Skip to main content
Log in

Twenty years of aerobiological monitoring in Trentino (Italy): assessment and evaluation of airborne pollen variability

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

The aim of the study is to report a reliable airborne pollen spectrum composition and seasonal timings for the monitored area as a basis for allergy management and to ascertain possible modifications through the detection of trends during the 20-year time series (1989–2008). Pollen was collected at San Michele all’Adige (Trento, Italy) by means of a Hirst-type spore trap. Sampling and counting of airborne pollen grains were carried out according to a national standard. Pollen concentration data for the period were processed in order to characterize the main pollen seasons for a subset of taxa, selected on the basis of their allergenicity and local representativeness. Variations in the pollen data over the years surveyed were analyzed using non-parametric tests. The results showed the presence of 63 pollen taxa, 40 of which belonged to tree and shrub species and 23 to herbaceous species. The local pollen spectrum was characterized by the presence of highly allergenic taxa, such as Urticaceae, Graminaceae, Ostrya sp., and Cupressaceae, in terms of percentage contribution as well as mean daily pollen count or peak values over the years surveyed. A significant upward trend was observed for daily mean pollen amount, mainly due to pollen from woody species and probably ascribable to a temperature-driven increase in pollen production. Evaluation of the results presented will form the basis of further research focussed on the climate change-related causes of modifications to vegetational dynamics as well as on the phenology of flowering and on pollen production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beggs, P. J. (2004). Impacts of climate change on aeroallergens: Past and future. Clinical and Experimental Allergy, 34(10), 1507–1513. doi:10.1111/j.1365-2222.2004.02061.x.

    Article  CAS  Google Scholar 

  • Bonofiglio, T., Orlandi, F., Sgromo, C., Romano, B., & Fornaciari, M. (2009). Evidences of olive pollination date variations in relation to spring temperature trends.Aerobiologia, 25(4), 227–237. doi:10.1007/s10453-009-9128-4.

    Article  Google Scholar 

  • Bucher, E., Kofler, V., Vorwohl, G., & Zieger, E. (2004). Lo spettro pollinico dei mieli dell’Alto Adige. Laives, Bolzano: Laboratorio Biologico, Agenzia Provinciale per l’Ambiente.

    Google Scholar 

  • Compalati, E., Penagos, M., Henley, K., & Canonica, G. W. (2007). Allergy prevalence survey by the world allergy organization. Allergy & Clinical Immunology International-Journal of the World Allergy Organization, 19(3), 82–90. doi:10.1027/0838-1925.19.3.82.

    Google Scholar 

  • D’Amato, G., Cecchi, L., Bonini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., et al. (2007). Allergenic pollen and pollen allergy in Europe. Allergy, 62, 976–990. doi:10.1111/j.1398-9995.2007.01393.x.

    Article  Google Scholar 

  • D’Amato, G., Liccardi, G., D’Amato, M., & Holgate, S. (2005). Environmental risk factors and allergic bronchial asthma.Clinical and Experimental Allergy, 35(9), 1113–1124. doi:10.1111/j.1365-2222.2005.02328.x.

    Article  Google Scholar 

  • Damialis, A., Halley, J. M., Gioulekas, D., & Vokou, D. (2007). Long-term trends in atmospheric pollen levels in the city of Thessaloniki, Greece.Atmospheric Environment, 41(33), 7011–7021. doi:10.1016/j.atmosenv.2007.05.009.

    Article  CAS  Google Scholar 

  • Eccel, E., & Saibanti, S. (2005). Climatic setting of the Lavarone-Vezzena Plateau in the general context of Trentino. Studi Trentini di Scienze Naturali. Acta Geologica, 82, 111–121.

    Google Scholar 

  • Emberlin, J., Laaidi, M., Detandt, M., Gehrig, R., Jaeger, S., Myszkowska, D., et al. (2007). Climate change and evolution of the pollen content of the air in seven European countries: The example of Birch. Revue Francaise D Allergologie Et D Immunologie Clinique, 47, 57–63. doi:10.1016/j.allerg.2006.11.005.

    Article  Google Scholar 

  • Erbas, B., Chang, J. H., Dharmage, S., Ong, E. K., Hyndman, R., Newbigin, E., et al. (2007). Do levels of airborne grass pollen influence asthma hospital admissions?Clinical and Experimental Allergy, 37(11), 1641–1647. doi:10.1111/j.1365-2222.2007.02818.x.

    Article  CAS  Google Scholar 

  • Faegri, K., & Iversen, J. (1989). Textbook of pollen analysis. London: Wiley.

    Google Scholar 

  • Favre, E., Escarguel, G., Suc, J. P., Vidal, G., & Thevenod, L. (2008). A contribution to deciphering the meaning of AP/NAP with respect to vegetation cover.Review of Palaeobotany and Palynology, 148(1), 13–35. doi:10.1016/j.revpalbo.2007.08.003.

    Article  Google Scholar 

  • Fornaciari, M., Pieroni, L., Ciuchi, P., & Romano, B. (1998). A regression model for the start of the pollen season in Olea europaea. Grana, 37(2), 110–113.

    Article  Google Scholar 

  • Frei, T. (1998). The effects of climate change in Switzerland 1969–1996 on airborne pollen quantities from hazel, birch and grass. Grana, 37(3), 172–179.

    Article  Google Scholar 

  • Frei, T., & Gassner, E. (2008). Climate change and its impact on birch pollen quantities and the start of the pollen season an example from Switzerland for the period 1969–2006. International Journal of Biometeorology, 52(7), 667–674. doi:10.1007/s00484-008-0159-2.

    Article  Google Scholar 

  • Frenz, D. A. (2000). Interpreting atmospheric pollen counts for use in clinical allergy: Spatial variability. Annals of Allergy, Asthma & Immunology, 84(5), 481–489.

    Article  CAS  Google Scholar 

  • Frenz, D. A. (2001). Interpreting atmospheric pollen counts for use in clinical allergy: Allergic symptomology. Annals of Allergy, Asthma & Immunology, 86(2), 150–157.

    Article  CAS  Google Scholar 

  • Galan, C., Garcia-Mozo, H., Vazquez, L., Ruiz, L., de la Guardia, C. D., & Trigo, M. M. (2005). Heat requirement for the onset of the Olea europaea L. pollen season in several sites in Andalusia and the effect of the expected future climate change. International Journal of Biometeorology, 49(3), 184–188. doi:10.1007/s00484-004-0223-5.

    Article  CAS  Google Scholar 

  • Garcia-Mozo, H., Galan, C., Belmonte, J., Bermejo, D., Candau, P., de la Guardia, C. D., et al. (2009). Predicting the start and peak dates of the Poaceae pollen season in Spain using process-based models.Agricultural and Forest Meteorology, 149(2), 256–262. doi:10.1016/j.agrformet.2008.08.013.

    Article  Google Scholar 

  • Gottardini, E., & Cristofolini, F. (1996). Survey of Ambrosia sp. presence by aerobiological monitoring. Colloquium Phytosociology, XXIV, 697–700.

    Google Scholar 

  • Hollander, M., & Wolfe, D. A. (1999). Nonparametric statistical methods (2nd ed.). New York: Wiley.

    Google Scholar 

  • IPCC. (2007). Climate change 2007—impacts, adaptation and vulnerability (Vol. 2). Cambridge: Cambridge University Press.

    Google Scholar 

  • Jato, V., Rodriguez-Rajo, F. J., Alcazar, P., de Nuntiis, P., Galan, C., & Mandrioli, P. (2006). May the definition of pollen season influence aerobiological results?

  • Jato, V., Rodriguez-Rajo, F. J., Seijo, M. C., & Aira, M. J. (2009). Poaceae pollen in Galicia (NW Spain): Characterisation and recent trends in atmospheric pollen season. International Journal of Biometeorology, 53(4), 333–344. doi:10.1007/s00484-009-0220-9.

    Article  CAS  Google Scholar 

  • Kolmogorov, A. N. (1933). Sulla Determinazione Empirica di una Legge di Distribuzione. Giornale dell’Istituto Italiano degli Attuari, 4, 83–91.

    Google Scholar 

  • Levetin, E., & Van de Water, P. (2008). Changing pollen types/concentrations/distribution in the United States: Fact or fiction? Current Allergy and Asthma Reports, 8(5), 418–424.

    Article  Google Scholar 

  • Lilliefors, H. (1967). On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association, 62, 399–402.

    Article  Google Scholar 

  • McMichael, A. J., Woodruff, R. E., & Hale, S. (2006). Climate change and human health: Present and future risks. Lancet, 367, 859–869.

    Google Scholar 

  • Minghetti, P., & Pedrotti, F. (1999). Naturalness of vegetation of the Trentino-Alto adige region. Trento: Centro di Ecologia Alpina.

    Google Scholar 

  • Neilson, R. P., Pitelka, L. F., Solomon, A. M., Nathan, R., Midgley, G. F., Fragoso, J. M. V., et al. (2005). Forecasting regional to global plant migration in response to climate change. BioScience, 55(9), 749–759.

    Article  Google Scholar 

  • Nilsson, S., & Persson, S. (1981). Tree pollen spectra in the Stockholm region Sweden 1973–1980. Grana, 20(3), 179–182.

    Article  Google Scholar 

  • Nilsson, S., & Praglowski, J. (1992). Erdtman’s handbook of palynology. Copenhagen: Munksgaard.

    Google Scholar 

  • Pettitt, A. N. (1979). A non-parametric approach to the change-point problem. Applied Statistics, 28(2), 126–135.

    Article  Google Scholar 

  • Recio, M., Rodriguez-Rajo, F. J., Jato, M. V., Trigo, M. M., & Cabezudo, B. (2009). The effect of recent climatic trends on Urticaceae pollination in two bioclimatically different areas in the Iberian Peninsula: Malaga and Vigo. Climatic Change, 97(1–2), 215–228. doi:10.1007/s10584-009-9620-4.

    Article  Google Scholar 

  • Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H., Rosenzweig, C., & Pounds, J. A. (2003). Fingerprints of global warming on wild animals and plants. Nature, 421(6918), 57–60. doi:10.1038/nature01333.

    Article  CAS  Google Scholar 

  • Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63(324), 1379–1389.

    Article  Google Scholar 

  • Shea, K. M., Truckner, R. T., Weber, R. W., & Peden, D. B. (2008). Climate change and allergic disease. Journal of Allergy and Clinical Immunology, 122(3), 443–453. doi:10.1016/j.jaci.2008.06.032.

    Article  Google Scholar 

  • Spieksma, F. T. M. (1991). Regional European pollen calendars. In G. DÕAmato, F.T.M. Spieksma, & S. Bonini (Eds.), Allergenic pollen and pollinosis in Europe. Cambridge: Blackwell.

    Google Scholar 

  • Stach, A., Smith, M., Baena, J. C. P., & Emberlin, J. (2008). Long-term and short-term forecast models for Poaceae (grass) pollen in Poznan, Poland, constructed using regression analysis. Environmental and Experimental Botany, 62(3), 323–332. doi:10.1016/j.envexpbot.2007.10.005.

    Google Scholar 

  • Wayne, P., Foster, S., Connolly, J., Bazzaz, F., & Epstein, P. (2002). Production of allergenic pollen by ragweed (Ambrosia artemisiifolia L.) is increased in CO2-enriched atmospheres. Annals of Allergy, Asthma & Immunology, 88(3), 279–282.

    Article  Google Scholar 

  • Williams, R. (2005). Climate change blamed for rise in hay fever. Nature, 434(7037), 1059. doi:10.1038/nature03682.

    Article  CAS  Google Scholar 

  • World Health Organization. (2003). Prevention of allergy and allergic asthma. Chronic Respiratory Diseases and Arthritis 2003. Retrieved February 2, 2008, 2009, from http://www.worldallergy.org/professional/who_paa2003.pdf.

  • Ziska, L. H., & Caulfield, F. A. (2000). Rising CO2 and pollen production of common ragweed (Ambrosia artemisiifolia), a known allergy-inducing species: Implications for public health. Australian Journal of Plant Physiology, 27(10), 893–898.

    Google Scholar 

  • Ziska, L. H., Epstein, P. R., & Rogers, C. A. (2008). Climate change, aerobiology, and public health in the Northeast United States. Mitigation and Adaptation Strategies for Global Change, 13(5/6), 607–613.

    Article  Google Scholar 

Download references

Acknowledgments

The Aerobiological Monitoring Centre of San Michele all’Adige was partially supported by the Environmental Protection Agency of the Autonomous Province of Trento (APPA TN). The authors are grateful to Maria Cristina Viola, whose accurate work is invaluable for the collection of high-quality environmental data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antonella Cristofori or Elena Gottardini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cristofori, A., Cristofolini, F. & Gottardini, E. Twenty years of aerobiological monitoring in Trentino (Italy): assessment and evaluation of airborne pollen variability. Aerobiologia 26, 253–261 (2010). https://doi.org/10.1007/s10453-010-9161-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-010-9161-3

Keywords

Navigation