Skip to main content
Log in

Multiobjective evolutionary algorithms to identify highly autocorrelated areas: the case of spatial distribution in financially compromised farms

Annals of Operations Research Aims and scope Submit manuscript

Abstract

Local Indicators of Spatial Aggregation (LISA) can be used as objectives in a multicriteria framework when highly autocorrelated areas (hot-spots) must be identified and geographically located in complex areas. To do so, a Multi-Objective Evolutionary Algorithm (MOEA) based on SPEA2 (Strength Pareto Evolutionary Algorithm v.2) has been designed to evaluate three different fitness functions (fine-grained strength, the weighted sum of objectives and fuzzy evaluation of weighted objectives) and three LISA methods. MOEA makes it possible to achieve a compromise between spatial econometric methods as it highlights areas where a specific phenomenon shows significantly high autocorrelation. The spatial distribution of financially compromised olive-tree farms in Andalusia (Spain) was selected for analysis and two fuzzy hot-spots were statistically identified and spatially located. Hot-spots can be considered to be spatial fuzzy sets where the spatial units have a membership degree that can also be calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Agarwal, D. K., Silander, J. A., Gelfand, A. E., Dewar, R. E., & Mickelson, J. G. (2005). Tropical deforestation in Madagascar: analysis using hierarchical, spatially explicit Bayesian regression models. Ecological Modelling, 185, 105–131.

    Article  Google Scholar 

  • Andrienko, N., & Andrienko, G. (2006). Exploratory analysis of spatial and temporal data: a systematic approach. Berlin: Springer.

    Google Scholar 

  • Anselin, L. (1995). Local indicators of spatial association: LISA. Geographical Analysis, 27(2), 93–115.

    Article  Google Scholar 

  • Anselin, L. (2002). Under the hood: issues in the specification and interpretation of spatial regression. Models of Agricultural Economics, 27, 247–267.

    Article  Google Scholar 

  • Asai, K. (1995). Fuzzy systems for information processing. Amsterdam: IOS Press.

    Google Scholar 

  • Assunçao, R., Costa, M., Tavares, A., & Ferreira, S. (2006). Fast detection of arbitrarily shaped disease clusters. Statistics in Medicine, 25, 723–742.

    Article  Google Scholar 

  • Bäck, T. (1996). Evolutionary algorithms in theory and practice. New York: Oxford University Press.

    Google Scholar 

  • Barbosa, H. J., & Barreto, A. M. (2001). An interactive genetic algorithm with co-evolution of weights for multiobjective problems. In L. Spector, E. D. Goodman, A. Wu, W. Langdon, H. M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, & E. Burke (Eds.), Proceedings of the genetic and evolutionary computation conference (GECCO’2001) (pp. 203–210), San Francisco, California. San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Baddeley, A., Gregori, P., Mateu, J., Stoica, R., & Stoyan, D. (2006). Case studies in spatial point process modeling. Berlin: Springer.

    Book  Google Scholar 

  • Beirlant, J., Goegebeur, Y., Segers, J., & Teugels, J. (2004). Statistics of extremes: theory and applications. Chichester: Wiley.

    Book  Google Scholar 

  • Coello-Coello, C. A., & Lamont, G. B. (2004). Applications of multi-objective evolutionary algorithms. Singapore: Word Scientific.

    Book  Google Scholar 

  • Coello-Coello, C. A., Lamont, G. B., & Van Veldhuizen, D. A. (2007). Evolutionary algorithms for solving multi-objective problems. New York: Springer.

    Google Scholar 

  • Das, I., & Dennis, J. (1997). A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Structural Optimization, 14(1), 63–69.

    Article  Google Scholar 

  • De Pinto, A., & Nelson, G. C. (2007). Modelling deforestation and land-use change: sparse data environments. Journal of Agricultural Economics, 58(3), 502–516.

    Article  Google Scholar 

  • Deb, K. (1999). Non-linear goal programming using multi-objective genetic algorithms (Technical Report CI-60/98). Dortmund: Department of Computer Science/LS11, University of Dortmund, Germany.

  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  • Emir-Farinas, H., & Francis, R. L. (2005). Demand point aggregation for planar covering location models. Annals of Operation Research, 136, 175–192.

    Article  Google Scholar 

  • Fischer, M. M. (2006). Spatial analysis and geocomputation. Berlin: Springer.

    Google Scholar 

  • García-Alonso, C. R., & Pérez-Naranjo, L. (2007). Identification of financially compromised areas in the agrarian sector. In 22nd European conference on operational research book of abstracts (Vol. 1, p. 75).

    Google Scholar 

  • Gonçalves, G. E., & Estellita, L. P. (2002). Integrating geographical information systems and multi-criteria methods: a case study. Annals of Operation Research, 116, 243–269.

    Article  Google Scholar 

  • Griffith, D. A. (2003). Using estimated missing spatial data with the 2-median model. Annals of Operation Research, 122, 233–247.

    Article  Google Scholar 

  • Gutiérrez, P. A., López-Granados, F., Peña-Barragán, J. M., Jurado-Expósito, M., Gómez-Casero, M. T., & Hervás-Martínez, C. (2008). Mapping sunflower yield as affected by Ridolfia segetum patches and elevation by applying evolutionary product unit neural networks to remote sensed data. Computers and Electronics in Agriculture, 60(2), 122–132.

    Article  Google Scholar 

  • Hajela, P., & Lin, C. Y. (1992). Genetic search strategies in multicriterion optimal design. Structural Optimization, 4, 99–107.

    Article  Google Scholar 

  • Hodgson, M. J., & Jacobsen, S. K. (2009). A hierarchical location-allocation model with travel based on expected referral distances. Annals of Operation Research, 167, 271–286.

    Article  Google Scholar 

  • Hof, J., & Bevers, M. (2000). Direct spatial optimization in natural resource management: four linear programming examples. Annals of Operation Research, 95, 67–81.

    Article  Google Scholar 

  • Holloway, G., Lacombe, D., & LeSage, J. P. (2007). Spatial econometric issues for bio-economic and land-use modelling. Journal of Agricultural Economics, 58(3), 549–588.

    Article  Google Scholar 

  • Horn, J., Nafpliotis, N., & Goldberg, D. E. (1994). A niched Pareto genetic algorithm for multiobjective optimization. In Proceedings of the first IEEE conference on evolutionary computation, IEEE World congress on computational intelligence (Vol. 1, pp. 82–87). Piscataway: IEEE Service Center.

    Chapter  Google Scholar 

  • Ishbuchi, H., & Murata, T. (1996). Multi-objective local search algorithm and its applications to flowshop scheduling. IEEE Transactions on Systems, Man, and Cybernetics, 28(3), 392–403.

    Article  Google Scholar 

  • Ishibuchi, H., & Murata, T. (1998). Multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Transactions on Systems, Man, and Cybernetics, 28(3), 392–403.

    Article  Google Scholar 

  • Junta de Andalucía (2004). Anuario de estadísticas agrarias y pesqueras año 2004. Consejería de Agricultura, Pesca y Alimentación. http://www.juntadeandalucia.es/agriculturaypesca/portal/www/portal/com/bin/portal/DGPAgraria/Estadisticas/estadisticasagrarias/anuario2004.pdf. Accessed 19 November 2007.

  • Kalyanmoy, D. (2004). Multi-objective optimization using evolutionary algorithms. Chichester: Wiley.

    Google Scholar 

  • Kursawe, F. (1991). A variant of evolution strategies for vector optimization. In H. P. Schwefel & R. Männer (Eds.), Lecture notes in computer science: Vol. 496. Parallel problem solving from nature. 1st workshop, PPSN I (pp. 193–197), Dortmund, Germany. Berlin: Springer.

    Google Scholar 

  • Laumanns, M., Thiele, L., & Zitzler, E. (2006). An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method. European Journal of Operational Research, 169, 932–942.

    Article  Google Scholar 

  • Lee, M. A., & Esbensen, H. (1997). Fuzzy/multiobjective genetic systems for intelligent systems design tools and components. In W. Pedrycz (Ed.), Fuzzy evolutionary computation. Boston: Kluwer Academic.

    Google Scholar 

  • Loughlin, D. H., & Ranjithan, S. (1997). The neighborhood constraint method: a genetic algorithm-based multiobjective optimization technique. In T. Bäck (Ed.), Proceedings of the seventh international conference on genetic algorithms (pp. 666–673). San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Michalewicz, Z., & Schoenauer, M. (1996). Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation, 4(1), 1–32.

    Article  Google Scholar 

  • Moreno, B., García-Alonso, C. R., Negrín-Hernández, M. A., Torres-González, F., & Salvador-Carulla, L. (2008). Spatial analysis to identify hotspots of prevalence of schizophrenia. Social Psychiatry and Psychiatric Epidemiology. doi:10.1007//s00127-008-0368-3.

    Google Scholar 

  • Noyan, N. (2010). Alternate risk measures for emergency medical service system design. Annals of Operation Research. doi:10.1007/s10479-010-0787-x.

    Google Scholar 

  • Ord, J. K., & Getis, A. (1995). Local spatial autocorrelation statistics: distributional issues and an application. Geographical Analysis, 27, 286–306.

    Article  Google Scholar 

  • Pérez-Naranjo, L. M., & García-Alonso, C. R. (2005). Spatial income distribution of horticultural farms in Andalusia. Cuadernos Geográficos, 37, 41–58.

    Google Scholar 

  • Silverman, B. W. (1986). Density estimation for statistics and data analysis. London: Chapman and Hall.

    Book  Google Scholar 

  • Smith, A. E., & Coit, D. W. (1997). Constrain handling techniques—penalty functions. In T. Bäck, D. B. Fogel, & Z. Michalewicz (Eds.), Handbook of evolutionary computation. London: Oxford University Press.

    Google Scholar 

  • Srigiriraju, K. C. (2000). Noninferior surface tracing evolutionary algorithm (NSTEA) for multi objective optimization. Master’s thesis, North Carolina State University, Raleigh, North Carolina.

  • Staal, S. J., Baltenweck, L., Waithaka, M., de Wolff, T., & Njoroge, L. (2002). Location and uptake: integrated household and GIS analysis of technology adoption and land use with application to smallholder dairy farms in Kenya. Agricultural Economics, 27, 295–315.

    Article  Google Scholar 

  • Tavares-Pereira, F., Rui Figueira, J., Mousseau, V., & Roy, B. (2007). Multiple criteria districting problems: the public transportation network pricing system of the Paris region. Annals of Operation Research, 154, 69–92.

    Article  Google Scholar 

  • Wang, G., & Terpenny, J. P. (2005). Interactive preference incorporation in evolutionary engineering design. In Y. Jin (Ed.), Knowledge incorporation in evolutionary computation. Berlin: Springer.

    Google Scholar 

  • Wilson, P. B., & MacLeod, M. D. (1993). Low implementation cost IIR digital filter design using genetic algorithms. In IEE/IEEE workshop on natural algorithms in signal processing (pp. 4/1–4/8). Chelmsford, UK.

    Google Scholar 

  • Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.

    Article  Google Scholar 

  • Youssef, H. A., Kinsella, A., & Waddington, J. L. (1991). Evidence for geographical variations in the prevalence of schizophrenia in rural Ireland. Archives of General Psychiatry, 48, 254–258.

    Article  Google Scholar 

  • Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case study and strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4), 257–271.

    Article  Google Scholar 

  • Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: improving the strength of Pareto evolutionary algorithm. In K. Giannakoglou, D. Tsahalis, J. Periaux, P. Papailou, & T. Fogarty (Eds.), Evolutionary methods for design, optimization and control with applications to industrial problems (EUROGEN 2001), Athens.

    Google Scholar 

  • Zydallis, J. B., Veldhuizen, D. A. V., & Lamont, G. B. (2001). Statistical comparison of multiobjective evolutionary algorithms including the MOMGA–II. In E. Zitzler, K. Deb, L. Thiele, C. A. C. Coello, & D. Corne (Eds.), Lecture notes in computer science: Vol. 1993. First international conference on evolutionary multi-criterion optimization (pp. 226–240). Berlin: Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos R. García-Alonso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Alonso, C.R., Pérez-Naranjo, L.M. & Fernández-Caballero, J.C. Multiobjective evolutionary algorithms to identify highly autocorrelated areas: the case of spatial distribution in financially compromised farms. Ann Oper Res 219, 187–202 (2014). https://doi.org/10.1007/s10479-011-0841-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-011-0841-3

Keywords

Navigation