Skip to main content
Log in

Retinopathy of prematurity

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Retinopathy of prematurity (ROP) is a common blinding disease in children in the developed world despite current treatment, and is becoming increasingly prevalent in the developing world. ROP progresses in two phases. The first phase begins with delayed retinal vascular growth after birth and partial regression of existing vessels, followed by a second phase of hypoxia-induced pathological vessel growth. Two major risk factors of ROP are the use of oxygen and a decreased gestation period. Excessive oxygen contributes to ROP through regulation of vascular endothelial growth factor (VEGF). Suppression of VEGF by oxygen in phase I of ROP inhibits normal vessel growth, whereas elevated levels of VEGF induced by hypoxia in phase II of ROP precipitate pathological vessel proliferation. Insulin-like growth factor 1 (IGF-1) is a critical non-oxygen-regulated factor in ROP. We have found that serum levels of IGF-1 in premature babies directly correlate with the severity of clinical ROP. IGF-1 acts indirectly as a permissive factor by allowing maximal VEGF stimulation of vessel growth. Lack of IGF-1 in preterm infants prevents normal retinal vascular growth in phase I of ROP, despite the presence of VEGF. As infants mature, rising levels of IGF-1 in phase II of ROP allows VEGF stimulated pathological neovascularization. These findings suggest that restoration of IGF-1 to normal levels might be useful in preventing ROP in preterm infants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Silverman W (1980) Retrolental fibroplasia: a modern parable. Grune and Stratton, New York

    Google Scholar 

  2. Terry TL (1944) Retrolental fibroplasia in the premature infant: V. Further studies on fibroplastic overgrowth of the persistent tunica vasculosa lentis. Trans Am Ophthalmol Soc 42:383–396

    PubMed  CAS  Google Scholar 

  3. Campbell K (1951) Intensive oxygen therapy as a possible cause of retrolental fibroplasia; a clinical approach. Med J Aust 2:48–50

    PubMed  CAS  Google Scholar 

  4. Patz A, Hoeck LE, De La Cruz E (1952) Studies on the effect of high oxygen administration in retrolental fibroplasia. I nursery observations. Am J Ophthalmol 35:1248–1253

    PubMed  CAS  Google Scholar 

  5. Ashton N, Ward B, Serpell G (1953) Role of oxygen in the genesis of retrolental fibroplasia; a preliminary report. Br J Ophthalmol 37:513–520

    PubMed  CAS  Google Scholar 

  6. Ashton N, Ward B, Serpell G (1954) Effect of oxygen on developing retinal vessels with particular reference to the problem of retrolental fibroplasia. Br J Ophthalmol 38:397–432

    PubMed  CAS  Google Scholar 

  7. Kinsey VE, Arnold HJ, Kalina RE, Stern L, Stahlman M, Odell G, Driscoll JM Jr, Elliott JH, Payne J, Patz A (1977) PaO2 levels and retrolental fibroplasia: a report of the cooperative study. Pediatrics 60:655–668

    PubMed  CAS  Google Scholar 

  8. Flynn JT (1983) Acute proliferative retrolental fibroplasia: multivariate risk analysis. Trans Am Ophthalmol Soc 81:549–591

    PubMed  CAS  Google Scholar 

  9. Johnson L, Quinn GE, Abbasi S, Gerdes J, Bowen FW, Bhutani V (1995) Severe retinopathy of prematurity in infants with birth weights less than 1250 grams: incidence and outcome of treatment with pharmacologic serum levels of vitamin E in addition to cryotherapy from 1985 to 1991. J Pediatr 127:632–639

    Article  PubMed  CAS  Google Scholar 

  10. Phelps DL, Rosenbaum AL, Isenberg SJ, Leake RD, Dorey FJ (1987) Tocopherol efficacy and safety for preventing retinopathy of prematurity: a randomized, controlled, double-masked trial. Pediatrics 79:489–500

    PubMed  CAS  Google Scholar 

  11. Wesolowski E, Smith LE (1994) Effect of light on oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35:112–119

    PubMed  CAS  Google Scholar 

  12. Reynolds JD, Hardy RJ, Kennedy KA, Spencer R, van Heuven WA, Fielder AR (1998) Lack of efficacy of light reduction in preventing retinopathy of prematurity. Light reduction in retinopathy of prematurity (LIGHT-ROP) cooperative group. N Engl J Med 338:1572–1576

    Article  PubMed  CAS  Google Scholar 

  13. Lutty GA, Chan-Ling T, Phelps DL, Adamis AP, Berns KI, Chan CK, Cole CH, D’Amore PA, Das A, Deng WT, Dobson V, Flynn JT, Friedlander M, Fulton A, Good WV, Grant MB, Hansen R, Hauswirth WW, Hardy RJ, Hinton DR, Hughes S, McLeod DS, Palmer EA, Patz A, Penn JS, Raisler BJ, Repka MX, Saint-Geniez M, Shaw LC, Shima DT, Smith BT, Smith LE, Tahija SG, Tasman W, Trese MT (2006) Proceedings of the third international symposium on retinopathy of prematurity: an update on ROP from the lab to the nursery (November 2003, Anaheim, California). Mol Vis 12:532–580

    PubMed  Google Scholar 

  14. Smith LE (2003) Pathogenesis of retinopathy of prematurity. Semin Neonatol 8:469–473

    Article  PubMed  Google Scholar 

  15. Tasman W, Patz A, McNamara JA, Kaiser RS, Trese MT, Smith BT (2006) Retinopathy of prematurity: the life of a lifetime disease. Am J Ophthalmol 141:167–174

    Article  PubMed  Google Scholar 

  16. Blanco CL, Baillargeon JG, Morrison RL, Gong AK (2006) Hyperglycemia in extremely low birth weight infants in a predominantly hispanic population and related morbidities. J Perinatol 26:737–741

    Google Scholar 

  17. Ertl T, Gyarmati J, Gaal V, Szabo I (2006) Relationship between hyperglycemia and retinopathy of prematurity in very low birth weight infants. Biol Neonate 89:56–59

    Article  PubMed  Google Scholar 

  18. Garg R, Agthe AG, Donohue PK, Lehmann CU (2003) Hyperglycemia and retinopathy of prematurity in very low birth weight infants. J Perinatol 23:186–194

    Article  PubMed  Google Scholar 

  19. Roth AM (1977) Retinal vascular development in premature infants. Am J Ophthalmol 84:636–640

    PubMed  CAS  Google Scholar 

  20. Bell EF, Klein JM (1994) Iowa neonatology handbook: pulmonary comments on oxygen toxicity and retinopathy (ROP) in the premature infant. online: http://www.uihealthcare.com/depts/med/pediatrics/iowaneonatologyhandbook/general/commentsoxygen.html

  21. Smith LE, Wesolowski E, McLellan A, Kostyk SK, D’Amato R, Sullivan R, D’Amore PA (1994) Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35:101–111

    PubMed  CAS  Google Scholar 

  22. Flower RW (1990) Perinatal ocular physiology and ROP in the experimental animal model. Doc Ophthalmol 74:153–162

    Article  PubMed  CAS  Google Scholar 

  23. Penn JS, Tolman BL, Henry MM (1994) Oxygen-induced retinopathy in the rat: relationship of retinal nonperfusion to subsequent neovascularization. Invest Ophthalmol Vis Sci 35:3429–3435

    PubMed  CAS  Google Scholar 

  24. Patz A (1982) Clinical and experimental studies on retinal neovascularization. XXXIX Edward Jackson memorial lecture. Am J Ophthalmol 94:715–743

    Article  PubMed  CAS  Google Scholar 

  25. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983–985

    Article  PubMed  CAS  Google Scholar 

  26. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309

    Article  PubMed  CAS  Google Scholar 

  27. Plate KH, Breier G, Weich HA, Risau W (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359:845–848

    Article  PubMed  CAS  Google Scholar 

  28. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362:841–844

    Article  PubMed  CAS  Google Scholar 

  29. Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845

    Article  PubMed  CAS  Google Scholar 

  30. Adamis AP, Shima DT, Yeo KT, Yeo TK, Brown LF, Berse B, D’Amore PA, Folkman J (1993) Synthesis and secretion of vascular permeability factor/vascular endothelial growth factor by human retinal pigment epithelial cells. Biochem Biophys Res Commun 193:631–638

    Article  PubMed  CAS  Google Scholar 

  31. Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, Pasquale LR, Thieme H, Iwamoto MA, Park JE et al (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 331:1480–1487

    Article  PubMed  CAS  Google Scholar 

  32. Aiello LP, Northrup JM, Keyt BA, Takagi H, Iwamoto MA (1995a) Hypoxic regulation of vascular endothelial growth factor in retinal cells. Arch Ophthalmol 113:1538–1544

    CAS  Google Scholar 

  33. Chan-Ling T, Gock B, Stone J (1995) The effect of oxygen on vasoformative cell division. Evidence that ‘physiological hypoxia’ is the stimulus for normal retinal vasculogenesis. Invest Ophthalmol Vis Sci 36:1201–1214

    PubMed  CAS  Google Scholar 

  34. Dorrell MI, Aguilar E, Friedlander M (2002) Retinal vascular development is mediated by endothelial filopodia, a preexisting astrocytic template and specific R-cadherin adhesion. Invest Ophthalmol Vis Sci 43:3500–3510

    PubMed  Google Scholar 

  35. Stone J, Itin A, Alon T, Pe’er J, Gnessin H, Chan-Ling T, Keshet E (1995) Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci 15:4738–4747

    PubMed  CAS  Google Scholar 

  36. Pierce EA, Avery RL, Foley ED, Aiello LP, Smith LE (1995) Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci USA 92:905–909

    Article  PubMed  CAS  Google Scholar 

  37. Alon T, Hemo I, Itin A, Pe’er J, Stone J, Keshet E (1995) Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1:1024–1028

    Article  PubMed  CAS  Google Scholar 

  38. Pierce EA, Foley ED, Smith LE (1996) Regulation of vascular endothelial growth factor by oxygen in a model of retinopathy of prematurity. Arch Ophthalmol 114:1219–1228

    PubMed  CAS  Google Scholar 

  39. Shih SC, Ju M, Liu N, Smith LE (2003) Selective stimulation of VEGFR-1 prevents oxygen-induced retinal vascular degeneration in retinopathy of prematurity. J Clin Invest 112:50–57

    Article  PubMed  CAS  Google Scholar 

  40. Aiello LP, Pierce EA, Foley ED, Takagi H, Chen H, Riddle L, Ferrara N, King GL, Smith LE (1995b) Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci USA 92:10457–10461

    Article  CAS  Google Scholar 

  41. Robinson GS, Pierce EA, Rook SL, Foley E, Webb R, Smith LE (1996) Oligodeoxynucleotides inhibit retinal neovascularization in a murine model of proliferative retinopathy. Proc Natl Acad Sci USA 93:4851–4856

    Article  PubMed  CAS  Google Scholar 

  42. Adamis AP, Shima DT, Tolentino MJ, Gragoudas ES, Ferrara N, Folkman J, D’Amore PA, Miller JW (1996) Inhibition of vascular endothelial growth factor prevents retinal ischemia-associated iris neovascularization in a nonhuman primate. Arch Ophthalmol 114:66–71

    PubMed  CAS  Google Scholar 

  43. Donahue ML, Phelps DL, Watkins RH, LoMonaco MB, Horowitz S (1996) Retinal vascular endothelial growth factor (VEGF) mRNA expression is altered in relation to neovascularization in oxygen induced retinopathy. Curr Eye Res 15:175–184

    PubMed  CAS  Google Scholar 

  44. Miller JW, Adamis AP, Shima DT, D’Amore PA, Moulton RS, O’Reilly MS, Folkman J, Dvorak HF, Brown LF, Berse B et al (1994) Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am J Pathol 145:574–584

    PubMed  CAS  Google Scholar 

  45. Stone J, Chan-Ling T, Pe’er J, Itin A, Gnessin H, Keshet E (1996) Roles of vascular endothelial growth factor and astrocyte degeneration in the genesis of retinopathy of prematurity. Invest Ophthalmol Vis Sci 37:290–299

    PubMed  CAS  Google Scholar 

  46. Young TL, Anthony DC, Pierce E, Foley E, Smith LE (1997) Histopathology and vascular endothelial growth factor in untreated and diode laser-treated retinopathy of prematurity. J Aapos 1:105–110

    Article  PubMed  CAS  Google Scholar 

  47. Adamis AP, Miller JW, Bernal MT, D’Amico DJ, Folkman J, Yeo TK, Yeo KT (1994) Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol 118:445–450

    PubMed  CAS  Google Scholar 

  48. Poulsen JE (1953) Recovery from retinopathy in a case of diabetes with Simmonds’ disease. Diabetes 2:7–12

    PubMed  CAS  Google Scholar 

  49. Sharp PS, Fallon TJ, Brazier OJ, Sandler L, Joplin GF, Kohner EM (1987) Long-term follow-up of patients who underwent yttrium-90 pituitary implantation for treatment of proliferative diabetic retinopathy. Diabetologia 30:199–207

    Article  PubMed  CAS  Google Scholar 

  50. Wright AD, Kohner EM, Oakley NW, Hartog M, Joplin GF, Fraser TR (1969) Serum growth hormone levels and the response of diabetic retinopathy to pituitary ablation. Br Med J 2:346–348

    PubMed  CAS  Google Scholar 

  51. Langford K, Nicolaides K, Miell JP (1998) Maternal and fetal insulin-like growth factors and their binding proteins in the second and third trimesters of human pregnancy. Hum Reprod 13:1389–1393

    Article  PubMed  CAS  Google Scholar 

  52. Lassarre C, Hardouin S, Daffos F, Forestier F, Frankenne F, Binoux M (1991) Serum insulin-like growth factors and insulin-like growth factor binding proteins in the human fetus. Relationships with growth in normal subjects and in subjects with intrauterine growth retardation. Pediatr Res 29:219–225

    PubMed  CAS  Google Scholar 

  53. Reece EA, Wiznitzer A, Le E, Homko CJ, Behrman H, Spencer EM (1994) The relation between human fetal growth and fetal blood levels of insulin-like growth factors I and II, their binding proteins, and receptors. Obstet Gynecol 84:88–95

    PubMed  CAS  Google Scholar 

  54. Hellstrom A, Perruzzi C, Ju M, Engstrom E, Hard AL, Liu JL, Albertsson-Wikland K, Carlsson B, Niklasson A, Sjodell L, LeRoith D, Senger DR, Smith LE (2001) Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: direct correlation with clinical retinopathy of prematurity. Proc Natl Acad Sci USA 98:5804–5808

    Article  PubMed  CAS  Google Scholar 

  55. Hellstrom A, Engstrom E, Hard AL, Albertsson-Wikland K, Carlsson B, Niklasson A, Lofqvist C, Svensson E, Holm S, Ewald U, Holmstrom G, Smith LE (2003) Postnatal serum insulin-like growth factor I deficiency is associated with retinopathy of prematurity and other complications of premature birth. Pediatrics 112:1016–1020

    Article  PubMed  Google Scholar 

  56. Lofqvist C, Engstrom E, Sigurdsson J, Hard AL, Niklasson A, Ewald U, Holmstrom G, Smith LE, Hellstrom A (2006) Postnatal head growth deficit among premature infants parallels retinopathy of prematurity and insulin-like growth factor-1 deficit. Pediatrics 117:1930–1938

    Article  PubMed  Google Scholar 

  57. Smith LE (2004) Pathogenesis of retinopathy of prematurity. Growth Horm IGF Res 14(Suppl A):S140–S144

    Article  PubMed  CAS  Google Scholar 

  58. Hellstrom A, Carlsson B, Niklasson A, Segnestam K, Boguszewski M, de Lacerda L, Savage M, Svensson E, Smith L, Weinberger D, Albertsson Wikland K, Laron Z (2002) IGF-I is critical for normal vascularization of the human retina. J Clin Endocrinol Metab 87:3413–3416

    Article  PubMed  CAS  Google Scholar 

  59. Smith LE, Kopchick JJ, Chen W, Knapp J, Kinose F, Daley D, Foley E, Smith RG, Schaeffer JM (1997) Essential role of growth hormone in ischemia-induced retinal neovascularization. Science 276:1706–1709

    Article  PubMed  CAS  Google Scholar 

  60. Smith LE, Shen W, Perruzzi C, Soker S, Kinose F, Xu X, Robinson G, Driver S, Bischoff J, Zhang B, Schaeffer JM, Senger DR (1999) Regulation of vascular endothelial growth factor-dependent retinal neovascularization by insulin-like growth factor-1 receptor. Nat Med 5:1390–1395

    Article  PubMed  CAS  Google Scholar 

  61. Kondo T, Vicent D, Suzuma K, Yanagisawa M, King GL, Holzenberger M, Kahn CR (2003) Knockout of insulin and IGF-1 receptors on vascular endothelial cells protects against retinal neovascularization. J Clin Invest 111:1835–1842

    Article  PubMed  CAS  Google Scholar 

  62. Robitaille J, MacDonald ML, Kaykas A, Sheldahl LC, Zeisler J, Dube MP, Zhang LH, Singaraja RR, Guernsey DL, Zheng B, Siebert LF, Hoskin-Mott A, Trese MT, Pimstone SN, Shastry BS, Moon RT, Hayden MR, Goldberg YP, Samuels ME (2002) Mutant frizzled-4 disrupts retinal angiogenesis in familial exudative vitreoretinopathy. Nat Genet 32:326–330

    Article  PubMed  CAS  Google Scholar 

  63. Rehm HL, Zhang DS, Brown MC, Burgess B, Halpin C, Berger W, Morton CC, Corey DP, Chen ZY (2002) Vascular defects and sensorineural deafness in a mouse model of Norrie disease. J Neurosci 22:4286–4292

    PubMed  CAS  Google Scholar 

  64. Xu Q, Wang Y, Dabdoub A, Smallwood PM, Williams J, Woods C, Kelley MW, Jiang L, Tasman W, Zhang K, Nathans J (2004) Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand–receptor pair. Cell 116:883–895

    Article  PubMed  CAS  Google Scholar 

  65. Niehrs C (2004) Norrin and frizzled; a new vein for the eye. Dev Cell 6:453–454

    Article  PubMed  CAS  Google Scholar 

  66. Ohlmann A, Scholz M, Goldwich A, Chauhan BK, Hudl K, Ohlmann AV, Zrenner E, Berger W, Cvekl A, Seeliger MW, Tamm ER (2005) Ectopic norrin induces growth of ocular capillaries and restores normal retinal angiogenesis in Norrie disease mutant mice. J Neurosci 25:1701–1710

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lois E. H. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Smith, L.E.H. Retinopathy of prematurity. Angiogenesis 10, 133–140 (2007). https://doi.org/10.1007/s10456-007-9066-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-007-9066-0

Keywords

Navigation