Skip to main content
Log in

Metabolic networks to combat oxidative stress in Pseudomonas fluorescens

  • Perspective
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Oxidative stress is an unavoidable peril that aerobic organisms have to confront. Thus, it is not surprising that intricate strategies are deployed in an effort to fend the dangers associated with living in an O2 environment. In the classical models of anti-oxidative defense mechanisms, a variety of stratagems including the reactive oxygen species (ROS) scavenging systems, the NADPH-generating enzymes and the DNA repair machineries are highlighted. However, it is becoming increasingly clear that metabolism may be intimately involved in anti-oxidative defence. Recent data show that metabolic reprogramming plays a pivotal role in the survival of organisms exposed to oxidative stress. Here, we describe how Pseudomonas fluorescens, the metabolically-versatile soil microbe, manipulates its metabolic networks in an effort to counter oxidative stress. An intricate link between metabolism and anti-oxidative defense is presented. P. fluorescens reconfigures its metabolic processes in an effort to satisfy its need for NADPH during oxidative insult. Seemingly, disparate metabolic modules appear to partner together to concomitantly fine-tune the levels of the anti-oxidant NADPH and the pro-oxidant NADH. Central to this shift in the metabolic production of the pyridine nucleotides is the increase in NAD kinase with the concomitant decrease in NADP phosphatase. The tricarboxylic acid cycle is tweaked in an effort to limit the formation of NADH. This metabolic redox-balancing act appears to afford a potent tool against oxidative challenge and may be a more widespread ROS-combating tactic than hitherto recognized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adam-Vizi V, Chinopoulos C (2006) Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 27:639–645

    Article  CAS  PubMed  Google Scholar 

  • Agledal L, Niere M, Ziegler M (2010) The phosphate makes a difference: cellular functions of NADP. Redox Rep 15:2–10

    Article  CAS  PubMed  Google Scholar 

  • Ambrus A, Tretter L, Adam-Vizi V (2009) Inhibition of the alpha-ketoglutarate dehydrogenase-mediated reactive oxygen species generation by lipoic acid. J Neurochem 109(Suppl 1):222–229

    Article  CAS  PubMed  Google Scholar 

  • Anderson S, Appanna VD, Huang J, Viswanatha T (1992) A novel role for calcite in calcium homeostasis. FEBS Lett 308:94–96

    Article  CAS  PubMed  Google Scholar 

  • Aon MA, Cortassa S, O’Rourke B (2010) Redox-optimized ROS balance: a unifying hypothesis. Biochim Biophys Acta 1797:865–877

    Article  CAS  PubMed  Google Scholar 

  • Bergamini CM, Gambetti S, Dondi A, Cervellati C (2004) Oxygen, reactive oxygen species and tissue damage. Curr Pharm Des 10:1611–1626

    Article  CAS  PubMed  Google Scholar 

  • Beriault R, Hamel R, Chenier D, Mailloux RJ, Joly H, Appanna VD (2007) The overexpression of NADPH-producing enzymes counters the oxidative stress evoked by gallium, an iron mimetic. Biometals 20:165–176

    Article  CAS  PubMed  Google Scholar 

  • Boveris A, Sies H, Martino EE, Docampo R, Turrens JF, Stoppani AO (1980) Deficient metabolic utilization of hydrogen peroxide in Trypanosoma cruzi. Biochem J 188:643–648

    CAS  PubMed  Google Scholar 

  • Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3:3–8

    CAS  PubMed  Google Scholar 

  • Chai MF, Chen QJ, An R, Chen YM, Chen J, Wang XC (2005) NADK2, an Arabidopsis chloroplastic NAD kinase, plays a vital role in both chlorophyll synthesis and chloroplast protection. Plant Mol Biol 59:553–564

    Article  CAS  PubMed  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    CAS  PubMed  Google Scholar 

  • Chenier D, Beriault R, Mailloux R, Baquie M, Abramia G, Lemire J, Appanna V (2008) Involvement of fumarase C and NADH oxidase in metabolic adaptation of Pseudomonas fluorescens cells evoked by aluminum and gallium toxicity. Appl Environ Microbiol 74:3977–3984

    Article  CAS  PubMed  Google Scholar 

  • Cohen G (1994) Enzymatic/nonenzymatic sources of oxyradicals and regulation of antioxidant defenses. Ann N Y Acad Sci 738:8–14

    Article  CAS  PubMed  Google Scholar 

  • Cornelis P (2008) Unexpected interaction of a siderophore with aluminum and its receptor. J Bacteriol 190:6541–6543

    Article  CAS  PubMed  Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    CAS  PubMed  Google Scholar 

  • Dunn SD, Chandler J (1998) Characterization of a b2delta complex from Escherichia coli ATP synthase. J Biol Chem 273:8646–8651

    Article  CAS  PubMed  Google Scholar 

  • Fedotcheva NI, Sokolov AP, Kondrashova MN (2006) Nonezymatic formation of succinate in mitochondria under oxidative stress. Free Radic Biol Med 41:56–64

    Article  CAS  PubMed  Google Scholar 

  • Forman HJ, Maiorino M, Ursini F (2010) Signaling functions of reactive oxygen species. Biochemistry 49:835–842

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Flecha B, Demple B (1995) Metabolic sources of hydrogen peroxide in aerobically growing Escherichia coli. J Biol Chem 270:13681–13687

    Article  CAS  PubMed  Google Scholar 

  • Grose JH, Joss L, Velick SF, Roth JR (2006) Evidence that feedback inhibition of NAD kinase controls responses to oxidative stress. Proc Natl Acad Sci USA 103:7601–7606

    Article  CAS  PubMed  Google Scholar 

  • Hamel R, Appanna VD (2003) Aluminum detoxification in Pseudomonas fluorescens is mediated by oxalate and phosphatidylethanolamine. Biochim Biophys Acta 1619:70–76

    CAS  PubMed  Google Scholar 

  • Hansford RG, Hogue BA, Mildaziene V (1997) Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age. J Bioenerg Biomembr 29:89–95

    Article  CAS  PubMed  Google Scholar 

  • Havir EA, McHale NA (1990) Purification and characterization of an isozyme of catalase with enhanced-peroxidatic activity from leaves of Nicotiana sylvestris. Arch Biochem Biophys 283:491–495

    Article  CAS  PubMed  Google Scholar 

  • Hirst J, King MS, Pryde KR (2008) The production of reactive oxygen species by complex I. Biochem Soc Trans 36:976–980

    Article  CAS  PubMed  Google Scholar 

  • Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776

    Article  CAS  PubMed  Google Scholar 

  • Ingledew WJ, Poole RK (1984) The respiratory chains of Escherichia coli. Microbiol Rev 48:222–271

    CAS  PubMed  Google Scholar 

  • Iuchi S, Weiner L (1996) Cellular and molecular physiology of Escherichia coli in the adaptation to aerobic environments. J Biochem 120:1055–1063

    CAS  PubMed  Google Scholar 

  • Kawai S, Murata K (2008) Structure and function of NAD kinase and NADP phosphatase: key enzymes that regulate the intracellular balance of NAD(H) and NADP(H). Biosci Biotechnol Biochem 72:919–930

    Article  CAS  PubMed  Google Scholar 

  • Kirkman HN, Rolfo M, Ferraris AM, Gaetani GF (1999) Mechanisms of protection of catalase by NADPH. Kinetics and stoichiometry. J Biol Chem 274:13908–13914

    Article  CAS  PubMed  Google Scholar 

  • Kornberg A, Pricer WE Jr (1950) On the structure of triphosphopyridine nucleotide. J Biol Chem 186:557–567

    CAS  PubMed  Google Scholar 

  • Lee HC, Kim JS, Jang W, Kim SY (2009) Thymidine production by overexpressing NAD + kinase in an Escherichia coli recombinant strain. Biotechnol Lett 31:1929–1936

    Article  CAS  PubMed  Google Scholar 

  • Lemire J, Mailloux R, Auger C, Whalen D, Appanna VD (2010a) Pseudomonas fluorescens orchestrates a fine metabolic-balancing act to counter aluminium toxicity. Environ Microbiol 12:1384–1390

    CAS  PubMed  Google Scholar 

  • Lemire J, Milandu Y, Auger C, Bignucolo A, Appanna VP, Appanna VD (2010b) Histidine is a source of the antioxidant, alpha-ketoglutarate, in Pseudomonas fluorescens challenged by oxidative stress. FEMS Microbiol Lett 309:170–177

    CAS  PubMed  Google Scholar 

  • Liu Y, Dentin R, Chen D, Hedrick S, Ravnskjaer K, Schenk S, Milne J, Meyers DJ, Cole P, Yates J 3rd, Olefsky J, Guarente L, Montminy M (2008) A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 456:269–273

    Article  CAS  PubMed  Google Scholar 

  • Maddipati KR, Marnett LJ (1987) Characterization of the major hydroperoxide-reducing activity of human plasma. Purification and properties of a selenium-dependent glutathione peroxidase. J Biol Chem 262:17398–17403

    CAS  PubMed  Google Scholar 

  • Magni G, Amici A, Emanuelli M, Raffaelli N, Ruggieri S (1999) Enzymology of NAD + synthesis. Adv Enzymol Relat Areas Mol Biol 73:135–182 xi

    Article  CAS  PubMed  Google Scholar 

  • Mailloux RJ, Harper ME (2010) Glucose regulates enzymatic sources of mitochondrial NADPH in skeletal muscle cells; a novel role for glucose-6-phosphate dehydrogenase. Faseb J 24:2495–2506

    Article  CAS  PubMed  Google Scholar 

  • Mailloux RJ, Singh R, Appanna VD (2006) In-gel activity staining of oxidized nicotinamide adenine dinucleotide kinase by blue native polyacrylamide gel electrophoresis. Anal Biochem 359:210–215

    Article  CAS  PubMed  Google Scholar 

  • Mailloux RJ, Beriault R, Lemire J, Singh R, Chenier DR, Hamel RD, Appanna VD (2007) The tricarboxylic acid cycle, an ancient metabolic network with a novel twist. PLoS One 2:e690

    Article  PubMed  Google Scholar 

  • Mailloux RJ, Lemire J, Kalyuzhnyi S, Appanna V (2008) A novel metabolic network leads to enhanced citrate biogenesis in Pseudomonas fluorescens exposed to aluminum toxicity. Extremophiles 12:451–459

    Article  CAS  PubMed  Google Scholar 

  • McGuinness ET, Butler JR (1985) NAD + kinase—a review. Int J Biochem 17:1–11

    Article  CAS  PubMed  Google Scholar 

  • Meyer JM (2000) Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol 174:135–142

    Article  CAS  PubMed  Google Scholar 

  • Minard KI, McAlister-Henn L (2005) Sources of NADPH in yeast vary with carbon source. J Biol Chem 280:39890–39896

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  PubMed  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed  Google Scholar 

  • Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GS, Mavrodi DV, DeBoy RT, Seshadri R, Ren Q, Madupu R, Dodson RJ, Durkin AS, Brinkac LM, Daugherty SC, Sullivan SA, Rosovitz MJ, Gwinn ML, Zhou L, Schneider DJ, Cartinhour SW, Nelson WC, Weidman J, Watkins K, Tran K, Khouri H, Pierson EA, Pierson LS 3rd, Thomashow LS, Loper JE (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23:873–878

    Article  CAS  PubMed  Google Scholar 

  • Pollak N, Dolle C, Ziegler M (2007a) The power to reduce: pyridine nucleotides–small molecules with a multitude of functions. Biochem J 402:205–218

    Article  CAS  PubMed  Google Scholar 

  • Pollak N, Niere M, Ziegler M (2007b) NAD kinase levels control the NADPH concentration in human cells. J Biol Chem 282:33562–33571

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Mailloux RJ, Puiseux-Dao S, Appanna VD (2007) Oxidative stress evokes a metabolic adaptation that favors increased NADPH synthesis and decreased NADH production in Pseudomonas fluorescens. J Bacteriol 189:6665–6675

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Lemire J, Mailloux RJ, Appanna VD (2008) A novel strategy involved in [corrected] anti-oxidative defense: the conversion of NADH into NADPH by a metabolic network. PLoS One 3:e2682

    Article  PubMed  Google Scholar 

  • Singh R, Lemire J, Mailloux RJ, Chenier D, Hamel R, Appanna VD (2009) An ATP and oxalate generating variant tricarboxylic acid cycle counters aluminum toxicity in Pseudomonas fluorescens. PLoS One 4:e7344

    Article  PubMed  Google Scholar 

  • Sung JY, Lee YN (2007) Isoforms of glucose 6-phosphate dehydrogenase in Deinococcus radiophilus. J Microbiol 45:318–325

    CAS  PubMed  Google Scholar 

  • Tretter L, Adam-Vizi V (2005) Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress. Philos Trans R Soc Lond B Biol Sci 360:2335–2345

    Article  CAS  PubMed  Google Scholar 

  • Vattanaviboon P, Panmanee W, Mongkolsuk S (2003) Induction of peroxide and superoxide protective enzymes and physiological cross-protection against peroxide killing by a superoxide generator in Vibrio harveyi. FEMS Microbiol Lett 221:89–95

    Article  CAS  PubMed  Google Scholar 

  • Winterbourn CC, French JK, Claridge RF (1978) Superoxide dismutase as an inhibitor of reactions of semiquinone radicals. FEBS Lett 94:269–272

    Article  CAS  PubMed  Google Scholar 

  • Woo HA, Yim SH, Shin DH, Kang D, Yu DY, Rhee SG (2010) Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling. Cell 140:517–528

    Article  CAS  PubMed  Google Scholar 

  • Ying W (2008) NAD +/NADH and NADP +/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 10:179–206

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Northern Ontario Heritage Fund, Ontario Center of Excellence, and Industry Canada. J. Lemire is a recipient of the Alexander Graham Bell doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasu D. Appanna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mailloux, R.J., Lemire, J. & Appanna, V.D. Metabolic networks to combat oxidative stress in Pseudomonas fluorescens . Antonie van Leeuwenhoek 99, 433–442 (2011). https://doi.org/10.1007/s10482-010-9538-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-010-9538-x

Keywords

Navigation