Skip to main content
Log in

Coupled Modeling of Lipid Deposition, Inflammatory Response and Intraplaque Angiogenesis in Atherosclerotic Plaque

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We propose a multiphysical mathematical model by fully coupling lipid deposition, monocytes/macrophages recruitment and angiogenesis to investigate the pathophysiological responses of an atherosclerotic plaque to the dynamic changes in the microenvironment. The time evolutions of cellular (endothelial cells, macrophages, smooth muscle cells, etc.) and acellular components (low density lipoprotein, proinflammatory cytokines, extravascular plasma concentration, etc.) within the plaque microenvironment are assessed quantitatively. The thickening of the intima, the distributions of the lipid and inflammatory factors, and the intraplaque hemorrhage show a qualitative consistency with the MRI and histology data. Models with and without angiogenesis are compared to demonstrate the important role of neovasculature in the accumulation of blood-borne components in the atherosclerotic lesion by extravasation from the leaky vessel wall, leading to the formation of a lipid core and an inflammatory microenvironment, which eventually promotes plaque destabilization. This model can serve as a theoretical platform for the investigation of the pathological mechanisms of plaque progression and may contribute to the optimal design of atherosclerosis treatment strategies, such as lipid-lowering or anti-angiogenetic therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Alimohamadi H. Numerical simulation of porosity effect on blood flow pattern and atherosclerotic plaques temperature. Int. J. Technol. Enhanc. Emerg. Eng. Res. 2:44–49, 2014.

    Google Scholar 

  2. Anlamlert, W., Y. Lenbury, and J. Bell. Modeling fibrous cap formation in atherosclerotic plaque development: stability and oscillatory behavior. Adv. Differ. Equ. 2017:195, 2017.

    Article  Google Scholar 

  3. Barrett, S. R. H., M. P. F. Sutcliffe, S. Howarth, Z. Y. Li, and J. H. Gillard. Experimental measurement of the mechanical properties of carotid atherothrombotic plaque fibrous cap. J. Biomech. 42:1650–1655, 2009.

    Article  CAS  PubMed  Google Scholar 

  4. Brown, A. J., Z. Z. Teng, P. C. Evans, J. H. Gillard, H. Samady, and M. R. Bennett. Role of biomechanical forces in the natural history of coronary atherosclerosis. Nat. Rev. Cardiol. 13:210–220, 2016.

    Article  PubMed  Google Scholar 

  5. Cai, Y., S. Xu, J. Wu, and Q. Long. Coupled modelling of tumour angiogenesis, tumour growth and blood perfusion. J. Theor. Biol. 279:90–101, 2011.

    Article  PubMed  Google Scholar 

  6. Chalmers, A. D., A. Cohen, C. A. Bursill, and M. R. Myerscough. Bifurcation and dynamics in a mathematical model of early atherosclerosis: how acute inflammation drives lesion development. J. Math. Biol. 71:1451–1480, 2015.

    Article  PubMed  Google Scholar 

  7. Chien, S. Molecular and mechanical bases of focal lipid accumulation in arterial wall. Prog. Biophys. Mol. Biol. 83:131–151, 2003.

    Article  CAS  PubMed  Google Scholar 

  8. Cobbold, C. A., J. A. Sherratt, and S. R. J. Maxwell. Lipoprotein oxidation and its significance for atherosclerosis: a mathematical approach. Bull. Math. Biol. 64:65–95, 2002.

    Article  CAS  PubMed  Google Scholar 

  9. de Vries, M. R., and P. H. A. Quax. Plaque angiogenesis and its relation to inflammation and atherosclerotic plaque destabilization. Curr. Opin. Lipidol. 27:499–506, 2016.

    Article  CAS  PubMed  Google Scholar 

  10. Dolan, J. M., J. Kolega, and H. Meng. High wall shear stress and spatial gradients in vascular pathology: a review. Ann. Biomed. Eng. 41:1411–1427, 2013.

    Article  PubMed  Google Scholar 

  11. Dolan, J. M., F. J. Sim, H. Meng, and J. Kolega. Endothelial cells express a unique transcriptional profile under very high wall shear stress known to induce expansive arterial remodeling. Am. J. Physiol.-Cell Physiol. 302:C1109–C1118, 2012.

    Article  CAS  PubMed  Google Scholar 

  12. Doran, A. C., N. Meller, and C. A. McNamara. Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 28:812–819, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. El Khatib, N., S. Genieys, B. Kazmierczak, and V. Volpert. Reaction-diffusion model of atherosclerosis development. J. Math. Biol. 65:349–374, 2012.

    Article  PubMed  Google Scholar 

  14. Fok, P. W. Mathematical model of intimal thickening in atherosclerosis: vessel stenosis as a free boundary problem. J. Theor. Biol. 314:23–33, 2012.

    Article  PubMed  Google Scholar 

  15. Fong, G. H. Potential contributions of intimal and plaque hypoxia to atherosclerosis. Curr. Atheroscler. Rep. 17:510, 2015.

    Article  CAS  PubMed  Google Scholar 

  16. Friedman, A., and W. R. Hao. A mathematical model of atherosclerosis with reverse cholesterol transport and associated risk factors. Bull. Math. Biol. 77:758–781, 2015.

    Article  CAS  PubMed  Google Scholar 

  17. Gao, H., Q. Long, M. Graves, J. H. Gillard, and Z. Y. Li. Carotid arterial plaque stress analysis using fluid-structure interactive simulation based on in vivo magnetic resonance images of four patients. J. Biomech. 42:1416–1423, 2009.

    Article  PubMed  Google Scholar 

  18. Goodman, M. E., X. Y. Luo, and N. A. Hill. A mathematical model on the feedback between wall shear stress and intimal hyperplasia. Int. J. Appl. Mech. 08:1640011, 2016.

    Article  Google Scholar 

  19. Groh, L., S. T. Keating, L. A. B. Joosten, M. G. Netea, and N. P. Riksen. Monocyte and macrophage immunometabolism in atherosclerosis. Semin. Immunopathol. 40:203–214, 2018.

    Article  CAS  PubMed  Google Scholar 

  20. Grootaert, M. O. J., M. Moulis, L. Roth, W. Martinet, C. Vindis, M. R. Bennett, and G. R. Y. De Meyer. Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc. Res. 114:622–634, 2018.

    Article  CAS  PubMed  Google Scholar 

  21. Guo, M. Y., Y. Cai, X. K. Yao, and Z. Y. Li. Mathematical modeling of atherosclerotic plaque destabilization: role of neovascularization and intraplaque hemorrhage. J. Theor. Biol. 450:53–65, 2018.

    Article  PubMed  Google Scholar 

  22. Hansson, G. K., P. Libby, and I. Tabas. Inflammation and plaque vulnerability. J. Intern. Med. 278:483–493, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Harrington, J. R. The role of MCP-1 in atherosclerosis. Stem Cells 18:65–66, 2000.

    Article  CAS  PubMed  Google Scholar 

  24. Hidalgo, A., L. Tello, and E. F. Toro. Numerical and analytical study of an atherosclerosis inflammatory disease model. J. Math. Biol. 68:1785–1814, 2014.

    Article  CAS  PubMed  Google Scholar 

  25. Inoue, M., H. Itoh, M. Ueda, T. Naruko, A. Kojima, R. Komatsu, K. Doi, Y. Ogawa, N. Tamura, K. Takaya, T. Igaki, J. Yamashita, T. H. Chun, K. Masatsugu, A. E. Becker, and K. Nakao. Vascular endothelial growth factor (VEGF) expression in human coronary atherosclerotic lesions—possible pathophysiological significance of VEGF in progression of atherosclerosis. Circulation 98:2108–2116, 1998.

    Article  CAS  PubMed  Google Scholar 

  26. Jain, R. K., A. V. Finn, F. D. Kolodgie, H. K. Gold, and R. Virmani. Antiangiogenic therapy for normalization of atherosclerotic plaque vasculature: a potential strategy for plaque stabilization. Nat. Clin. Pract. Cardiovasc. Med. 4:491–502, 2007.

    Article  CAS  PubMed  Google Scholar 

  27. Koshiba, N., J. Ando, M. Chen, and T. Hisada. Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model. J. Biomech. Eng.-Trans. Asme 129:374–385, 2007.

    Google Scholar 

  28. Kwak, B. R., M. Back, M. L. Bochaton-Piallat, G. Caligiuri, M. J. A. P. Daemens, P. F. Davies, I. E. Hoefer, P. Holvoet, H. Jo, R. Krams, S. Lehoux, C. Monaco, S. Steffens, R. Virmani, C. Weber, J. J. Wentzel, and P. C. Evans. Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur. Heart J. 35(3013–3020):3020a–3020d, 2014.

    Google Scholar 

  29. Ley, K., Y. I. Miller, and C. C. Hedrick. Monocyte and macrophage dynamics during atherogenesis. Arterioscler., Thromb., Vasc. Biol. 31:1506–1516, 2011.

    Article  CAS  Google Scholar 

  30. Li, Z. Y., S. P. Howarth, T. Tang, and J. H. Gillard. How critical is fibrous cap thickness to carotid plaque stability? A flow-plaque interaction model. Stroke: J. Cereb. Circ. 37:1195–1199, 2006.

    Article  Google Scholar 

  31. Li, Z. Y., S. Howarth, R. A. Trivedi, J. M. Ukingim, M. J. Graves, A. Brown, L. Q. Wang, and J. H. Gillard. Stress analysis of carotid plaque rupture based on in vivo high resolution MRI. J. Biomech. 39:2611–2622, 2006.

    Article  PubMed  Google Scholar 

  32. Michel J. B., R. Virmani, E. Arbustini and G. Pasterkamp. Intraplaque haemorrhages as the trigger of plaque vulnerability. European Heart Journal 32: 1977–1985, 1985a, 1985b, 1985c, 2011.

  33. Moore, K. J., F. J. Sheedy, and E. A. Fisher. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev.: Immunol. 13:709–721, 2013.

    Article  CAS  Google Scholar 

  34. Olgac, U., V. Kurtcuoglu, and D. Poulikakos. Computational modeling of coupled blood-wall mass transport of LDL: effects of local wall shear stress. Am. J. Physiol.-Heart Circ. Physiol. 294:H909–919, 2008.

    Article  CAS  PubMed  Google Scholar 

  35. Parma, L., F. Baganha, P. H. A. Quax, and M. R. de Vries. Plaque angiogenesis and intraplaque hemorrhage in atherosclerosis. Eur. J. Pharmacol. 816:107–115, 2017.

    Article  CAS  PubMed  Google Scholar 

  36. Rai, S., D. E. Thaler, P. Salehi, N. Madan, and L. Y. Leung. More to atherosclerosis than stenosis: symptomatic carotid artery with intraplaque hemorrhage. Stroke 48:e104–e107, 2017.

    Article  PubMed  Google Scholar 

  37. Roustaei, M., M. R. Nikmaneshi, and B. Firoozabadi. Simulation of low density lipoprotein (LDL) permeation into multilayer coronary arterial wall: Interactive effects of wall shear stress and fluid-structure interaction in hypertension. J. Biomech. 67:114–122, 2018.

    Article  PubMed  Google Scholar 

  38. Silva, T., A. Sequeira, R. F. Santos, and J. Tiago. Mathematical modeling of atherosclerotic plaque formation coupled with a non-newtonian model of blood flow. Conf. Pap. Math. 1–14:2013, 2013.

    Google Scholar 

  39. Silvestre-Roig, C., M. P. de Winther, C. Weber, M. J. Daemen, E. Lutgens, and O. Soehnlein. Atherosclerotic plaque destabilization mechanisms, models, and therapeutic strategies. Circ. Res. 114:214–226, 2014.

    Article  CAS  PubMed  Google Scholar 

  40. Teng, Z. Z., U. Sadat, A. J. Brown, and J. H. Gillard. Plaque hemorrhage in carotid artery disease: pathogenesis, clinical and biomechanical considerations. J. Biomech. 47:847–858, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tiago, J. Existence, uniqueness, stability and asymptotic behavior of solutions for a mathematical model of atherosclerosis. Discret. Contin. Dyn. Syst.-Ser. S 9:343–362, 2016.

    Article  Google Scholar 

  42. Timmins, L. H., D. S. Molony, P. Eshtehardi, M. C. McDaniel, J. N. Oshinski, D. P. Giddens, and H. Samady. Oscillatory wall shear stress is a dominant flow characteristic affecting lesion progression patterns and plaque vulnerability in patients with coronary artery disease. J. Royal Soc. Interface 14:20160927, 2017.

    Article  CAS  Google Scholar 

  43. Wiesner, P., M. Tafelmeier, D. Chittka, S. H. Choi, L. Zhang, Y. S. Byun, F. Almazan, X. Yang, N. Iqbal, P. Chowdhury, A. Maisel, J. L. Witztum, T. M. Handel, S. Tsimikas, and Y. I. Miller. MCP-1 binds to oxidized LDL and is carried by lipoprotein(a) in human plasma. J. Lipid Res. 54:1877–1883, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yilmaz, A., B. Lipfert, I. Cicha, K. Schubert, M. Klein, D. Raithel, W. G. Daniel, and C. D. Garlichs. Accumulation of immune cells and high expression of chemokines/chemokine receptors in the upstream shoulder of atherosclerotic carotid plaques. Exp. Mol. Pathol. 82:245–255, 2007.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Basic Research Program of China (973 Program) Grant Number [2013CB733800], the National Nature Science Foundation of China Grant Numbers (11422222, 11302050, 11772093), the Fundamental Research Funds for the Central Universities, the National Demonstration Center for Experimental Biomedical Engineering Education (Southeast University), and ARC Grant Number (FT140101152).

Conflict of interest

The authors declare that there are no conflict of interest regarding to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Li.

Additional information

Associate Editor Debra T. Auguste oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 488 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, M., Cai, Y., He, C. et al. Coupled Modeling of Lipid Deposition, Inflammatory Response and Intraplaque Angiogenesis in Atherosclerotic Plaque. Ann Biomed Eng 47, 439–452 (2019). https://doi.org/10.1007/s10439-018-02173-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-02173-1

Keywords

Navigation