Skip to main content
Log in

Phylogenetic and morphologic complexity of giant sulphur bacteria

  • Invited Review Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The large sulphur bacteria, first discovered in the early nineteenth century, include some of the largest bacteria identified to date. Individual cells are often visible to the unaided eye and can reach 750 μm in diameter. The cells usually feature light-refracting inclusions of elemental sulphur and a large internal aqueous vacuole, which restricts the cytoplasm to the outermost periphery. In some taxa, it has been demonstrated that the vacuole can also serve for the storage of high millimolar concentrations of nitrate. Over the course of the past two centuries, a wide range of morphological variation within the family Beggiatoaceae has been found. However, representatives of this clade are frequently recalcitrant to current standard microbiological techniques, including 16S rRNA gene sequencing and culturing, and a reliable classification of these bacteria is often complicated. Here we present a summary of the efforts made and achievements accomplished in the past years, and give perspectives for investigating the heterogeneity and possible evolutionary developments in this extraordinary group of bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad A, Barry JP, Nelson DC (1999) Phylogenetic affinity of a wide, vacuolate, nitrate-accumulating Beggiatoa sp. from Monterey Canyon, California, with Thioploca spp. Appl Environ Microbiol 65:270–277

    PubMed  CAS  Google Scholar 

  • Ahmad A, Kalanetra KM, Nelson DC (2006) Cultivated Beggiatoa spp. define the phylogenetic root of morphologically diverse, noncultured, vacuolate sulfur bacteria. Can J Microbiol 52:591–598

    Article  PubMed  CAS  Google Scholar 

  • Angert ER (2005) Alternatives to binary fission in bacteria. Nat Rev Microbiol 3:214–224

    Article  PubMed  CAS  Google Scholar 

  • Angert ER, Northup DE, Reysenbach A-L, Peek AS, Goebel BM, Pace NR (1998) Molecular phylogenetic analysis of a bacterial community in Sulphur River, Parker Cave, Kentucky. Am Mineral 83:1583–1592

    CAS  Google Scholar 

  • Aranda C, Paredes J, Valenzuela C, Lam P, Guillou L (2010) 16S rRNA gene-based molecular analysis of mat-forming and accompanying bacteria covering organically-enriched marine sediments underlying a salmon farm in Southern Chile (Calbuso Island). Gayana 74:125–135

    Google Scholar 

  • Bailey JV, Joye SB, Kalanetra KM, Flood E, Corsetti FA (2007) Evidence of giant sulphur bacteria in neoproterozoic phosphorites. Nature 445:198–201

    Article  PubMed  CAS  Google Scholar 

  • Bailey JV, Salman V, Rouse G, Schulz-Vogt HN, Levin L, Orphan V (2011) Dimorphism in methane seep dwelling ecotypes of the largest known bacteria. ISME J 5:1926–1935

    Article  PubMed  CAS  Google Scholar 

  • Becking B (1934) Geobiologie of inleiding tot de milieukunde Diligentia Wetensch. Serie 18/19, van Stockum’s Gravenhange

  • Beutler M, Milucka J, Hinck S, Schreiber F, Brock J, Mussmann M, Schulz-Vogt HN, de Beer D (2012) Vacuolar respiration of nitrate coupled to energy conservation in filamentous Beggiatoaceae. Environ Microbiol 14:2911–2919

    Article  PubMed  CAS  Google Scholar 

  • Brock TD (1974) Family IV. Leucotrichaceae Buchanan 1957. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of determinative bacteriology, 8th edn. The Williams & Wilkins Company, Baltimore, pp 118–119

  • Brock J, Rhiel E, Beutler M, Salman V, Schulz-Vogt HN (2012) Unusual polyphosphate inclusions observed in a marine Beggiatoa strain. Antonie Van Leeuwenhoek 101:347–357

    Article  PubMed  CAS  Google Scholar 

  • Buchanan RE (1957) Family III. Leucotrichaceae Buchanan. fam. nov. In: Breed RS, Murray EGD, Smith NR (eds) Bergey’s manual of determinative bacteriology, 7th edn. The Williams and Wilkins Co., Baltimore, pp 850–851

  • Coleman ML, Sullivan MB, Martiny AC, Steglich C, Barry K, DeLong EF, Chisholm SW (2006) Genomic islands and the ecology and evolution of Prochlorococcus. Science 311:1768–1770

    Article  PubMed  CAS  Google Scholar 

  • Crépeau V, Cambon-Bonavita MA, Lesongeur F, Randrianalivelo H, Sarradin PM, Sarrazin J, Godfroy A (2011) Diversity and function in microbial mats from the Lucky Strike hydrothermal vent field. FEMS Microbiol Ecol 76:524–540

    Article  PubMed  Google Scholar 

  • De Albuquerque JP, Keim CN, Lins U (2010) Comparative analysis of Beggiatoa from hypersaline and marine environments. Micron 41:507–517

    Article  PubMed  Google Scholar 

  • DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard N-U, Martinez A, Sullivan MB, Edwards R, Rodriguez Brito B, Chisholm SW, Karl DM (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503

    Article  PubMed  CAS  Google Scholar 

  • Edgcomb VP, Kysela DT, Teske A, de Vera Gomez A, Sogin ML (2002) Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc Natl Acad Sci USA 99:7658–7662

    Article  PubMed  CAS  Google Scholar 

  • Fossing H, Gallardo VA, Jørgensen BB, Hüttel M, Nielsen LP, Schulz H, Canfield DE, Forster S, Glud RN, Gundersen JK, Küver J, Ramsing NB, Teske A, Thamdrup B, Ulloa O (1995) Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca. Nature 374:713–715

    Article  CAS  Google Scholar 

  • Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown MV, Green JL, Brown JH (2008) A latitudinal diversity gradient in planktonic marine bacteria. Proc Natl Acad Sci USA 105:7774–7778

    Article  PubMed  CAS  Google Scholar 

  • Gallardo VA (1977) Large benthic microbial communities in sulfide biota under Peru–Chile subsurface countercurrent. Nature 268:331–332

    Article  Google Scholar 

  • Garrity GM, Bell JA, Lilburn T (2005) Family I. Thiotrichaceae fam. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, Vol 2, part B. Springer, New York, pp 131–179

    Chapter  Google Scholar 

  • Gillan DC, Speksnijder AGCL, Zwart G, De Ridder C (1998) Genetic diversity of the biofilm covering Montacuta ferruginosa (Mollusca, Bivalvia) as evaluated by denaturing gradient gel electrophoresis analysis and cloning of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 64:3464–3472

    PubMed  CAS  Google Scholar 

  • Girnth A-C, Grünke S, Lichtschlag A, Felden J, Knittel K, Wenzhöfer F, De Beer D, Boetius A (2011) A novel, mat-forming Thiomargarita population associated with a sulfidic fluid flow from a deep-sea mud volcano. Environ Microbiol 13:495–505

    Article  PubMed  CAS  Google Scholar 

  • Goffredi SK, Orphan VJ (2010) Bacterial community shifts in taxa and diversity in response to localized organic loading in the deep sea. Environ Microbiol 12:344–363

    Article  PubMed  CAS  Google Scholar 

  • Grünke S, Felden J, Lichtschlag A, Girnth A-C, de Beer D, Wenzhöfer F, Boetius A (2011) Niche differentiation among mat-forming, sulfide-oxidizing bacteria at cold seeps of the Nile Deep Sea Fan (Eastern Mediterranean Sea). Geobiology 9:330–348

    Article  PubMed  Google Scholar 

  • Grünke S, Lichtschlag A, de Beer D, Felden J, Salman V, Ramette A, Schulz-Vogt HN, Boetius A (2012) Mats of psychrophilic thiotrophic bacteria associated with cold seeps of the Barents Sea. Biogeosciences 9:2947–2960

    Article  Google Scholar 

  • Head IM, Gray ND, Howarth R, Pickup RW, Clarke KJ, Jones JG (2000) Achromatium oxaliferum—understanding the unmistakable. In: Schink B (ed) Advances in microbial ecology. Kluwer Academic/Plenum, New York, pp 1–40

    Chapter  Google Scholar 

  • Heijs SK, Damste JSS, Forney LJ (2005) Characterization of a deep-sea microbial mat from an active cold seep at the Milano mud volcano in the Eastern Mediterranean Sea. FEMS Microbiol Ecol 54:47–56

    Article  PubMed  CAS  Google Scholar 

  • Hinck S, Mussmann M, Salman V, Neu TR, Lenk S, de Beer D, Jonkers HM (2011) Vacuolated Beggiatoa-like filaments from different hypersaline environments form a novel genus. Environ Microbiol 12:3194–3205

    Article  Google Scholar 

  • Hinze G (1903) Thiophysa volutans, ein neues Schwefelbakterium. Ber Dtsch Bot Ges (Heft 6) 21:309–316

    Google Scholar 

  • Hoffmann L, Komárek J, Kaštovský J (2005) System of cyanoprokaryotes (cyanobacteria)—state in 2004. Algol Stud 117:95–115

    Article  Google Scholar 

  • Høgsund S, Nielsen JL, Nielsen LP (2010) Distribution, ecology and molecular identification of Thioploca spp. from Danish brackish water sediments. FEMS Microbiol Ecol 73:110–120

    Google Scholar 

  • Jørgensen BB, Gallardo VA (1999) Thioploca spp.: filamentous sulfur bacteria with nitrate vacuoles. FEMS Microbiol Ecol 28:301–313

    Article  Google Scholar 

  • Jørgensen BB, Dunker R, Grünke S, Roy H (2010) Filamentous sulfur bacteria, Beggiatoa spp., in arctic marine sediments (Svalbard, 79 degrees N). FEMS Microbiol Ecol 73:500–513

    PubMed  Google Scholar 

  • Kalanetra KM, Nelson DC (2010) Vacuolate-attached filaments: highly productive Ridgeia piscesae epibionts at the Juan de Fuca hydrothermal vents. Mar Biol 157:791–800

    Article  Google Scholar 

  • Kalanetra KM, Huston SL, Nelson DC (2004) Novel, attached, sulfur-oxidizing bacteria at shallow hydrothermal vents possess vacuoles not involved in respiratory nitrate accumulation. Appl Environ Microbiol 70:7487–7496

    Article  PubMed  CAS  Google Scholar 

  • Kalanetra KM, Joye SB, Sunseri NR, Nelson DC (2005) Novel vacuolate sulfur bacteria from the Gulf of Mexico reproduce by reductive division in three dimensions. Environ Microbiol 7:1451–1460

    Article  PubMed  CAS  Google Scholar 

  • Kamp A, Roy H, Schulz-Vogt HN (2008) Video-supported analysis of Beggiatoa filament growth, breakage, and movement. Microbiol Ecol 56:484–491

    Article  Google Scholar 

  • Kojima H, Fukui M (2003) Phylogenetic analysis of Beggiatoa spp. from organic rich sediment of Tokyo Bay, Japan. Water Res 37:3216–3223

    Article  PubMed  CAS  Google Scholar 

  • Kojima H, Teske A, Fukui M (2003) Morphological and phylogenetic characterizations of freshwater Thioploca species from Lake Biwa, Japan, and Lake Constance, Germany. Appl Environ Microbiol 69:390–398

    Article  PubMed  CAS  Google Scholar 

  • Komarek J (2006) Cyanobacterial taxonomy: current problems and prospects for the integration of traditional and molecular approaches. Algae 21:349–375

    Article  Google Scholar 

  • Komarek J (2010) Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). Hydrobiologia 639:245–259

    Article  Google Scholar 

  • Komarek J, Anagnostidis K (1998) Cyanoprokaryota. In: Ettl H, Gartner G, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa 19/1. Gustav Fischer, Jena-Stuttgart-Lübeck-Ulm, pp 1–548

    Google Scholar 

  • Lane DJ, Harrison AP Jr, Stahl D, Pace B, Giovannoni SJ, Olsen GJ, Pace NR (1992) Evolutionary relationships among sulfur- and iron-oxidizing eubacteria. J Bacteriol 174:269–278

    PubMed  CAS  Google Scholar 

  • Lapage SP, Sneath PHA, Lessel EF, Skerman VBD, Seeliger HPR, Clark WA (1992) International code of nomenclature of bacteria: bacteriological code. ASM Press, Washington, DC

    Google Scholar 

  • Larkin JM, Henk MC (1996) Filamentous sulfide-oxidizing bacteria at hydrocarbon seeps of the Gulf of Mexico. Microsc Res Tech 33:23–31

    Article  PubMed  CAS  Google Scholar 

  • Larkin JM, Shinabarger DL (1983) Characterization of Thiothrix nivea. Int J Syst Bacteriol 33:841–846

    Article  Google Scholar 

  • Lauterborn R (1907) Eine neue Gattung der Schwefelbakterien (Thioploca schmidlei nov. gen. nov. spec.). Ber Dtsch Bot Ges 25:238–242

    Google Scholar 

  • Leadbetter ER (1974) Family II. Beggiatoaceae. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of determinative bacteriology, 8th edn. The Williams & Wilkins Company, Baltimore, pp 112–116

  • López-García P, Duperron S, Philippot P, Foriel J, Susini J, Moreira D (2003) Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ Microbiol 5:961–976

    Article  PubMed  Google Scholar 

  • Macalady JL, Dattagupta S, Schaperdoth I, Jones DS, Druschel GK, Eastman D (2008) Niche differentiation among sulfur-oxidizing bacterial populations in cave waters. ISME J 2:590–601

    Article  PubMed  CAS  Google Scholar 

  • MacGregor BJ, Biddle JF, Teske A (2013a) Mobile elements in a single-filament orange Guaymas Basin Beggiatoa sp. genome: evidence for genetic exchange with cyanobacteria. Appl Environ Microbiol. doi:10.1128/AEM.03821-12

  • MacGregor BJ, Biddle JF, Siebert JR, Staunton E, Hegg EL, Matthysse AG, Teske A (2013b) Why orange Guaymas Basin Beggiatoa spp. are orange: single-filament-genome-enabled identification of an abundant octaheme cytochrome with hydroxylamine oxidase, hydrazine oxidase, and nitrite reductase activities. Appl Environ Microbiol 79:1183–1190

    Article  PubMed  CAS  Google Scholar 

  • Maier S, Gallardo VA (1984) Nutritional characteristics of two marine thioplocas determined by autoradiography. Arch Microbiol 139:218–220

    Article  CAS  Google Scholar 

  • Martiny JBH, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Ovreas L, Reysenbach A-L, Smith VH, Staley JT (2006) Microbial biogeography: putting mircoorganisms on the map. Nat Microbiol Rev 4:102–112

    Article  CAS  Google Scholar 

  • McHatton SC, Barry JP, Jannasch HW, Nelson DC (1996) High nitrate concentrations in vacuolate, autotrophic marine Beggiatoa spp. Appl Environ Microbiol 62:954–958

    PubMed  CAS  Google Scholar 

  • McKay LJ, MacGregor BJ, Biddle JF, Albert DB, Mendlovitz HP, Hoer DR, Lipp JS, Lloyd KG, Teske AP (2012) Spatial heterogeneity and underlying geochemistry of phylogenetically diverse orange and white Beggiatoa mats in Guaymas Basin hydrothermal sediments. Deep Sea Res I 67:21–31

    Article  CAS  Google Scholar 

  • Mussmann M, Schulz HN, Strotmann B, Kjaer T, Nielsen LP, Rosello-Mora RA, Amann RI, Jørgensen BB (2003) Phylogeny and distribution of nitrate-storing Beggiatoa spp. in coastal marine sediments. Environ Microbiol 5:523–533

    Article  PubMed  CAS  Google Scholar 

  • Mussmann M, Hu FZ, Richter M, De Beer D, Preisler A, Jørgensen BB, Huntemann M, Glöckner FO, Amann R, Koopman WJH, Lasken RS, Janto B, Hogg J, Stoodley P, Boissy R, Ehrlich GD (2007) Insights into the genome of large sulfur bacteria revealed by analysis of single filaments. PLoS Biol 5:1923–1937

    Article  CAS  Google Scholar 

  • Nelson WC, Jannasch HW (1983) Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Arch Microbiol 136:262–269

    Article  CAS  Google Scholar 

  • Nelson DC, Waterbury JB, Jannasch HW (1982) Nitrogen-fixation and nitrate utilization by marine and freshwater Beggiatoa. Arch Microbiol 133:172–177

    Article  CAS  Google Scholar 

  • Nelson WC, Revsbech NP, Jørgensen BB (1986) Microoxic–anoxic niche of Beggiatoa spp.: microelectrode survey of marine and freshwater strains. Appl Environ Microbiol 52:161–168

    PubMed  CAS  Google Scholar 

  • Nelson DC, Wirsen CO, Jannasch HW (1989) Characterization of large, autotrophic Beggiatoa spp. abundant at hydrothermal vents of the Guaymas Basin. Appl Environ Microbiol 55:2909–2917

    PubMed  CAS  Google Scholar 

  • Oerstedt AS (1844) De regionibus marinis. Elementa topographiae historiconaturalis freti Oeresund. PhD thesis, University of Copenhagen, Copenhagen

  • Otte S, Kuenen G, Nielsen LP, Paerl HW, Zopfi J, Schulz HN, Teske A, Strotmann B, Gallardo VA, Jørgensen BB (1999) Nitrogen, carbon, and sulfur metabolism in natural Thioploca samples. Appl Environ Microbiol 65:3148–3157

    PubMed  CAS  Google Scholar 

  • Pace NR, Olsen GJ, Woese CR (1986) Ribosomal RNA phylogeny and the primary lines of evolutionary descent. Cell 45:325–326

    Article  PubMed  CAS  Google Scholar 

  • Peplies J, Kottmann R, Ludwig W, Glöckner FO (2008) A standard operating procedure for phylogenetic inference (SOPPI) using (rRNA) marker genes. Syst Appl Microbiol 31:251–257

    Article  PubMed  CAS  Google Scholar 

  • Rabenhorst L (1865) Flora europaca algarum aquae dulcis submannae. Section II. Kummer, Leipzig: 94

  • Roa R, Gallardo VA, Ernst B, Baltazar M, Cañete JI, Enríquez-Briones S (1995) Nursery ground, age structure and abundance of juvenile squat lobster Pleuroncodes monodon on the continental shelf off central Chile. Mar Ecol Prog Ser 116:47–54

    Article  Google Scholar 

  • Salman V, Amann R, Girnth A-C, Polerecky L, Bailey J, Høgslund S, Jessen G, Pantoja S, Schulz-Vogt HN (2011) A single-cell sequencing approach to the classification of large, vacuolated sulfur bacteria. Syst Appl Microbiol 34:243–259

    Article  PubMed  CAS  Google Scholar 

  • Salman V, Amann R, Shub DA, Schulz-Vogt HN (2012) Multiple self-splicing introns in the 16S rRNA genes of giant sulfur bacteria. Proc Natl Acad Sci USA 109:4203–4208

    PubMed  CAS  Google Scholar 

  • Sanchez-Baracaldo P, Haydes PK, Blank CE (2005) Morphological and habitat evolution in the Cyanobacteria using a compartmentalization approach. Geobiology 3:145–165

    Article  CAS  Google Scholar 

  • Saravanakumar C, Dineshkumar N, Alavandi SV, Salman V, Poornima M, Kalaimani N (2012) Enrichment and identification of large filamentous sulfur bacteria related to Beggiatoa species from brackishwater ecosystems of Tamil Nadu, Southeast coast of India. Syst Appl Microbiol 35:396–403

    Article  PubMed  CAS  Google Scholar 

  • Sayama M, Risgaard-Petersen N, Nielsen LP, Fossing H, Christensen PB (2005) Impact of bacterial NO3 transport on sediment biogeochemistry. Appl Environ Microbiol 71:7575–7577

    Article  PubMed  CAS  Google Scholar 

  • Schattenhofer M, Fuchs BM, Amann R, Zubkov MV, Tarran GA, Pernthaler J (2009) Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic Ocean. Environ Microbiol 11:2078–2093

    Article  PubMed  CAS  Google Scholar 

  • Schewiakoff W (1892) Über einen neuen bacterienähnlichen Organismus des Süsswassers. Habilitation thesis, University Heidelberg, Heidelberg

  • Schulz HN (2006) The genus Thiomargarita. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, 3 edn. Springer, New York, pp 1156–1163

  • Schulz HN, De Beer D (2002) Uptake rates of oxygen and sulfide measured with individual Thiomargarita namibiensis cells by using microelectrodes. Appl Environ Microbiol 68:5746–5749

    Article  PubMed  CAS  Google Scholar 

  • Schulz HN, Jørgensen BB (2001) Big bacteria. Annu Rev Microbiol 55:105–137

    Article  PubMed  CAS  Google Scholar 

  • Schulz HN, Schulz HD (2005) Large sulfur bacteria and the formation of phosphorite. Science 307:416–418

    Article  PubMed  CAS  Google Scholar 

  • Schulz HN, Jørgensen BB, Fossing HA, Ramsing NB (1996) Community structure of filamentous, sheath-building sulfur bacteria, Thioploca spp., off the coast of Chile. Appl Environ Microbiol 62:1855–1862

    PubMed  CAS  Google Scholar 

  • Schulz HN, Brinkhoff T, Ferdelman TG, Marine MH, Teske A, Jørgensen BB (1999) Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284:493–495

    Article  PubMed  CAS  Google Scholar 

  • Schwedt A, Kreutzmann A-C, Polerecky L, Schulz-Vogt HN (2012) Sulfur respiration in a marine chemolithoautotrophic Beggiatoa strain. Front Microbiol 2:276

    Google Scholar 

  • Sekar R, Mills DK, Remily ER, Voss JD, Richardson LL (2006) Microbial communities in the surface mucopolysaccharide layer and the black band microbial mat of black band-diseased Siderastrea siderea. Appl Environ Microbiol 72:5963–5973

    Article  PubMed  CAS  Google Scholar 

  • Selje N, Simon M, Brinkhoff T (2004) A newly discovered Roseobacter cluster in temperate and polar oceans. Nature 427:445–448

    Article  PubMed  CAS  Google Scholar 

  • Soutar A, Crill PA (1977) Sedimentation and climatic patterns in the Santa Barbara Basin during 19th and 20th centuries. Geol Soc Am Bull 88:1161–1172

    Article  Google Scholar 

  • Stevens H, Ulloa O (2008) Bacterial diversity in the oxygen minimum zone of the eastern tropical South Pacific. Environ Microbiol 10:1244–1259

    Article  PubMed  CAS  Google Scholar 

  • Strohl WR (1989) Family I. Beggiatoaceae. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 3, 1st edn. The Williams & Wilkins Company, Baltimore, pp 2089–2106

  • Strohl WR, Larkin JM (1978) Enumeration, isolation, and characterization of Beggiatoa from freshwater sediments. Appl Environ Microbiol 36:755–770

    PubMed  CAS  Google Scholar 

  • Strohl WR, Cannon GC, Shively JM, Gude H, Hook LA, Lane CM, Larkin JM (1981) Heterotrophic carbon metabolism by Beggiatoa alba. J Bacteriol 148:572–583

    PubMed  CAS  Google Scholar 

  • Summit M, Baross JA (1998) Thermophilic subseafloor microorganisms from the 1996 North Gorda Ridge eruption. Deep Sea Res II 45:2751–2766

    Article  Google Scholar 

  • Teske A, Ramsing NB, Küver J, Fossing H (1995) Phylogeny of Thioploca and related filamentous sulfide-oxidizing bacteria. Syst Appl Microbiol 18:517–526

    Article  Google Scholar 

  • Teske A, Sogin ML, Nielsen LP, Jannasch HW (1999) Phylogenetic position of a large marine Beggiatoa. Syst Appl Microbiol 22:39–44

    Article  PubMed  CAS  Google Scholar 

  • Trevisan V (1842) Prospetto della Flora Euganea. Coi Tipi del Seminario, Padua

    Google Scholar 

  • Van Niel CB (1948) Family A. Achromatiaceae Massart. In: Breed RS, Murray EGD, Hitchens AP (eds) Bergey’s manual of determinative bacteriology, 6th edn. The Williams and Wilkins Company, Baltimore, pp 997–999

    Google Scholar 

  • Vaucher JP (1803) Histoire des conferves d′eau douce, contenant leurs différents modes de reproduction, et la description de leurs principales espèces: Paschoud, Geneva

  • Waterbury JB, Stanier RW (1978) Patterns of growth and development in pleurocapsalean cyanobacteria. Microbiol Rev 42:2–44

    PubMed  CAS  Google Scholar 

  • West GS, Griffiths BM (1909) Hillhousia mirabilis, a giant sulphur bacterium. Proc R Soc Lond B 81:398–405

    Article  Google Scholar 

  • Williams LA, Reimers C (1983) Role of bacterial mats in oxygen-deficient marine basins and coastal upwelling regimes: preliminary report. Geology 11:267–269

    Article  Google Scholar 

  • Winogradsky SN (1887) Über Schwefelbacterien. Bot Zeitung 45:489–610

    Google Scholar 

  • Winogradsky SN (1888) Beiträge zur Morphologie und Physiologie der Bacterien, Heft 1. Zur Morphologie und Physiologie der Schwefelbacterien: Leipzig, pp 1–120

  • Wirsen CO, Brinkhoff T, Küver J, Muyzer G, Molyneaux S, Jannasch HW (1998) Comparison of a new Thiomicrospira strain from the mid-atlantic ridge with known hydrothermal vent isolates. Appl Environ Microbiol 64:4057–4059

    PubMed  CAS  Google Scholar 

  • Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer KH, Ludwig W, Glöckner FO, Rosello-Mora R (2008) The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We warmly thank Joe Morton for providing the illustrations of different types of large sulphur bacteria. Thank you also to Barbara MacGregor, Anne-Christin Kreutzmann and Heide Schulz-Vogt for reviewing the manuscript and providing valuable comments for its improvement. This study was funded by the Deutsche Forschungsgemeinschaft (SA 2505/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verena Salman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salman, V., Bailey, J.V. & Teske, A. Phylogenetic and morphologic complexity of giant sulphur bacteria. Antonie van Leeuwenhoek 104, 169–186 (2013). https://doi.org/10.1007/s10482-013-9952-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-013-9952-y

Keywords

Navigation