Vunjak-Novakovic. Electrical stimulation systems for cardiac tissue engineering. Nat. Protoc. 4:155–173, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Taub, R. Liver regeneration: from myth to mechanism. Nat. Rev. Mol. Cell Biol. 5:836–847, 2004.

    Article  CAS  PubMed  Google Scholar 

  114. Tayalia, P., and D. J. Mooney. Controlled growth factor delivery for tissue engineering. Adv. Mater. 21:3269–3285, 2009.

    Article  CAS  PubMed  Google Scholar 

  115. Tibbits, S. 4d printing: multi-material shape change. Archit. Design 84:116–121, 2014.

    Article  Google Scholar 

  116. Tomanek, R. J., and R. B. Runyan. Formation of the Heart and Its Regulation. Boston: Birkhäuser, 2012.

    Google Scholar 

  117. Tortora, G. J., and B. H. Derrickson. Principles of Anatomy and Physiology. New York: Wiley, 2011.

    Google Scholar 

  118. Wang, X., Y. Yan, Y. Pan, Z. Xiong, H. Liu, J. Cheng, F. Liu, F. Lin, R. Wu, R. Zhang, and Q. Lu. Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng. 12:83–90, 2006.

    Article  CAS  PubMed  Google Scholar 

  119. Wen, J. H., L. G. Vincent, A. Fuhrmann, Y. S. Choi, K. C. Hribar, H. Taylor-Weiner, S. Chen, and A. J. Engler. Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat. Mater. 13:979–987, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yu, Y., Y. Zhang, J. A. Martin, and I. T. Ozbolat. Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels. J. Biomech. Eng. 135:91011, 2013.

    Article  PubMed  Google Scholar 

  121. Yue, K., G. Trujillo-De Santiago, M. M. Alvarez, A. Tamayol, N. Annabi, and A. Khademhosseini. Synthesis, properties, and biomedical applications of gelatin methacryloyl (gelma) hydrogels. Biomaterials 73:254–271, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhang, Y. S., J. Aleman, A. Arneri, S. Bersini, F. Piraino, S. R. Shin, M. R. Dokmeci, and A. Khademhosseini. From cardiac tissue engineering to heart-on-a-chip: beating challenges. Biomed. Mater. 10:034006, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Zhang, Y. S., S.-W. Choi, and Y. Xia. Inverse opal scaffolds for applications in regenerative medicine. Soft Matter 9:9747–9754, 2013.

    Article  CAS  Google Scholar 

  124. Zhang, Y. S., and A. Khademhosseini. Seeking the right context for evaluating nanomedicine: from tissue models in petri dishes to microfluidic organs-on-a-chip. Nanomedicine 10:685–688, 2015.

    Article  CAS  PubMed  Google Scholar 

  125. Zhang, Y. S., and Y. Xia. Multiple facets for extracellular matrix mimicking in regenerative medicine. Nanomedicine 10:689–692, 2015.

    Article  CAS  PubMed  Google Scholar 

  126. Zhang, Y., Y. Yu, H. Chen, and I. T. Ozbolat. Characterization of printable cellular micro-fluidic channels for tissue engineering. Biofabrication 5:025004, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding from the Office of Naval Research Young National Investigator Award, the National Institutes of Health (EB012597, AR057837, DE021468, HL099073, R56AI105024), and the Presidential Early Career Award for Scientists and Engineers (PECASE).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Khademhosseini.

Additional information

Associate Editor Jos Malda oversaw the review of this article.

Kan Yue, Julio Aleman, Kamyar Mollazadeh-Moghaddam, Syeda Mahwish Bakht authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y.S., Yue, K., Aleman, J. et al. 3D Bioprinting for Tissue and Organ Fabrication. Ann Biomed Eng 45, 148–163 (2017). https://doi.org/10.1007/s10439-016-1612-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1612-8

Keywords

Navigation